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Motivation

Introduction

e if you have no preference. ..

@ then there is no need to worry about decisions!

@ present the standard model of preference modelling

e analyze a few classical questions within the standard model

@ introduce some extensions of the standard model




Motivation

Preference Modelling

Variety of disciplines

@ Economics

e consumer theory

Psychology

e experiments

Political Science

e voters

Marketing

@ consumers

Operations Research

e objective function

Multiple Criteria Decision Making

e criteria

Motivation

Preference Modelling

Variety of perspectives

@ Normative
e link between preference models and “rational behavior”
@ Descriptive
e preference models as compatible with experimental results

@ Prescriptive

e help someone structure a preference model




Motivation

Preference Modelling

Variety of objects to compare

o vectors in RF
o Operations Research: Linear Programming (LP)

e Economics: consumer theory

e finite list defined implicitly
e Operations Research: combinatorial optimization
o finite list defined explicitly

e candidates in an election
e investment projects

4
Consequence

@ huge literature
@ aim: brief introduction

e vocabulary
e main structures
e main questions

A\

Motivation

Remarks

Position in the decision process
@ a set of objects has been identified: X
e one and only one element of X will be finally implemented

@ experiments
o framing & presentation effects (Kahneman & Tversky, 1981)

@ sophisticated recent models
o reference points (Kahneman & Tversky, 1979)




Standard model Intuitive elucidation

Standard model

How to compare the objects in X7

e simple procedure

e build a mapping f: X — R
e compare objects using f

7y f(z) > f(y)

Interpretation

e f “measures” the desirability of the objects
@ - is a binary relation on the set X

o - reads “at least as good as”

Hypotheses

Q f is “known” with precision
@ model ignores “cardinal

@ f is given for all objects ST o

@ there is only one f
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Standard model Intuitive elucidation

Examples

Example 1: grading students

@ X is a set of students

e f is the grade (020 scale) obtained at a written exam

7y f(z) > f(y)

Example 2: choosing investment projects

e X is a set of projects
o f gives the NPV (€) of the projects

rZy < flz) = f(y)

Example 3: Linear Programming

e X is a convex polytope in R*, x € X

o f(x)= Zle c;z;: value of the objective function

rZy e f(z) = f(y)




Standard model Quick refresher

Quick reminder

Binary relation

@ a binary relation T on a set A is a subset of A x A
e we write a T b instead of (a,b) € T

Operations on binary relations

@ binary relations are sets

@ we may use standard set operations on them: TNR, TUR, T C R
e product of two binary relation 7" and R on A
o aT-Rb< [aT cand cR b, for some c € A]

Standard model Quick refresher

Quick reminder

Properties of binary relation

A binary relation T on a set A is:

o reflexive if a T a
irreflexive if Notla T a]
symmetricif a Tb=bT a
antisymmetricif a T band b T a = a =1
asymmetric if a T b = Not[b T a]
weakly complete if a #b=a T bor b T a
completeif a T bor b T a
transitiveif a Tband b T c=a T ¢
negatively transitive if Not[a T b] and Not[b T ¢|] = Notla T (]
for all a,b,c € A

@ there are many links between these properties |




Standard model Quick refresher

Quick reminder

o transitivity 72 C T
e asymmetry = irreflexivity

e complete < reflexive and weakly complete

e [asymmetry and negatively transitivity] = transitivity

@ [completeness and transitivity] = negatively transitivity

Symmetric and asymmetric parts

e asymmetric part of T: z T* y < [z T y and Not[y T x|
e symmetric part of T: 2 T? y < [z T y and y T x|

Standard model Quick refresher

Representation of a binary relation

Matrix representation
Let A ={a,b,c,d,e}. Consider the binary relation 7 = {(a, b), (b, a),
(b, ¢), (d, b),(d, d)}.

o a0 oo |G
O = O O o
OO O = Ol
O = O O Ol
S OO OO

O O O = Ol

1 ifaTh
MY = ,
{O otherwise
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Standard model Quick refresher

