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Abstract

The aim of this chapter is to present some important results in Social Choice
Theory in a simple way and to discuss their relevance for multicriteria deci-
sion aiding. Using some classical examples of voting problems (Section 2),
we will show some fundamental di�culties arising when aggregating prefer-
ences. We will then present some theoretical results that can help us better
understand the nature of these di�culties (Section 3). We will then try to
analyze the consequences of these results for multicriteria decision aiding
(Section 4). A long references list will help the interested reader to deepen
his understanding of these questions.

Keywords : aggregation, multiciteria decision aiding, Social Choice Theory,
elections



1 Introduction

Many organisations face such complex and important management problems
that they sometimes want their decisions to be based on a `scienti�c prepa-
ration', sometimes called a decision analysis. The expert in charge of this
preparation faces many diverse tasks : stakeholders identi�cation, problem
statement, elaboration of a list of possible actions, de�nition of one or sev-
eral criteria for evaluating these actions, information gathering, sensitivity
analysis, elaboration of a recommendation (for instance a ranking of the ac-
tions or a subset of `good' actions), etc. The desire or necessity to take
multiple con�ictual viewpoints into account for evaluating the actions often
makes his task even more di�cult. In that case, we speak of multicriteria
decision aiding (see Pomerol and Barba-Romero, 1993 ; Vincke, 1989 ; Roy,
1985). The expert must then try to synthetize the partial preferences (mod-
elled by each criterion) into a global preference on which a recommendation
can be based. This is called preference aggregation.

A very similar aggregation problem has been studied for long in the frame-
work of voting theory. It consists in searching a `reasonable' mechanism (we
call it voting system or aggregation method in the sequel) aggregating the
opinions expressed by several voters about the candidates in an election, in
order to determine a winner or to rank all candidates in order of preference.
This problem is of course very old but its modern analysis dates back to the
end of the eighteenth century with works by Borda (1781) and Condorcet
(1785).

The diversity of voting systems actually used in the world shows that this
problem is still important. In the 1950s, the works of Arrow (1963), Black
(1958) and May (1952) have initiated a huge literature (see Kelly, 1991)
forming what is today called social choice theory. It analyzes the links that
(should) exist between the individual preferences of the members of a society
and the decisions made by this group when these decisions are supposed to
re�ect the collective preference of the group.

The many results obtained in social choice theory are valuable for multi-
criteria decision aiding. There are indeed links between these two domains :
it is easy to go from one to the other by replacing the words `action', `cri-
terion', `partial preference' and `overall preference' by `candidate', `voter',
`individual preference' and `collective preference' (see Arrow and Raynaud,
1986).

The aim of this chapter is to present some important results in Social
Choice Theory in a simple way and to discuss their relevance for multi-
criteria decision aiding. Using some classical examples of voting problems
(Section 2), we will show some fundamental di�culties arising when aggre-
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gating preferences. We will then present some theoretical results that can
help us better understand the nature of these di�culties (Section 3). We
will then try to analyze the consequences of these results for multicriteria
decision aiding (Section 4). A long references list will help the interested
reader to deepen his understanding of these questions.

2 Introductory examples

Choices made by a society often impact the individuals making up this soci-
ety. It therefore seems reasonable to ground these choices on the preferences
of the individuals. The choice of a candidate (law, project, social state,
etc.) then depends on the outcome of an election in which the individuals
(voters) express their preferences. A voting system (or aggregation method)
uses the information provided by the voters in order to determine the elected
candidate or, more generally, the decision made by the group.

In such conditions, how should we conceive a `good' voting system ?
`Common sense' tells us that such a system must be democratic, i.e., it
must yield collective preferences re�ecting as much as possible the individual
preferences. In many countries (groups, companies, committees), this is op-
erationalized by the majority rule (or some variant of it) : candidate a wins
against b if the majority of the voters prefer a to b. This simple rule is very
intuitive. As we will later see, when there are only two candidates, this rule
raises almost no problem (see May, 1952).

This rule can be adpated in many ways to face situations with more
than two candidates. These adaptations can lead to surprising outcomes.
This will be illustrated by a few examples in this section. We will begin
with uninominal voting systems, where each voter chooses one candidate
(section 2.1), before moving to other systems where the voters can express
their preferences in more complex ways (section 2.2).

In all examples, we will assume that each voter is able to rank (possibly
with ties) all candidates in order of preference, i.e., he can express his prefer-
ences by means of a weak order. If a voter prefers a to b and b to c (thereby
prefering a to c), we write `a � b � c'. Except otherwise stated, we will
suppose that the voters are sincere, i.e., they express their `true' preferences.
Finally, notice that most examples presented here are classic. Many more
examples and the analysis of many voting systems can be found in Moulin
(1980, 1988), Dummet (1984), Fishburn (1977) and Nurmi (1987).
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2.1 Uninominal systems

Example 1 (Dictatorship of majority)
Let {a, b, c, . . . , z} be the set of 26 candidats for an election with 100 voters
whose preferences are :

51 voters have preferences a � b � c � . . . � y � z,
49 voters have preferences z � b � c � . . . � y � a.

It is clear that 51 voters will vote for a while 49 vote for z. Thus a has an
absolute majority and, in all uninominal systems we are aware of, a wins.
But is a really a good candidate ? Almost half of the voters perceive a as
the worst one. And candidate b seems to be a good candidate for everyone.
Candidate b could be a good compromise. As shown by this example, a
uninominal election combined with the majority rule allows a `dictatorship
of majority' and doesn't favour a compromise. A possible way to avoid this
problem might be to ask the voters to provide their whole ranking instead of
their preferred candidate. We will see some examples in Section 2.2. 3

The possibility of a dictatorship of the majority was already acknowledged
by classic greek philosophers. The following examples show that many other
strange phenomena can occur with uninominal voting systems.

Example 2 (Respect of majority in the British system)
The voting system in the United Kingdom is plurality voting, i.e. the election
is uninominal and the aggregation method is simple majority. Let {a, b, c}
be the set of candidates for a 21 voters election (or 21 × 106 voters if one
wishes a more realistic example). Suppose that

10 voters have preferences a � b � c,
6 voters have preferences b � c � a,
5 voters have preferences c � b � a.

Then a (resp. b and c) obtains 10 votes (resp. 6 and 5) so that a is chosen.
Nevertheless, this might be di�erent from what a majority of voters wanted.
Indeed, an absolute majority of voters prefers any other candidate to a (11
out of 21 voters prefer b and c to a). 3

Let us see, using the same example, if such a problem would be avoided
by the two-stage French system. After the �rst stage, as no candidate has
an absolute majority, a second stage is run between candidates a and b. We
suppose that the voters keep the same preferences on {a, b, c}. So,
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10 voters have preferences a � b,
11 voters have preferences b � a.

Thus a obtains 10 votes and b, 11 votes so that candidate b is elected. This
time, none of the beaten candidates (a and c) are preferred to b by a majority
of voters. Nonetheless we cannot conclude that the two-stage French system
is superior to the British system from this point of view, as shown by the
following example.

Example 3 (Respect of majority in the two-stage French system)
Let {a, b, c, d} be the set of candidates for a 21 voters election. Suppose that

10 voters have preferences b � a � c � d,
6 voters have preferences c � a � d � b,
5 voters have preferences a � d � b � c.

After the �rst stage, as no candidate has absolute majority, a second stage
is run between candidates b and c. Candidate b easily wins with 15 out of 21
votes though an absolute majority (11/21) of voters prefer a and d to b. 3

Because it is not necessary to be a mathematician to �gure out such prob-
lems, some voters might be tempted not to sincerely report their preferences
as shown in the next example.

Example 4 (Manipulation in the two-stage French system)
Let us continue with the example used above. Suppose that the six voters
having preferences c � a � d � b decide not to be sincere and vote for a
instead of c. Then candidate a wins after the �rst stage because there is
an absolute majority for him (11/21). If they had been sincere (as in the
previous example), b would have been elected. Thus, casting a non sincere
vote is useful for those 6 voters as they prefer a to b. Such a system, that may
encourage voters to falsely report their preferences, is called manipulable. 3

This is not the only weakness of the French system as attested by the
three following examples.

Example 5 (Monotonicity in the two-stage French system)
Let {a, b, c} be the set of candidates for a 17 voters election. A few days
before the election, the results of a survey are as follows :

6 voters have preferences a � b � c,
5 voters have preferences c � a � b,
4 voters have preferences b � c � a,
2 voters have preferences b � a � c.
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With the French system, a second stage would be run, between a and b and
a would be chosen obtaining 11 out of 17 votes. Suppose that candidate a,
in order to increase his lead over b and to lessen the likelihood of a defeat,
decides to strengthen his electoral campaign against b. Suppose that the
survey did exactly reveal the preferences of the voters and that the campaign
has the right e�ect on the last two voters. Hence we observe the following
preferences.

8 voters have preferences a � b � c,
5 voters have preferences c � a � b,
4 voters have preferences b � c � a.

After the �rst stage, b is eliminated, due to the campaign of a. The second
stage opposes a to c and c wins, obtaining 9 votes. Candidate a thought that
his campaign would be bene�cial. He was wrong. Such a method is called
non monotonic because an improvement of a candidate's position in some of
the voter's preferences can lead to a deterioration of his position after the
aggregation. It is clear with such a system that it is not always interesting
or e�cient to sincerely report one's preferences. You will note in the next
example that some manipulations can be very simple. 3

Example 6 (Participation in the two-stage French system)
Let {a, b, c} be the set of candidates for a 11 voters election. Suppose that

4 voters have preferences a � b � c,
4 voters have preferences c � b � a,
3 voters have preferences b � c � a.

Using the French system, a second stage should oppose a to c and c should
win the election obtaining 7 out of 11 votes. Suppose that 2 of the �rst 4
voters (with preferences a � b � c) decide not to vote because c, the worst
candidate according to them, is going to win anyway. What will happen ?
There will be only 9 voters.

2 voters have preferences a � b � c,
4 voters have preferences c � b � a,
3 voters have preferences b � c � a.

Contrary to all expectations, candidate c will loose while b will win, obtaining
5 out of 9 votes. Our two lazy voters can be proud of their abstention since
they prefer b to c. Clearly such a method does not encourage participation. 3
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Example 7 (Separability in the two-stage French system)
Let {a, b, c} be the set of candidates for a 26 voters election. The voters are
located in two di�erent areas: countryside and town. Suppose that the 13
voters located in the town have the following preferences.

4 voters have preferences a � b � c,
3 voters have preferences b � a � c,
3 voters have preferences c � a � b,
3 voters have preferences c � b � a.

Suppose that the 13 voters located in the countryside have the following
preferences.

4 voters have preferences a � b � c,
3 voters have preferences c � a � b,
3 voters have preferences b � c � a,
3 voters have preferences b � a � c.

Suppose now that an election is organised in the town, with 13 voters. Can-
didates a and c will go to the second stage and a will be chosen, obtaining
7 votes. If an election is organised in the countryside, a will defeat b in the
second stage, obtaining 7 votes. Thus a is the winner in both areas. Nat-
urally we expect a to be the winner in a global election. But it is easy to
observe that in the global election (26 voters) a is defeated during the �rst
stage. Such a method is called non separable. 3

The previous examples showed that, when there are more than 2 can-
didates, it is not an easy task to imagine a system that would behave as
expected. Note that, in the presence of 2 candidates, the British system (uni-
nominal and one-stage) is equivalent to all other systems and it su�ers none
of the above mentioned problems (May, 1952). Thus we might be tempted
by a generalisation of the British system (restricted to 2 candidates). If there
are two candidates, we use the British system; if there are more than two
candidates, we arbitrarily choose two of them and we use the British system
to select one. The winner is opposed (using the British system) to a new
arbitrarily chosen candidate. And so on until no more candidates remain.
This would require n − 1 votes between 2 candidates. Unfortunately, this
method su�ers severe drawbacks.

Example 8 (In�uence of the agenda in sequential voting)
Let {a, b, c} be the set of candidates for a 3 voters election. Suppose that
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1 voter has preferences a � b � c,
1 voter has preferences b � c � a,
1 voter has preferences c � a � b.

The 3 candidates will be considered two by two in the following order or
agenda: a and b �rst, then c. During the �rst vote, a is opposed to b and a
wins with absolute majority (2 votes against 1). Then a is opposed to c and
c defeats a with absolute majority. Thus c is elected.

If the agenda is a and c �rst, it is easy to see that c defeats a and is then
opposed to b. Hence, b wins against c and is elected.

If the agenda is b and c �rst, it is easy to see that, �nally, a is elected.
Consequently, in this example, any candidate can be elected and the outcome
depends completely on the agenda, i.e. on an arbitrary decision. Let us note
that sequential voting is very common in di�erent parliaments. The di�erent
amendments to a bill are considered one by one in a prede�ned sequence.
The �rst one is opposed to the status quo, using the British system; the
second one is opposed to the winner, and so on. Clearly, such a method lacks
neutrality. It doesn't treat all candidates in a symmetric way. Candidates
(or amendments) appearing at the end of the agenda are more likely to be
elected than those at the beginning. We say that such a method is not
neutral. Notice that the British and French systems are neutral because
they do not favour any candidate. 3

Example 9 (Violation of unanimity in sequential voting)
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

1 voter has preferences b � a � d � c,
1 voter has preferences c � b � a � d,
1 voter has preferences a � d � c � b.

Consider the following agenda: a and b �rst, then c and �nally d. Candidate
a is defeated by b during the �rst vote. Candidate c wins the second vote
and d is �nally elected though all voters unanimously prefer a to d. Let us
remark that this cannot happen with the French and British systems. 3

Example 10 (Tie-breaking president)
Suppose we use the two-stage French system and, at the second stage, the two
candidates have the same number of votes. This is very unlikely in a national
election but can often occur in small scale elections (board of trustees, court
jury, Ph.D. jury, . . . ). It is then usual to use the president's vote to break the
tie. In this case, the opinions of all voters are not treated in the same way.
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We then say that the voting system is not anonymous, unlike all systems
we have seen so far. Note that using the president's vote is not the only
possibility : we could break the tie by choosing, for instance, the oldest of
the two candidates (this would not respect neutrality). 3

Up to now, we have assumed that the voters are able to rank all candidates
from best to worse without ties but the only information that we collected was
the best candidate. We could try to palliate the many encountered problems
by asking voters to explicitly rank the candidates in order of preference (some
systems, like approval voting, use another kind of information; see Brams and
Fishburn, 1982). This idea, though interesting, will lead us to many other
pitfalls that we discuss just below.