Representation of a binary relation

Graph representation
Let A ={a,b,c,d,e}. Consider the binary relation = = {(a, b), (b, a),

(b,c),(d,b),(d,d)}. —
l \2) (©

@ elements of X are vertices

e elements related by T define arcs

Standard model Standard model

Standard model

Two obvious properties of =~

@ ~ is complete z 7~ y or y =~ z, for all z,y € X
@ = is transitive [z yand y - 2] = x = 2z, forall z,y,z € X

A complete and transitive relation is called a weak order (complete preorder,
total preorder)

e if f is injective, 7~ becomes antisymmetric

@ a complete, antisymmetric and transitive relation is a total order
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Standard model Standard model

Strict preference and Indifference

Asymmetric part of =~
z -y [z Zyand Notly Z z]] & f(x) > f(y)
@ > is interpreted as strict preference

@ > is asymmetric, transitive, negatively transitive
o [Not[z > y] and Not[y > z]] = Not[z > 2], for all z,y,z € X

| A

Symmetric part of -
s~y [zZyand y T 1] < f(z) = f(y)

@ ~ is interpreted as indifference

@ ~ is reflexive, symmetric, transitive

@ ~ is an equivalence

A\

Standard model Standard model

Properties

Completeness of 7~ implies that:
r 7y < Notly = x]




Standard model Standard model

Strict preference and Indifference

e with a weak order ~ we have equivalence classes of ~ that are totally
ordered by >

Remarks

Tz -y < [z yand Notly Z zl]
T~y (v yand yza]

@ > and ~ are exhaustive: for all z,y € X we at least one among
e T ~Y, T Y, Y-

@ > and ~ are exclusive: for all z,y € X we at most one among
e r~Y, T Y, Y>-x

@ there are no incomparable objects

N
N

Standard model Standard model

Summary

y Zz Notly Z 1]
Ty e~y T
Notlz my] y>=x %)

Alternative presentation

@ question: “is x at least as good as y?”

@ two exclusive answers
o YES: z -y
o NO: Not[z 7 y]

@ these answers are such that 77 is complete and transitive




Standard model Standard model

Some obvious properties

[z>=yand y~z] =2z > 2
[x~yand y > 2] =z > 2

=~ C -
~e= C o=

Standard model Standard model

Example

X ={z,y, 2, w,t}

T, YT YL WL w t St
Y, X2, T w, Tt
YT T, YL YT W Yt

zow, z 5t
w2t
t-w

ol ~|8

O O O IR
O O = N

+ & v 8QY
_ === =8
= = = = | e

o O

rows and columns have been ordered according to degrees J




Standard model Standard model

~ x Yy z w t
z |1 1|1 1 1
y |1 111 1 1
z 0 0|11 1
w 0 0 0] 1 1
t 0 0 0|1 1
oy z w t
z |1 1 1 1 1 5 3
y |1 1 1 1 1 5 3
z 0 0|1 1 1 3 0
w 0 0 01 1 2 -3
t 0 0 0|1 1 2003
2 2 3 3 5

Standard model Standard model

Example

X ={z,y,2,w,t}

T, YL Y 2L wLw t ot
YST, YT YW Yt
zZw, 2zt
w ot
t= w




Standard model Numerical representation

Numerical representation

Problem

Let 7~ be a weak order on X

Can we always build a numerical representation of -7

Given a weak order 7~ on X is there a mapping v : X — R such that, for all
T,y € X,

T2y s v(z) > o(y)

Obvious answer: NO (thanks Georg!)

e any total order on 2% cannot have a numerical representation

e there is no injection from 2% to R

Standard model Numerical representation

Quick reminder on sets

The set X is finite if there n € N such that there is a bijection between X and
{0,1,2,...,n}

Countably infinite sets

The set X is countably infinite if there is a bijection between X and N or,
equivalently, N, = N\ {0}

Denumerable sets

@ the set X is denumerable if it is finite or countably infinite
@ the union or the Cartesian product of two denumerable sets is denumerable

@ 7Z and QQ are denumerable

30



Standard model Numerical representation

Quick reminder on sets

@ the set X have a larger cardinality at least as large as Y is there a
mapping of X onto Y

@ this defines a complete and transitive relation

Infinite sets

@ the set R have a larger cardinality than the set Q
e the converse is false

e R™ and R have the same cardinality

e 2% has a cardinality that is strictly larger than that of X

31

Standard model Numerical representation

Results

Theorem (Cantor, 1895)

Let X be a denumerable set (i.e., finite or countably infinite). Let =~ be a
binary relation on X.