2.2 Systems based on rankings

In this kind of election, each voter provides a ranking without ties of the
candidates. Hence the task of the aggregation method is to extract from all
these rankings the best candidate or a ranking of the candidates re�ecting
the preferences of the voters as much as possible.

Condorcet (1785) suggests to compare all candidates pairwise in the fol-
lowing way.

Condorcet method (or majority method) Candidate a is preferred to b if and
only if the number of voters ranking a before b is larger than the number
of voters ranking b before a. In case of tie, candidates a and b are
indi�erent.

He then states the following principle :

Condorcet principle If a candidate is preferred to each other candidate, us-
ing the majority rule, then he should be chosen. The candidate, the
Condorcet winner, is necessarily unique.

Note that none of the British or French system respect this principle.
Indeed, in example 2, the British system leads to the election of a while b is
the Condorcet winner and, in example 3, the French system elects b while a
is the Condorcet winner.

The Condorcet principle seems very sensible and close to the intuitive
notion of democracy (yet it can be criticized, as suggested in example 1
where candidate a is a Condorcet winner). It is not always operational : in
some situations, there is no Condorcet winner; this is the so-called Condorcet
paradox. Indeed, in example 8, a is preferred to b, b is preferred to c and
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c is preferred to a. No candidate is preferred to all others. In such a case,
the Condorcet method fails to elect a candidate. One might think that
example 8 is very bizarre and unlikely to happen. Unfortunately it isn't. If
you consider an election with 25 voters and 11 candidates, the probability
of such a paradox is signi�cantly high as it is approximately 1/2 (Gehrlein,
1983) and the more candidates or voters, the higher the probability of such a
paradox. Note that, in order to obtain this result, all rankings are supposed
to have the same probability. Such an hypothesis is clearly questionable
(Gehrlein, 1983).

We must �nd how to proceed when there is no Condorcet winner. We may,
for example, choose a candidate such that no other candidate defeats him
according to the majority rule (weak Condorcet principle) but such a candi-
date does also not always exist (as in example 8). Many methods have been
proposed for exploiting the relation constructed using the majority method.
A lot of them can be found in Fishburn (1977), Nurmi (1987) and Laslier
(1997).

An alternative approach has been proposed by Borda (1781). He suggests
to associate a global score to each candidate. This score is the sum of his
ranks in the rankings of the voters.

Borda method Candidate a is preferred to b if the sum of the ranks of a in
the rankings of the voters is strictly smaller than the corresponding
sum for b (we now assume that the rankings are without tie and we
assign rank 1 to the best candidate in the ranking, rank 2 to the second
best candidate, and so on; as we will see, the method can be easily
generalized for handling ties).

Example 11 (Borda and Condorcet methods)
Let {a, b, c, d} be the set of candidates for a 3 voters election. Suppose that

2 voters have preferences b � a � c � d,
1 voters have preferences a � c � d � b.

The Borda score of a is 5 = 2×2+1×1. For b, it is 6 = 2×1+1×4. Candidates
c and d receive 8 and 11. Thus a is the winner and the collective ranking is
a � b � c � d. Using the Condorcet method, the conclusion is di�erent: b
is the Condorcet winner. Furthermore, the collective preference obtained by
the Condorcet method is transitive and yields the ranking b � a � c � d.
The two methods diverge; the Borda method does not verify the Condorcet
principle. Nevertheless, it can be shown that the Borda method never chooses
a Condorcet looser, i.e. a candidate that is beaten by all other candidates by
an absolute majority (contrary to the British system, see Example 2). 3
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The Borda method has an important advantage with respect to the Con-
dorcet method. In any situation, it selects one or several winners (those with
the lowest sum of ranks). Furthermore, it always yields a ranking of the
candidates, from best to worse. The Condorcet method, on the contrary,
sometimes yields non-transitive preferences and it is then impossible to rank
the candidates or even to choose a subset of `good' candidates (see exam-
ple 8). It is easy to verify that the Borda method is neutral, anonymous,
separable, monotonic and encourages participation.

The Borda method nevertheless sometimes behaves in a strange way.
Indeed, consider example 11 and suppose that candidates c and d decide on
the eve of the election not to compete because they are almost sure to lose.
With the Borda method, the new winner is b. Thus b now defeats a just
because c and d dropped out. Thus the fact that a defeats or is defeated by
b depends not only one the relative positions of a and b in the rankings of
the voters but is also contingent upon the presence of other candidates and
on their position with respect to all other candidates. This can be a problem
as the set of the candidates is not always �xed. It is even more a problem
in decision aiding because the set of actions is seldom given and is to a large
extent the outcome of a modelling process.

After all these examples, we would like to propose a democratic method
with the advantages of the Borda method (transitivity of the collective prefer-
ences) and those of the Condorcet method (Condorcet principle and absence
of contingency problems). We will see in Section 3 that it is hopeless.

Let us mention that we limited this discussion to voting systems aimed at
choosing a candidate and not a subset of candidates. The reader might then
be tempted to conclude that those systems are inferior to systems aimed
at choosing a representative body with some `proportional' method. But
this is too simple, for at least two reasons. First, the de�nition of what
constitues a fair or democratic proportional representation is complex and
most proportional systems lead to paradoxical situations (see Balinski and
Young, 1982). Second, representative bodies must make decisions and, to
this end, they need voting systems aimed at choosing a single action.

3 Some theoretical results

Based on the preceding examples, we now have the intuition that conceiv-
ing `good' preference aggregation methods raises serious problems. This is
con�rmed by some celebrated results in Social Choice Theory.
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3.1 Arrow's theorem

Arrow's theorem is central in Social Choice Theory. It is about voting systems
aimed at aggregating n (n ≥ 3) weak orders (rankings possibly with ties) in
a collective weak order. Just as in Section 2.2, each voter ranks all the
candidates, possibly with ties.

Formalization
A binary relation R on a set A is a subset of A × A. We often write a R b
instead of (a, b) ∈ R. A weak order on A is a complete (for all a, b ∈ A
we have a R b and/or b R a) and transitive (for all a, b, c ∈ A, a R b and
b R c imply a R c) binary relation on A. Let WO(A) denote the set of all
weak orders on the set A. The asymmetric part of R is the binary relation
P de�ned by a P b ⇔ [a R b and Not [b R a]]. The symmetric part of R is
the binary relation I de�ned by a I b ⇔ [a R b and b R a].

Let N = {1, 2, . . . n} represent the set of voters and A the set of can-
didates. We assume that voter i ∈ N expresses his preferences by means
of a weak order Ri∈ WO(A) on the set A. We write Pi (resp. Ii) for the
asymmetric (resp. symmtric) part of Ri. •

Arrow was interested in the aggregation methods satisfying the following
conditions :

Universality every con�guration of rankings is admissible.

Formalization
We want to �nd an aggregation function F yielding a result (a collective
weak order) for every element (R1, R2, . . . , Rn) of WO(A)n. •

This condition excludes any constraint on the set of admissible rank-
ings. The examples of previous section have shown that some problems are
caused by some speci�c rankings or con�gurations of rankings. A possible
way out would then consist in proposing a method that works only with
`simple' con�gurations. Imposing restrictions on the admissible con�gura-
tions is sometimes reasonable. For instance, one may sometimes assume that
all voters and candidates are located on a right-left axis and that each voter
ranks the candidates in order of increasing distance between himself and the
candidates. The preferences of the voters are then single-peaked and (Black,
1958) showed that a Condorcet winner then necessarily exists. But, such re-
strictions imply, for instance, the absence of atypical voters. Yet, this cannot
be excluded a priori. With a non-universal aggregation method, some ballots
would be impossible to analyze.
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Transitivity The outcome of the aggregation method must always be a com-
plete ranking, possibly with ties.

Formalization
The aggregation function takes its values in WO(A).
When there is no ambiguity, we write R = F (R1, R2, . . . , Rn) and P (resp.
I) the asymmetric part (resp. symmetric) of R. •

This condition imposes that the outcome be transitive irrespective of the
preference of the voters. So, whenever the society prefers a to b and b to
c, it must prefer a to c. We have seen that the Condorcet method does
not satisfy this condition. It is su�cient (but not necessary) to ensure that
the method will, in all cases, designate one or several best candidates (those
with the best positions in the ranking). We will later see that weakening
this condition does not much improve the situation formalized by Arrow's
Theorem.

Unanimity The outcome of the aggregation method may not contradict the
voters when they vote unanimously.

Formalization
The aggregation function F must be such that, for all a, b ∈ A, if a Pi b for
all i ∈ N , then a P b. •

If a is ranked before b in each ranking, then it must be before b in the
collective ranking. This condition is very sensible; Example 9 nevertheless
shows that some methods violate it.

Independence The relative position of two candidates in the collective rank-
ing only depends on their relative position in the individual rankings.

Formalization
For all (R1, R2, . . . , Rn), (R′

1, R
′
2, . . . , R

′
n) ∈ WO(A)n and all a, b ∈ A, if

a Ri b ⇔ a R′
i b and b Ri a ⇔ b R′

i a, then a R b ⇔ a R′ b. •

This condition is more complex than the previous ones. When comparing
a and b, it forbids

• taking preference intensities into account. The only thing that matters
is that a is ranked by the voters before or after b.

• taking other candidates into account.

Let us illustrate this condition with an example.
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Example 12 (The Borda method and Independence)
Let {a, b, c, d} be the set of candidates. Suppose there are three voters, with
the following preferences :

2 voters have preferences c � a � b � d,
1 voters has preferences a � b � d � c.

The Borda method yields the ranking : a, c, b, d with the respective scores 5,
6, 8 and 11.

Suppose now that :

2 voters have preferences c � a � b � d,
1 voters has preferences a � c � b � d.

The Borda method yields the ranking : c, a, b, d with the respective scores 4,
5, 9 and 12.

Note that, in each individual ranking, the relative position of a and c did
not vary across ballots : one voter prefers a to c while two voters prefers c to
a. Independence then imposes that the position of a and c in the collective
ranking be identical. This is not the case with the Borda method. Indeed,
this method uses the fact that the `distance' between a and c seems larger in
the ranking a � b � d � c than in the ranking a � c � b � d, because b and
d lie between a and c in the �rst case.

The dependence of the relative position of a and c with respect to b and
d is ruled out by the Independence condition. It also excludes any method
using, in addition to the rankings, some information regarding preference
intensities. 3

The last condition used by Arrow states that no voter can impose, in
all circumstances, his preferences to the society. This condition is extremely
sensible for anyone willing to use a `democratic' method.

Non-dictatorship there is no dictator.

Formalization
For all i ∈ N and all a, b ∈ A, there is a pro�le (R1, R2, . . . , Rn) ∈ WO(A)n

such that a Pi b and b R a. •

We are now ready to state the celebrated :

Theorem 1 (Arrow, 1963)
If the number of voters is �nite and at least equal to three, no aggrega-
tion method can simultaneously satisfy universality, transitivity, unanimity,
independence and non-dictatorship.
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Proof
The proof of Arrow's Theorem uses the following de�nitions. A subset I ⊆ N
of voters is almost decisive for the pair of candidates (a, b) ∈ A2 if, for all
(R1, R2, . . . , Rn) ∈ WO(A)n, [a Pi b, ∀i ∈ I and b Pj a,∀j /∈ I] ⇒ a P b].
Similarly, The subset I ⊆ N of voters is decisive for the pair of candidates
(a, b) ∈ A2 if, for all (R1, R2, . . . , Rn) ∈ WO(A)n, [a Pi b, ∀i ∈ I] ⇒ a P b.

We �rst show that, if I is almost decisive for the pair (a, b), then I is
decisive for all pairs of candidates.

Let c be a candidate distinct from a and b (such a candidate always exists
because we assumed n ≥ 3). Let (R1, R2, . . . , Rn) ∈ WO(A)n be a pro�le
such that a Pi c, ∀i ∈ I. Let (R′

1, R
′
2, . . . , R

′
n) ∈ WO(A)n be a pro�le such

that

• a P ′
i b P ′

i c, ∀i ∈ I,

• b P ′
j a and b P ′

j c, ∀j /∈ I.

Since I is almost decisive for the pair (a, b), we have a P ′ b. Unanimity
imposes b P ′ c. Transitivity then implies a P ′ c. Since the relation between
a and c for the voters outside I in the pro�le (R′

1, R
′
2, . . . , R

′
n) has not been

speci�ed, Independence implies a P c. So, we have proved that whenever I is
almost decisive for the pair (a, b), then I is decisive for any pair of candidates
(a, c) such that c 6= a, b. This reasoning is easily generalized to the case where
c is not distinct from a or b.

We now show that there is always a voter i ∈ N almost decisive for some
pair of candidates. As shown above, this voter will be decisive for all pairs
of candidates and will therefore be a dictator.

By unanimity, N is almost decisive for all pairs of candidates. Since N
is �nite, there is at least one subset J ⊆ N almost decisive for the pair
(a, b) with a minimal cardinality. Suppose |J | > 1 and consider a pro�le
(R1, R2, . . . , Rn) ∈ WO(A)n such that :

• a Pi b Pi c, for i ∈ J ,

• c Pj a Pj b ∀j ∈ J \ {i},

• b Pk c Pk a ∀k /∈ J .

Since J is almost decisive for the pair (a, b), we have : a P b. It is impossible
that c P b. Indeed, by independence, this would imply J \ {i} is almost
decisive for the pair (c, b) and, hence, decisive for all pairs, contrary to our
hypothesis. So, we have b R c and transitivity implies a P c. This implies
that {i} is almost decisive for the pair (a, c). 2
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This negative result applies only when there are more than two can-
didates. It is easy to verify that the majority method satis�es the �ve
conditions of Arrow's Theorem with two candidates. Arrow's Theorem ex-
plains to a large extent the problems we met in Section 2 when we were
trying to �nd a `satisfying' aggregation procedure. Observe, for instance,
that the Borda method veri�es universality, transitivity, unanimity and non-
dictatorship. Hence, it cannot verify independence, as shown in example 12.
The Condorcet method respects universality, unanimity, independence and
non-dictatorship. It can therefore not be transitive, as shown in example 8.