There is a real valued function v on X such that
z 2y v(z) = v(y)

forall z,y € X

if and only if

>~ is a weak order




Standard model Numerical representation

Necessity is clear.

Let us show sufficiency. Since X is denumerable, we can number its elements in
such a way that X = {z; : i € K C N, }.

To each y € X define N(y) ={i € K : y = z;}.

Define u letting u(y) = >, N(y) L /2%. This series obviously converges.

If z 77 y we have, using transitivity, N(z) 2 N(y) so that u(z) > u(y).
Conversely suppose that u(z) > u(y) and Not[z 2~ y]. We have y =~ x, using
completeness, and Not[z 77 y]. Hence N(y) 2 N(x), so that u(y) > u(z), a
contradiction. ]

v

Standard model Numerical representation

General case

There are weak orders on sets having at most the cardinality of R that do not
have a numerical representation

Lexicographic preferences
Let X =R x {1,0}. Define - letting

<x,a>z<y,ﬁ>@{ v>yor

r=yand a > f3

It is clear that - is a weak order.

Suppose that there is a numerical representation of ~. Take any = > y. We
have (z,1) = (z,0) = (y,1) = (y,0) so that v(z,1) > v(z,0) > v(y,1) > v(y,0).
But there is a rational number p(z) in the interval (v(z,0), v(z,1)) and there is
a there is a rational number p(y) in the interval (v(y,0), v(y,1)). We have

z >y = p(z) > p(y). Hence p is an injection from R to @, which is impossible.

v
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Standard model Numerical representation

General case

Q is dense in R
Let x,y € R. If > y then there is z € QQ such that x > z > y.

Denseness

Let ~ be a weak order on X. The set Y C X is dense in X for = if, for all
z,y € X such that z > y, we have x 77 z 2~ y, for some z € Y.

e with this definition N is dense in itself for > \

Theorem (Debreu, 1954)

Let =~ be a binary relation on X. There is a numerical representation of = if
and only if 77 is a weak order and there is a denumerable set Y C X that is
dense in X for .

35

Standard model Numerical representation

Uniqueness

Uniqueness

Suppose that 77 on X has a numerical representation v. This numerical
representation is not unique. Indeed, it is easy to see that ® o v is also a
numerical representation as soon as ® is strictly increasing. It is easy to see
that these are the only possible transformations that can be applied to v.
Hence v is an ordinal scale.

v

@ ordinal scale: unique up to a strictly increasing transformation u = ® o v

e interval scale: unique up to a positive affine transformation v = av + 3
with a > 0

e ratio scale: unique up to a positive linear transformation u = av with
a>0

o

Question
@ how could we obtain an interval or a ratio scale?

36




Standard model Numerical representation

Ordinal scales

U1 U2 U3 U4
z 0 0 0 1
y 3 9 27 3
» 4 16 64 3.5
w 5 25 125 1000

e the functions vy, v, v3, v4 are all numerical representations of the weak
order w > 2z >y > x

@ assertion: the average desirability of x and w is larger than the average
desirability of y and z

e we have (v1(w) + v1(x))/2 < (v1(2) + v1(y))/2
o but (va(w) + v2(z))/2 > (v2(2) + v2(y))/2
@ this is an example of a meaningless statement

Standard model Numerical representation

Meaningfulness

Meaningful and meaningless statements

e I weigh twice as much as you
o meaningful (but may be false!)

e Average temperature are twice higher in Paris than in Moscow
e meaningless (unless you use the Kelvin scale!)

e the difference in average temperature between Paris and Moscow is twice
the difference in average temperature between Rome and London

o meaningful (but may be false!)