Notice that Arrow's Theorem uses only �ve conditions. In addition to
these, we might wish to impose also neutrality, anonymity, monotonicity, non-
manipulability, separability or Condorcet's principle. What makes Arroww's
Theorem so strong is precisely that it uses only �ve conditions, all seemingly
reasonable, and this is enough to prove an impossibility.

Arrow's Theorem initiated a huge literature, a good overview of which
can be found in Campbell and Kelly (2002), Kelly (1978), Fishburn (1987)
and Sen (1986). Let us mention that weakening transitivity does not solve
the problem revealed by Arrow's Theorem. For instance, if we impose quasi-
transitivity (i.e., transitivity of the asymmetric part) instead of transitivity,
then we can always determine one or several winners; but it is possible to
prove that replacing transitivity by quasi-transitivty in Arrow's Theorem
leads to an oligarchy instead of a dictatorship. An oligarchy is a subset of
voters that can impose their preferences when they are unanimous and such
that each of them can vetoe any strict preference, that is, if a member of the
oligarchy strictly prefers a to b, then b cannot be strictly better than a in
the collective preference (see Gibbard, 1969 ; Mas-Colell and Sonnenschein,
1972).

Example 13
Let us consider six voters numbered from i = 1 to 6 and an aggregation
method yielding the relation R = F (R1, R2, . . . , R6) by means of :

x P y ⇔
∑

{i:xPiy}
wi > λ,

x I y otherwise,

with w1 = w2 = 0, 4, w3 = w3 = w5 = w6 = 0, 05 and λ = 0, 7. This method
is oligarchic. Indeed, consider the set O containing voters 1 and 2. It is easy
to verify that, for any pro�le of preferences,

[x P1 y and x P2 y] ⇒ x P y,

[x P1 y or x P2 y] ⇒ Not [y P x]. 3
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The existence of an oligarchy is as problematic as the existence of a dic-
tator. Indeed, if the oligarchy contains all voters (this is the only possibility
if we want a democratic method), then, because of the veto right of each
voter, the collective preference will often contain many indi�erences (and/or
incomparabilities if the collective preference is not complete). It will not dis-
criminate among candidates. On the contarry, an oligarchy containing only
one voter is a dictatorship. Between these two extreme cases, no solution is
satisfactory.

We can weaken transitivity even more and impose that there is no circuit
in the asymmetric part of the collective preference relation. This condition
is necessary and su�cient to guarantee the existence of maximal elements
in any �nite set of candidates (Sen, 1970). But it is then possible to prove
the existence of a voter with an absolute veto (Mas-Colell and Sonnenschein,
1972). So, this does not really help.

Arrow's Theorem and fuzzy preferences. Why is it impossible to aggregate
voters' preferences in a satisfactory way (i.e., while respecting Arrow's con-
ditions) ? There are mainly two reasons :

• because the information contained in the weak orders describing the
voters' preferences is too poor : it is ordinal. If we use richer structures,
we can hope to escape Arrow's Theorem. In particular, if we represent
the voters' preferences by means of fuzzy relations, we can not only
speak of the preference of a over b but also of the intensity of this
preference.

• because the global preference must be a weak order and this is a strong
constraint. If we weaken this condition, we may consider aggregation
methods yielding relations with more �exibility, like fuzzy relations.

Some authors (for instance, Barrett, Pattanaik et Salles, 1986, 1992 ; Leclerc,
1984 ; Perny, 1992a) have analyzed the consequences of imposing that the
outcome of the aggregation be a fuzzy relation, that is a mapping R from
A2 to [0, 1]. Their �ndings are unfortunately largely negative : if we impose
that the fuzzy relation has some properties permitting to easily designate a
winner or construct a ranking, then we �nd that the only possible aggregation
methods give very di�erent power to the various voters (as in oligarchies or
dictatorships). In particular, it is the case if we impose that the collective
preference relation veri�es min-transitivity, that is for all a, b, c ∈ A :

R(a, c) ≥ min(R(a, b), R(b, c)).
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This condition guarantees that the relation Rλ de�ned by

aRλb ⇔ R(a, b) ≥ λ,

is transitive for any value of λ. Hence, starting from a min-transitive relation,
it is not di�cult to designate a winner or to rank the candidates.

Yet, there are some positive results in the literature, using weaker tran-
sitivity conditions (for instance, Ovchinnikov, 1991). It is then tempting to
believe that Arrow's Theorem does not hold with fuzzy relations. But these
apparently positive results are misleading : the transitivity condition they
use is so weak that is not incompatible with Condorcet cycles, as shown in
the following example.

Example 14
The transitivity condition used by Ovchinnikov (1991) can be expressed as
follows : for all a, b, c ∈ A :

R(a, c) ≥ R(a, b) + R(b, c)− 1. (1)

Suppose we want to aggregate the preferences of n voters. We can de�ne the
collective fuzzy preference relation by

R(a, b) =
1

n
#{i ∈ A : a Ri b}.

It is easy to show that it satis�es Condition (1). Let us now consider 3k
voters with the following preferences:

k voters have preferences a � b � c,
k voters have preferences b � c � a,
k voters have preferences c � a � b.

We obtain : R(a, b) = 2/3, R(b, c) = 2/3 and R(c, a) = 2/3; this is indeed
compatible with (1). But notice that this relation is in some sense cyclic and
does not permit us to designate a winner or to rank the candidates. So, this
does not solve the problem raised by Arrow's Theorem. 3

In summary, unless we consider a very weak transitivity relation (without
any practical interest), aggregation methods yielding fuzzy relations do not
escape Arrow's Theorem.
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3.2 Some other results

Arrow's Theorem and its many extensions represent only a part of the nu-
merous results in Social Choice Theory. For a comprehensive overview of
this �eld, see Sen (1986) and Campbell and Kelly (2002). In this paper, we
will roughly group the results in three categories :

• impossibility results, like Arrow's Theorem, showing that some condi-
tions are incompatible. These results help us better understand why it
is di�cult to �nd a `good' aggregation method;

• characterization results. These present a set of conditions that a given
aggregation method and only this one simultaneously respects. Such re-
sults help us better understand the essential characteristics of a method.
It is then easier to compare it with other methods;

• `analysis' results. Given a set of desirable conditions, these results
compare di�erent methods in order to see which one satis�es most
axioms. This can help to �nd a satisfactory method (within the limits
revealed by impossibility results).

This distinction is of course to some extent arbitrary and the three kinds
of results are not contradictory. They often use the same conditions.

We will now informally mention some results that we �nd important or
interesting for understanding some phenomena presented in the examples of
Section 2.

3.2.1 Impossibility results

Among the impossibility results in Social Choice Theory, two are particularly
important :

• Gibbard-Satterthwaite's Theorem (Gibbard, 1973 ; Satterthwaite, 1975).
This result shows that there is no aggregation method (for choosing
a single candidate) verifying universality, non-dictatorship and non-
manipulability when there at least three candidates. The French elec-
toral system is clearly non-dictatorial and satis�es universality. If we
neglect the ties than can happen during the second stage, Gibbard-
Satterthwaite's Theorem tells us that there is at least one situation
where a voter would bene�t from voting not sincerely. We have seen
such a situation in example 4. Note that this result initiated a huge
literature analyzing voting problems in terms of non-cooperative games
(see Dummet, 1984 ; Moulin, 1980, 1988 ; Peleg, 1984).
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• Sen's `Theorem of the Paretian liberal' (Sen, 1970). Suppose a society
must vote to choose one of several social states. These are de�ned
in such a way that they concern the private sphere of an individual.
Clearly, there are con�icts between the majority principle, possibly
yielding to a dictatorship of majority (see example 1), and the respect,
for this individual, of his private sphere, in which he should decide
alone. The Theorem of the Paretian liberal tells us much more than
this : it proves that the respect of a private sphere is incompatible with
universality and unanimity. This result initiated a large literature, a
good overview of which can be found in Sen (1983, 1992).

3.2.2 Characterizations

Among the many characterization results (many such results are presented in
(Sen, 1986)), those about the Borda method (see Section 2.2) are particularly
interesting. Indeed, this method satis�es most conditions encountered so far
and it is very easy to implement.

A characterization of the Borda method In this paragraph, we present a
characterization of the Borda method proved by Young (1974). He considers
this method as a choice procedure, i.e., a procedure mapping each pro�le of
weak orders on A to a non-empty subset of A. In this context, the Borda
method works as follows : for each candidate a, we calculate a score (Borda
score) B(a) equal to the sum of the ranks of candidate a in the weak orders
of the voters. In case of tie, one uses the mean rank. The choice set then
contains the candidate(s) with the largest score(s). Example 11 illustrates
how the scores are computed. Notice that, in this example, the Borda method
is used to rank and not to choose.
Formalization
A choice procedure is a function f : WO(A)n → 2A \ ∅. To each n-uple of
weak orders, f associates a non-empty subset of A, interpreted as the set of
the best candidates. The Borda method is de�ned by :

f(R1, R2, . . . , Rn) = {a ∈ A : B(a) ≤ B(b), ∀b ∈ A},

where B(a) is the Borda score of candidate a and is de�ned by :

B(a) =
n∑

i=1

[#{b ∈ A : b Ri a} −#{b ∈ A : a Ri b}] . (2)

This formalization is not exactly the sum of the ranks but the reader will
easily check that B(a), de�ned by (2), is an a�ne transformation of the sum
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of the ranks and, hence, using (2) or the sum of the ranks always yields the
same result. We will use (2) because it is more convenient than the sum of
the ranks. •

In order to characterize the Borda method, Young (1974) uses four con-
ditions.

Neutrality the choice set depends only on the position of the candidates in
the preferences of the voters and not, for instance, on the name of the
candidates or on their age.

Formalization
Let P be the set of all permutations on A, π an element of P and R a binary
relation on A. We write π(R) for the binary relation such that π(a) π(R)
π(b) ⇔ a R b. A choice method is neutral if and only if f(R1, . . . , Rn) =
π(f(π(R1), . . . , π(Rn))) for any permutation π in P . •

This condition imposes that all candidates be treated in the same way.
It excludes, for instance, methods where, in case of tie, the older candidate
wins. Similarly, sequential voting (example 8) is ruled out.

Faithfulness if there is only one voter, then the choice set must contain the
best candidates according to this unique voter.

Formalization
f(R1) = {a ∈ A : a R1 b, ∀b ∈ A}. •

This condition is extremely intuitive. Inedeed, if there is only one voter,
why not respect his/her preferences ?

Consistency Suppose, as in example 7, that the voters are divided in two
groups. We use the same choice method in both groups. If some
candidates belong to both choice sets, then these candidates and only
them should belong to the choice set resulting from applying the same
choice method to the whole set of voters.

Formalization
f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn) 6= ∅ ⇒

f(R1, . . . , Rn) = f(R1, . . . , Rm) ∩ f(Rm+1, . . . , Rn). •

Consistency is quite sensible. If two groups agree that some candidate,
say a, is one of the best, then it is di�cult to understand why a would not
be a winner when both groups vote together.

Many such conditions, involving two groups of voters, have been used in
the literature. They are often called separability. Consistency is one of these
conditions.
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Cancellation Let us consider two candidates a and b and suppose the number
of voters preferring a to b is equal to the number of voters preferring b
to a. This is not very particular. Suppose now this is true not only for
a and b but for all pairs of candidates, simultaneously. We then face
a very particular situation. In such a situation, Cancellation requires
that the choice set contains all candidates.

Formalization
∀a, b ∈ A, #{i ∈ N : a Ri b} = #{i ∈ N : b Ri a} ⇒ f(R1, . . . , Rn) = A. •

Among the four conditions used by Young, Cancellation is probably the
most questionable one. In some sense, it is reasonable : when, for each pair
a, b of candidates, there are as many voters in favour of a as in favour of
b, one can indeed prudently consider that no candidate is better than the
other ones. But there are other situations where prudence recommends to
consider all candidates tied. For instance, when the majority relation is cyclic
(see above, Condorcet paradox). Choosing cancellation rather than another
condition imposing a complete tie in case of a cyclic majority relation or in
another case is quite arbitrary.

The reader will easily verify that the Borda method veri�es neutrality,
faithfulness, consistency and cancellation. The following theorem, proved by
Young, tells us much more.

Theorem 2 (Young, 1974)
One and only one choice method veri�es neutrality, faithfulness, consistency
and cancellation : the Borda method.

The proof of this theorem being quite long, we do not present it in this
chapter. Notice that a similar characterization exists for the borda method
used to rank (Nitzan and Rubinstein, 1981). Moreover, di�erent generaliza-
tions of this result have been proved for the Borda method used to aggregate
many di�erent kinds of binary relations and even fuzzy binary relations (see
Debord, 1987 ; Marchant, 1996, 1998, 2000 ; Ould-Ali, 2000).

Generalizations of the Borda method The Borda method is a particular
case of a general family of aggregation methods called scoring rules. These
rules associate a number (a score) to each position in a binary relation. In
order to aggregate n preference relations, one computes, for each candidate,
the sum of its scores in the preference relations of the n voters. The winner
is the the candidate with the smallest total score. The Borda method is a
particular scoring rule where the numbers associated to each rank are equally
spaced. The British system is also a scoring rule where the best candidate in
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a preference relation receives 1 point and all the other ones receive the same
score, say 2.

Smith (1973) and Young (1974, 1975) have shown that scoring rules are
essentially characterized by neutrality, anonymity and separability (if we then
add cancellation, we obtain a characterization of the Borda method). For an
overview of many results about scoring rules, see Saari (1994). The French
system is not a scoring rule because of the second stage. Yet, it is neutal
and anonymous. It is therefore not separable, as shown in example 7. We
have noticed in Section 2 that the British system and the Borda method do
not satisfy the Condorcet principle (see examples 2 and 10). This is not a
surprise : indeed, it is possible to prove that no scoring rule can satisfy the
Condorcet principle (see Moulin, 1988).