38



Standard model Choice and preference

How do I observe =7

Observability

@ [ cannot simply ask for = for epistemological reasons

@ I cannot simply ask for the performance measure that is used

Samuelson (1938)

Solution: choice functions

Let P(X) be the set of all nonempty subsets of X. A choice function C is a
function from P(X) to P(X) such that C(A) C A, for all A € P(X).

The set C'(A) contains the objects that are judged “choosable” in A.

@ a choice function can be observed

@ is it possible to infer preference from choices?

40

Standard model Choice and preference

Revealed preferences

Rationalizable choice function

A choice function C' is rationalizable if there is a binary relation =~ such that,
for all A € P(X),
C(A)=M(A,>)={be A: Not[a > b] for all a € A}

@ when A is finite, it is clear that if 77 is a weak order on X, M (A, >) is
nonempty for all A € P(X)

@ the same is true as soon as > has no circuit

Not all choice functions can be rationalized

Let X = {a, b, c}. Suppose that
C({a,b}) ={a}
C({b, c}) = {0}
C({a,c}) ={c}

Then we must have a > b, b = ¢ and ¢ > a. This implies that M (X, >) is
empty. Hence C' cannot be rationalized.

| A

\
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Standard model Choice and preference

Revealed preferences

Condition «

re BCA
z € C(A) }:>x€ C(B)
If the World champion is Italian, she must be the champion of Italy

Condition

CA

T,y € C’(B) =z € C(A)
y € C(4)

If there are two Italian champions (tied) and one of them is a World champion,

the other must also be a World champion

Standard model Choice and preference

Revealed preferences: results

Theorem (Sen, 1970)

Let C be a choice function on a finite set X. It can be rationalized by a weak
order if and only if it satisfies conditions « and .

Numerous extensions

e (' is not observed for all elements of P(X)

@ X is not finite

e rationalization by an acyclic relation >




Standard model Choice and preference

Revealed preferences: questions

Condition «
o if I have to choose in {Steak, Sole Meuniere}
o I choose Steak

e if I have to choose in {Steak, Sole Meuniere, Frog Legs}
o I choose Sole Meuniere

@ epistemic value of the menu

@ violates condition «

| A

Condition

e if I have to choose in {Bike, Horse}
o I am indifferent and both are choosable
e if I have to choose in {Bike, Bike with bell, Horse}

o I am indifferent between Bike with bell and Horse (both are choosable)

@ violates condition (3

A\

Standard model Aggregation

Aggregation

Question

o let =1, 7o, ..., =k be weak orders on X

e do “reasonable” aggregation methods of these k weak orders always lead
to a weak order?

o No!lll (thanks Marie Jean Antoine Nicolas!)

46



Standard model Aggregation

Aggregation

o X ={z,y, 2} is a set of candidates
@ three voters express preferences on X as weak orders

@ social preference is an aggregation of individual preferences:

cmye{ieNzzZ;yH > {ieN:yzZia}

v

Condorcet’s paradox, 1785

lixz>1y»12
2:2%9T >0y
3:Y>32>37<

Standard model Special structures

Special structures for X

Structure of X

@ left unspecified until now

e when X has a special structure it may be possible to take advantage of
this extra structure

| A

Examples of special structures
@ decision under risk
e X is a set of probability distribution on a set of consequences C

@ decision under uncertainty

e X has a homogeneous Cartesian product structure: Y" is there are n states
of nature

e multiple criteria decision making
e X has a Cartesian product structure: X; x X2 X --- x X,

A\
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Standard model Special structures

Special structures for X

Independence properties

e independence wrt probabilistic mixtures: expected utility (von Neumann
& Morgenstern, 1947)

f@)=>" pa(y)uly)

yel

e sure thing principle: subjective expected utility (Savage, 1954)

f(z) = ple)u(z(v))

ecFE

e independence: additive value functions (Debreu, 1960, Luce & Tukey 1964)

n

@) =3 vila)

=1

50

Classical extensions Models with incomparability

More than one performance measure

How to compare the objects in X7

@ simple procedure
e build several mappings fi, f2, ..., fa

( fi(z) > fi(y)
L(z) > L(y)

T Y S

e dominance (“Pareto front” and the like)

v

Alternative: lexicographic aggregation
( fi(z) > fi(y)
filz) = fi(y) and fo(z) > f2(y)

T =Y |

\ fl(x) — f1(y), 000 7fn—1('73) - fn—l(y) and fn(x) > fn(y)

A




Classical extensions Models with incomparability

(Quasi orders

T Y4

Two obvious properties of =~

o - is reflexive (z = z, for all x € X)

e = is transitive ([z 7 yand y 72 2] = x 7 2, for all z,y, 2z € X)

Quasi order
e a reflexive and transitive relation is called a quasi order

e if 77 is antisymmetric it is a partial order J

Classical extensions Models with incomparability

Quasi orders

Any partial order on a set X can be obtained as the intersection of a number of
total orders. When X is finite, it only takes a finite number of total orders to
obtain a partial order (dimension of a partial order, Dushnik & Miller, 1941).
The same is true for quasi orders and weak orders.

Theorem (Folk)

Any quasi order on a finite set has a numerical representation such that
((w(z) > wi(y)

5 s | uz(z) > uz(y)

( us(7) > ug(y)




Classical extensions Models with incomparability

Example: partial order of dimension 3

Classical extensions Models with incomparability

Example

Let X = {z,y, z, w, t}.

2?@ :

@ > is asymmetric and transitive

e M(A,>) is always nonempty when A # & and is finite

@ non-dominated solutions in MCDM




Classical extensions Models with threshold

Standard model with caution

How to compare the objects in X7

e simple procedure
e build a mapping f: X — R

e compare objects using f with caution
2=y fz)>f(y)+q

e~y |f(@) = fy) =g
q > 0: constant threshold

2y f(z) > f(y) —q

v

e if ¢ = 0 are back to the standard model \

Classical extensions Models with threshold

Standard model with caution

rZy e f(z) 2 f(y) —q
q > 0: constant threshold

Obvious properties of -
@ ~ is complete z =~ y or y =~ z, for all z,y € X

@ - is not transitive but > is transitive

=~ C -

~e= C o
Both these relations are false )

60



Classical extensions Models with threshold

w3

fl@)  f(=) +4 =24 Ei=

=2 —3 =Y

f

y > z (the y interval does not intersect and is to the right of the z interval)
z ~ w (the z interval intersect the w interval)

z~wand w~ tbutt>z
t>=zand 2z~ wbut t ~ w
w~tand t =z but w~t

61

Classical extensions Models with threshold

Ferrers

o y=f(x) > fly) —q
zZw= f(z) > f(w) —q
Not[z = w] = f(z) < f(w) — ¢
Not[z Z y] = f(2) < f(y) — ¢
we obtain f(y) > f(w) and f(w) > f(y), a contradiction




Classical extensions Models with threshold

Semi-transitivity

12y o) > fy) —q )

Semi-transitivity

and = or
Y2 w2

Necessity

zzy=f(z) > f(y) —q
yzz2=f(y) > f(z) — ¢
Not[z 5 w] = f(z) < f(w) — ¢
Not[w 7 2] = f(w) < f(2) — ¢

we obtain f(y) > f(w) and f(w) > f(y), a contradiction

63

Classical extensions Models with threshold

Semiorder

A semiorder is a complete, Ferrers and semi-transitive binary relation \

Theorem (Luce, 1956)

A binary relation on a finite set X is a semiorder if and only if there is a real
valued function v on X and a threshold ¢ > 0 such that:
2y e u(z) = uly) —q