The French system can be considered as a scoring rule with iteration :
at the �rst stage, it uses the British system for selecting two candidates;
the same system is then used at the second stage. Notice that there are
many ways to iterate a scoring rule (one could for example use more than
two stages). A result by Smith (1973) shows that no iterated scoring rule is
monotonic. The violation of monotonicity by the French system (example 5)
is just a consequence of this.

A characterization of simple majority In this paragraph, we present the
characterization of simple majority of May (1952), for two candidates. In this
case, the distinction between choosing and ranking is no longer meaningful
but, in order not to use a new formalism, we adopt here the choice formalism.
May considers a choice procedure, i.e., a method designating one or several
winners, based on th epreferences of the voters. A formal de�nition of a
choice method was presented above, in relation with the Borda method.

A candidate belongs to the choice set with a simple majority if the number
of voters supporting him is not smaller than the number of voters supporting
his contender.
Formalization
The simple majority choice method is de�ned by : a ∈ f(R1, . . . , Rn) i�

#{i ∈ N : a Ri b} ≥ #{i ∈ N : b Ri a}. •

Notice that voters that are indi�erent between a and b have no e�ect on
the outcome of the election. Their votes are counted on both sides of the
inequality. The outcome would be the same if they would not exist. In order
to characterize simple majority, May (1952) used three conditions.

Anonymity The choice set depends only on the preferences of the voters and
not, for instance, on their name or age.
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Formalization
Let S be the set of all permutations on N = {1, . . . , n}. A choice method is
anonymous if and only if f(R1, . . . , Rn) = f(Rσ(1), . . . , Rσ(n)) for any permu-
tation σ in S. •

This condition rules out, for example, the methods where some voters
weigh more than others and methods where a voter (usually the president of
the committee) has the power to decide in case of a tie.

Neutrality see above.

Strict monotonicity given the preferences of the voters, if the candidtes a
and b are chosen and if one of the voters changes his preferences in
favour of a (the other voters do not change anything), then only a is
chosen. If, at the beginning, only a was chosen, then a stays alone in
the choice set.

Formalization
Consider two identical weak orders Ri and R′

i except that there is a pair of
candidates (a, b) such that :

• Not [a Ri b] and a R′
i b or

• b Ri a and Not [b R′
i a].

Strict monotonicity then imposes :

f(R1, . . . , Ri, . . . , Rn) = {a} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a},

and

f(R1, . . . , Ri, . . . , Rn) = {a, b} ⇒ f(R1, . . . , R
′
i, . . . , Rn) = {a}. •

A consequence of this condition is that, in case of a tie, a single voter
changing his mind is enough to break the tie.

Simple majority clearly veri�es the three above-mentioned conditions.
Moreover, no other method satis�es them all.

Theorem 3 (May, 1952)
When there are exactly two candidates, the only choice method satisfying
neutrality, anonymity and strict monotonicity is simple majority.
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To understand why this theorem only applies to the case of two candi-
dates, notice that many di�erent choice methods coincide when there are only
two candidates. In particular, the Borda method and many scoring methods
always yield the same result as simple majority with two candidates. You
may then question the interest of this characterization. Actually, Arrow's
Theorem has shown us that simple majority cannot be extended to more
than two candidates (without deeply modifying it). The characterization
with two candidates is therefore essential.

3.2.3 Analysis

The few aggregation methods presented so far are just a small sample of all
the methods proposed in the literature. In particular, we did not speak of the
methods using the majority relation (constructed by the Condorcet method)
to arrive at a choice set or a ranking. Similarly, the few properties (like
neutrality or monotonicity) presented so far are also a very small subset of
all those studied in the literature. For an overview of methods and properties,
see De Donder, Le Breton and Truchon (2000), Felsenthal and Moaz (1992),
Fishburn (1977), Levin and Nalebu� (1995), Nurmi (1987) and Richelson
(1975, 1978a,b, 1981).

4 Multicriteria decision aiding and social choice theory

4.1 Relevance and limits of social choice results for multicriteria
decision aiding

We have seen in section 1 that aggregation problems in multicriteria decision
aiding and social choice are formally very close to each other. The exam-
ples of section 2 and the results of section 3 taught us that conceiving a
satisfactory aggregation method is a challenging task. Some authors (see,
for instance, Gargaillo, 1982) have then concluded that muticriteria decision
aiding is doomed to failure. For a detailed answer to this objection, see Roy
and Bouyssou (1993). We nonetheless mention :

• such a conclusion �ows from a biased and too radical interpretation of
the available results in social choice theory. There are some impossi-
bility results but this does not means that resorting to an aggregation
method for trying to �nd a collective decision is a futile exercise. It is a
demanding task requiring to make compromises between several exigen-
cies that are in general not compatible. These results, when combined
with characterization and analysis results, provide a good support to
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motivate the choice of a method. There is no ideal method but some
are perhaps more satisfactory than others. As an example, see Saari
(1994) for a convincing plea in favor of the Borda method or Brams
and Fishburn (1982) for approval voting;

• the formal proximity between both problems does not imply that both
problems are identical. In particular,

� the goal of a multicriteria decision aiding process is not always to
choose one and only one action. There are many other kinds of
outcomes, unlike in social choice theory (see Roy, 1985);

� some conditions look intuitive in social choice theory but are ques-
tionable in multicriteria decision aiding, and conversely. Let us
mention, for example, that anonymity is not relevant in multicri-
teria decision aiding as soon as one wishes to take the di�erent
importances of the criteria into account. Conversely, the set of
potential actions to be evaluated is seldom given in multicriteria
decision aiding (contrary to the set of candidates in social choice
theory). It can evolve. The conditions telling us how an aggrega-
tion method should behave when this set changes (some actions
are added or removed) are therefore more important in multicri-
teria decision aiding than in social choice theory;

� the preferences to be aggregated in multicriteria decision aiding
are the outcome of a long modelling phase along each criterion
(see Bouyssou, 1990). This modelling phase can sometimes lead
to incomplete preferences, fuzzy preferences, preferences such that
indi�erence is not transitive (see Fodor and Roubens, 1994 ; Perny
and Roubens, 1998 ; Perny and Roy, 1992 ; Roubens and Vincke,
1985). In some circumstances, it is possible to �nely model pref-
erence intensities or even to compare preference di�erences on dif-
ferent criteria (see Keeney and Rai�a, 1976 ; von Winterfeldt and
Edwards, 1986). Let us mention that handling uncertainty, im-
precision or indeterminacy is often necessary to arrive at a rec-
ommendation in multicriteria decision aiding (Bouyssou, 1989),
contrary to social choice theory.

� in multicriteria decision aiding, contrary to social choice, it is not
always necessary to completely construct the global preference.
Indeed, it can happen that the decision-maker can express his
global preference with respect to some pairs of alternatives. For
example, he is able to state that he prefers x to z and y to z but he
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hesitates between x and y. If he then uses an aggregation method,
it is in order to construct the preference only between x and y and
not on the whole set of alternatives. Of course, these preferences
that we construct on some pairs of alternatives must be based on
the single-criterion preferences of the decision-maker but also on
the global preferences that he stated. So, in multicriteria decision
aiding, we have a new element at our disposal : the global pref-
erences. These do not exist in social choice theory. They are of
course (very) incomplete but they can nevertheless help construct
the global preference relation. In practice, these global preferences
are often used by analysts in order to set the value of some pa-
rameters of the aggregation method they use. For instance, with
the methods based on multi-attribute value theory (MAVT), the
decision-maker must compare (sometimes �ctitious) alternatives
in order to determine the shape of the value functions. The exis-
tence of these global preferences, totally inexisting in social choice
theory, breaks the symmetry between multicriteria decision aiding
and social choice theory. Few theoretical results have so far taken
the global preferences of the decision-maker into account. More
research is needed (see however Marchant, 2003).