@ not true if X is denumerable

@ can be extended to countable set with a variable but consistent threshold

64



ic
o
e
1]
]
~
<
o]
<
=
B
=
()
9
o
L)
=

Classical extensions

1

1

d 0 0 0 0 O

e
1
1
1
1
1
1

1

1

f
1
1
1
1
1
1

a
1
1
1
1
1

0O 0 0 O

d 0 0 0 0 O

ic
o
<
1]
]
~
<
B
<
=
B
‘h‘b
()
9
o
L)
=

Classical extensions

1

1

d 0 0 0 0 O




Classical extensions Models with threshold

If = is a semiorder, the relation =~ defined by
1t yelysz=12 4
is a weak order (note that it is always reflexive and transitive)

If >~ is a semiorder, the relation 7~ defined by
v ye e 27y
is a weak order (note that it is always reflexive and transitive)

If >~ is a semiorder, the relation =% defined by
2y e [z2t yand 227y
is a weak order (note that it is always reflexive and transitive)

o the relation =7 is the weak order underlying the semiorder -

e the matrix representation of a semiorder is stepped when rows and
columns are arranged wrt =%

Classical extensions Models with threshold

Uniqueness

Two representations of a semiorder

T>=Y,T>2,Yy~=z

1 V2
r 2 2
y 0 0.5
z 0 0

@ irregular representation

68



Classical extensions Models with threshold

Standard model with (even more) caution

How to compare the objects in X7

e simple procedure

e build a mapping f: X — R
e compare objects using f with (even more) caution

=y < flo) > fly) + q(y)
N f(z) < f(y) + q(y)
! W{ﬂy)squ(w)}

q(-) > 0: variable threshold
zZye f(z)+q(z) > f(y)

69

Classical extensions Models with threshold

E t

()

m
[HN]

z
()  f(@) + a(=) A

i Y —

y > z (the y interval does not intersect and is to the right of the z interval)
z ~ w (the z interval intersect the w interval)
t is indifferent to all other alternatives




Classical extensions Models with threshold

Standard model with (even more) caution

2%y f(z) + a(@) > f(y) J
q(+) > 0: variable threshold

Obvious properties of =~

@ ~ is complete x 7o yor y - x, for all z,y € X

@ =~ is not transitive but > is transitive

Classical extensions Models with threshold

Ferrers

> f(
25w = f(2)+ q(2) > f(w)
Not[z Z w] = f(z) + ¢(z)
Not[z Z y] = f(2) + ¢(2)

we obtain f(z) + q(z) > f(2) + q(2) and f(2) + q(z) > f(z) + ¢(z), a
contradiction.




Classical extensions Models with threshold

Interval order

An interval order is a complete and Ferrers binary relation \

Theorem (Fishburn, 1970)

A binary relation on a finite set X is an interval order if and only if there is a
real valued function v on X and a nonnegative threshold function ¢ such that:

z 7y u(z) + q(z) > u(y)

@ remains true if X is denumerable

@ add order denseness condition in the general case

7

Classical extensions Models with threshold
Example

a b c¢ d
a 1 1 1 1
b 0 1 1 1
c 0 0 1 1
d 1 1 1 1

E d ]

E c ] E b ! E a ]

Semi-transitivity can be violated

and and
d7a Not[b - a]




Classical extensions Models with threshold

QL o oo

_ o O = Q
—_ O = = o
= = = =
_ = = = QL

O O

@ rows are arranged according to outdegrees

@ columns are arranged according to indegrees

Classical extensions Models with threshold

Traces

If = is an interval order, the relation =T defined by
rZtyelyn =l

is a weak order (note that it is always reflexive and transitive)

It governs the order of the left side of intervals (outdegrees)

If 7~ is an interval order, the relation 7~~~ defined by

s yezzz= 22y
is a weak order (note that it is always reflexive and transitive)
It governs the order of the right side of intervals (indegrees)

If = is an interval order, the relation ~* defined by
rZ ye[zzt yandz 27y
may not be complete.