Even if both domains are formally close to each other and if some condi-
tions used in social choice theory can also be found in multicriteria decision
aiding, we must beware of crude transpositions because of the many speci-
�cities of multicriteria aggregation.

Conversely, we must not conclude that both domains are unrelated and
that the examples and results of Sections 2 and 3 are of no consequence for
multicriteria anlysis. Vansnick (1986a) has clearly shown that it is possible
and useful to consider multicriteria aggregation methods in the light of so-
cial choice theory. Let us mention that, for example, the di�erence between
the Condorcet and the Borda method can be found in multicriteria anlysis
between the ordinal methods (outranking methods, see Roy, 1991 ; Roy and
Bouyssou, 1993) and the cardinal ones where the idea of preference di�erence
is central (methods based on multi-attribute value theory, see Keeney and
Rai�a, 1976 ; von Winterfeldt and Edwards, 1986). In the light of Arrow's
Theorem, it is not surprising that ordinal methods often lead to global pref-
erence relations from which a recommendation is not always easy to derive
(Vanderpooten, 1990).

Many results of social choice theory still need to be adapted and/or ex-
tended to make them relevant to multicriteria analysis. Among the works in
this direction, let us mention :
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• impossibility results (see Arrow and Raynaud, 1986 ; Bouyssou, 1992a ;
Perny, 1992b),

• characterization results (see Bouyssou, 1992b ; Bouyssou and Vansnick,
1986 ; Bouyssou and Perny, 1992 ; Marchant, 1996 ; Pirlot, 1995, 1997)
and

• analysis results (see Bouyssou and Vincke, 1997 ; Lansdowne, 1996,
1997 ; Pérez, 1994 ; Pérez and Barba-Romero, 1995 ; Pirlot, 1997 ;
Vincke, 1992).

But there is still much to do (see Bouyssou, Perny, Pirlot, Tsoukiàs and
Vincke, 1993).

4.2 Some results in close relation with multicriteria analysis

So far, we tried to sketch a global overview of social choice theory and to show
the links with multicriteria decision aiding and the limits of this analogy. In
this last section, we mention some results of social choice theory that are
directly relevant for the analysis of some popular aggregation methods in
multicriteria decision aiding.

TACTIC (Vansnick, 1986b) The �rst relevant result is the characterization
of simple majority with two alternatives by May (1952), presented higher.
And this aggregation method can be seen as a particular case of TACTIC,
with a concordance threshold equal to 1, without weights and without dis-
cordance. For the case of two alternatives, a result by Fishburn (1973) char-
acterizes simple majority with weights.

Another article worth mentioning here is Marchant (2003). It presents
two characterizations of weighted simple majority with any number of al-
ternatives. It is therefore slightly more general than the results of May and
Fishburn. It corresponds to a particular case of TACTIC with a concordance
threshold equal to 1 and no discordance.

Multi-attribute value theory (MAVT) (Keeney and Rai�a, 1976 ; von Winter-
feldt and Edwards, 1986) The methods of this family are usually analyzed
in the framework of measurement theory (Krantz, Luce, Suppes et Tversky,
1971 ; Wakker, 1989). There are nonetheless some relevant results in social
choice theory and, in particular, in cardinal social choice theory. In this part
of social choice theory, the information to be aggregated is not ordinal (not a
binary relation) but cardinal : it consists in utilities, that is, numbers repre-
senting preferences. An interesting article in this respect is Roberts (1980).
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As far as we know, none of these results have been transposed in multicriteria
decision aiding.

Weighted sum The weighted sum is a particular case of MAVT methods.
The previous paragraph is therefore relevant for the weighted sum. Yet, let
us point out a particular result : Theorem 2 in Roberts (1980) characterizes
the weighted sum (see also Blackwell and Girshik, 1954 ; d'Aspremont and
Gevers, 1977).

ELECTRE and PROMETHEE (Roy, 1991 ; Roy and Bouyssou, 1993 ;
Vincke, 1989) With ELECTRE and PROMETHEE, each alternative is rep-
resented by a vector of Rn, x = (x1, . . . , xn) where xi represents the perfor-
mance of x on criterion i (we suppose that all criteria are to be maximized).
The �rst step in PROMETHEE consists in choosing, for each criterion, a
preference function fi (Mareschal and Brans, 1988) used to compute, for
each pair of alternatives x, y, a number between 0 and 1 representing a pref-
erence degree, denoted by Pi(x, y) and de�ned by Pi(x, y) = fi(xi, yi). So,
at the end of the �rst step, we have a fuzzy preference relation for each cri-
terion, Pi being the fuzzy relation associated to criterion i and Pi(x, y) the
value of this relation for the pair x, y. In the next step, these fuzzy rela-
tions are aggregated by means of a generalization of the Borda method. This
generalization has been characterized by Marchant (1996). Some variants of
this characterization are presented in Marchant (1998, 2000) and Ould-Ali
(2000).

The ELECTRE methods use a somehow similar construction but with
veto e�ects (see Roy, 1991 ; Roy and Bouyssou, 1993). The preference re-
lation constructed at the end of the aggregation phase uses some functions
fi and gi with values in [0; 1] in order to de�ne, on the one hand, concor-
dance indices Ci(x, y) = fi(xi, yi) representing to what extent xi is at least
as good as yi and, on the other hand, discordance indices Di(x, y) = gi(xi, yi)
expressing to what extent the di�erence yi − xi is compatible with a global
preference of x over y. When yi−xi exceeds a certain threshold (veto thresh-
old), Di(x, y) equals 1 and the aggregation method then forbids a preference
of x over y (for more details on the aggregation of the fuzzy relations Ci and
Di, see Perny and Roy (1992)).

The ELECTRE and PROMETHEE methods thus use aggregation pro-
cedures based on the construction and aggregation of fuzzy relations. They
therefore do not escape the impossibility results mentioned in section 3.1,
about the aggregation of fuzzy relations (for more details, see Perny, 1992b).
This is why a last phase (exploitation) is necessary in order to reach a rec-
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ommendation (see, for instance, Roy and Bouyssou, 1993 ; Vanderpooten,
1990) This last phase is often di�cult and the problems it raises can also be
analyzed in the light of axiomatic results about ordinal aggregation of pref-
erences. For instance, some non-monotonicity phenomena arising with ex-
ploitation procedures based on an iterated choice function(see Fodor, Orlovski,
Perny et Roubens, 1998 ; Perny, 1992a) can be explained by Smith's The-
orem presented in paragraph 3.2.2 or by more recent axiomatic analyses in
the same direction (see Bouyssou, 2004 ; Juret, 2003).

Let us �nally mention that Bouyssou (1996) has extended to ELECTRE
and PROMETHEE the classic results of McGarvey (1953) regarding simple
majority.
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