Classical extensions Models with threshold

Standard model with (even even more) caution

How to compare the objects in X7

e simple procedure

e build a mapping f: X — R
e compare objects using f with (even even more) caution

z =y f(x) > f(y) + q(z, )

f(@) < f(y) + q(z,y) }
T~y e
/ { f(y) < f(2) + a(y, 2)
q(z,y) = q(y,z) > 0: symmetric threshold depending on both alternatives

5y f(x)+ q(z,y) > f(y)

Classical extensions Models with threshold

Standard model with (even even more) caution

=y f(z) > f(y) + a(z, y)

2y f(z)+a(z,y) = fy)
q(z,y) = q(y,z) > 0: symmetric threshold depending on both alternatives

Obvious properties of -

@ ~ is complete z =~ yor y =~ z, for all z,y € X

@ - is not transitive, > is not transitive

78



Classical extensions Models with threshold

=y f(z)>fly) +q(z,y)

2y f(2)+q(z,y) = f(y)
q(z,y) = q(y,z) > 0: symmetric threshold depending on both alternatives

T >y, y > 2z Notlz > 2], Not[z = z]| (z ~ 2)

v(z) = 10, v(y) = 6, v(z) =
q(z,y) = q(y,7) = ,Q(,Z) q(z,y) =1, q(z,2) = q(2,7) =9 J

Classical extensions Models with threshold

Absence of circuits

=y f(z)>fly)+q(z,y)

2y f(z)+q(z,y) = fy)
q(z,y) = q(y,z) > 0: symmetric threshold depending on both alternatives

Absence of circuit

T - Ty > ... = o = Notlzy = 1] (Vk > 1)

X1 = T = ... T ™= X1
f(z1) > f(22) + q(21, 22)
f(z2) > f(x3) + q(22, 73)

f(@r—1) > f(@) + ¢(@K—1, 1)
flai) > f(z1) + q(a, 1)

q(zg, 1) + Zle q(z;, T;11) < 0, a contradiction since ¢ > 0
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Classical extensions Models with threshold

Suborders

A suborder - is a complete binary relation such that > has no circuit \

Theorem (Fishburn, 1970)

A binary relation on a finite set X is a suborder if and only if there is a real
valued function v on X and a nonnegative symmetric threshold function ¢ such
that:

x5y f(x)+q(z,y) > f(y)

@ remains true if X is denumerable

@ add order denseness condition in the general case
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Classical extensions Models with threshold

Summary: structures with threshold

suborder variable threshold  ¢(z,y) >0
interval order  variable threshold  ¢(z) >0
semiorder constant threshold qg>0
weak order null threshold qg=20
total order no indifference ~ is trivial




Classical extensions Models with threshold

Partial structures with threshold

Dominance with semiorders

X ={a,b,c}

c>1a,c~1 b, b~y a (semiorder)
a9 b,a~g c,c~gy b (semiorder)
b>3c, b~z a,a~3 c (semiorder)

a>b a~q1b,a>9ba~gb
b>c: b~yc,b~yc, b3 c
C>a: ¢c>1a,Cr~oa,C~3a

Non-classical extensions Hesitation

Structures with hesitation

e in all models studied so far there is a sharp transition between > and ~

@ we may expect that in some case there is an “hesitation zone” between
these two relations

Pseudo orders

-y f(z) > f(y) + p(y)
z =y fy)+p(y) > f(z) > f(y) + q(y)
z~y s [f(z) < f(y)+q(y) and f(y) < f(z) + q(z)]

@ conditions on (>,=,~) are known (Roy & Vincke, 1987) |
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Non-classical extensions Hesitation

Extensions

Interval orders
@ intervals are associated to objects

@ associate other geometrical shapes objects

@ circles, trapezoids, etc.

@ special points within intervals \

Non-classical extensions Fuzzyness

Fuzzyness

@ all models use crisp binary relations

@ either x > y is true or it is false

Fuzzy models

@ use fuzzy binary relations

@ z > y has a degree of credibility belonging to [0, 1]

Questions

@ how to define classical properties (completeness, transitivity, etc) for fuzzy
relations?

@ not obvious but the use of cut relations is useful

Ty =(z,y) > A
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Non-classical extensions Fuzzyness

[lustration

—(z, a)

~(b, a)

u(a) u(b)

(b, a) € [0,1] is the credibility of the proposition “b > a”
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