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Motivation

Introduction

Lemma
if you have no preference. . .
then there is no need to worry about decisions!

Aims
present the standard model of preference modelling

analyze a few classical questions within the standard model
introduce some extensions of the standard model
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Motivation

Preference Modelling

Variety of disciplines
Economics

consumer theory
Psychology

experiments
Political Science

voters
Marketing

consumers
Operations Research

objective function
Multiple Criteria Decision Making

criteria
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Motivation

Preference Modelling

Variety of perspectives
Normative

link between preference models and “rational behavior”
Descriptive

preference models as compatible with experimental results
Prescriptive

help someone structure a preference model
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Motivation

Preference Modelling

Variety of objects to compare
vectors in Rk

Operations Research: Linear Programming (LP)
Economics: consumer theory

finite list defined implicitly
Operations Research: combinatorial optimization

finite list defined explicitly
candidates in an election
investment projects

Consequence
huge literature
aim: brief introduction

vocabulary
main structures
main questions
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Motivation

Remarks

Position in the decision process
a set of objects has been identified: X
one and only one element of X will be finally implemented

Ignored
experiments

framing & presentation effects (Kahneman & Tversky, 1981)
sophisticated recent models

reference points (Kahneman & Tversky, 1979)
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Standard model Intuitive elucidation

Standard model

How to compare the objects in X?
simple procedure

build a mapping f : X → R
compare objects using f

x % y ⇔ f (x) ≥ f (y)

Interpretation
f “measures” the desirability of the objects
% is a binary relation on the set X

% reads “at least as good as”

Hypotheses
1 f is “known” with precision
2 f is given for all objects
3 there is only one f

Remark
model ignores “cardinal
properties” of f
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Standard model Intuitive elucidation

Examples

Example 1: grading students
X is a set of students
f is the grade (0–20 scale) obtained at a written exam

x % y ⇔ f (x) ≥ f (y)

Example 2: choosing investment projects
X is a set of projects
f gives the NPV (e) of the projects

x % y ⇔ f (x) ≥ f (y)

Example 3: Linear Programming
X is a convex polytope in Rk , x ∈ X
f (x) =

∑k
i=1 cixi : value of the objective function

x % y ⇔ f (x) ≥ f (y)

skip reminder on binary relations
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Standard model Quick refresher

Quick reminder

Binary relation
a binary relation T on a set A is a subset of A×A
we write a T b instead of (a, b) ∈ T

Operations on binary relations
binary relations are sets
we may use standard set operations on them: T ∩ R, T ∪ R, T ⊆ R
product of two binary relation T and R on A

a T ·R b ⇔ [a T c and c R b, for some c ∈ A]
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Standard model Quick refresher

Quick reminder

Properties of binary relation
A binary relation T on a set A is:

reflexive if a T a
irreflexive if Not[a T a]
symmetric if a T b ⇒ b T a
antisymmetric if a T b and b T a ⇒ a = b
asymmetric if a T b ⇒ Not[b T a]
weakly complete if a 6= b ⇒ a T b or b T a
complete if a T b or b T a
transitive if a T b and b T c ⇒ a T c
negatively transitive if Not[a T b] and Not[b T c]⇒ Not[a T c]

for all a, b, c ∈ A

there are many links between these properties

14



Standard model Quick refresher

Quick reminder

Links
transitivity T2 ⊆ T
asymmetry ⇒ irreflexivity
complete ⇔ reflexive and weakly complete
[asymmetry and negatively transitivity] ⇒ transitivity
[completeness and transitivity] ⇒ negatively transitivity

Symmetric and asymmetric parts
asymmetric part of T : x Tα y ⇔ [x T y and Not[y T x]]
symmetric part of T : x Tσ y ⇔ [x T y and y T x]
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Standard model Quick refresher

Representation of a binary relation

Matrix representation
Let A = {a, b, c, d, e}. Consider the binary relation % = {(a, b), (b, a),
(b, c), (d, b), (d, d)}.

	 a b c d e
a 0 1 0 0 0
b 1 0 1 0 0
c 0 0 0 0 0
d 0 1 0 1 0
e 0 0 0 0 0

M T
ab =

{
1 if a T b
0 otherwise
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Standard model Quick refresher

Representation of a binary relation

Graph representation
Let A = {a, b, c, d, e}. Consider the binary relation % = {(a, b), (b, a),
(b, c), (d, b), (d, d)}.

a

b c

d

e

Graph
elements of X are vertices
elements related by T define arcs
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Standard model Standard model

Standard model

Model

x % y ⇔ f (x) ≥ f (y)

Two obvious properties of %
% is complete x % y or y % x, for all x, y ∈ X
% is transitive [x % y and y % z] ⇒ x % z, for all x, y, z ∈ X

Definition
A complete and transitive relation is called a weak order (complete preorder,
total preorder)

Remarks
if f is injective, % becomes antisymmetric
a complete, antisymmetric and transitive relation is a total order

19



Standard model Standard model

Strict preference and Indifference

Asymmetric part of %

x � y ⇔ [x % y and Not[y % x]]⇔ f (x) > f (y)

� is interpreted as strict preference
� is asymmetric, transitive, negatively transitive

[Not[x � y] and Not[y � z]] ⇒ Not[x � z], for all x, y, z ∈ X

Symmetric part of %

x ∼ y ⇔ [x % y and y % x]⇔ f (x) = f (y)

∼ is interpreted as indifference
∼ is reflexive, symmetric, transitive
∼ is an equivalence
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Standard model Standard model

Notation

x % y ⇔ y - x
x � y ⇔ y ≺ x

Properties
Completeness of % implies that:

x % y ⇔ Not[y � x]
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Standard model Standard model

Strict preference and Indifference

Summary
with a weak order % we have equivalence classes of ∼ that are totally
ordered by �

Remarks

x � y ⇔ [x % y and Not[y % x]]
x ∼ y ⇔ [x % y and y % x]

� and ∼ are exhaustive: for all x, y ∈ X we at least one among
x ∼ y, x � y, y � x

� and ∼ are exclusive: for all x, y ∈ X we at most one among
x ∼ y, x � y, y � x

there are no incomparable objects

go faster
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Standard model Standard model

Summary

y % x Not[y % x]
x % y x ∼ y x � y

Not[x % y] y � x ∅

Alternative presentation
question: “is x at least as good as y?”
two exclusive answers

YES: x % y
NO: Not[x % y]

these answers are such that % is complete and transitive
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Standard model Standard model

Some obvious properties

[x � y and y ∼ z]⇒ x � z
[x ∼ y and y � z]⇒ x � z

�·∼ ⊆ �
∼·� ⊆ �

skip examples
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Standard model Standard model

Example

X = {x, y, z,w, t}
x % x, y % y, z % z, w % w, t % t

x % y, x % z, x % w, x % t
y % x, y % z, y % w, y % t

z % w, z % t
w % t
t % w

% x y z w t
x 1 1 1 1 1
y 1 1 1 1 1
z 0 0 1 1 1
w 0 0 0 1 1
t 0 0 0 1 1

rows and columns have been ordered according to degrees
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Standard model Standard model

Example

∼ x y z w t
x 1 1 1 1 1
y 1 1 1 1 1
z 0 0 1 1 1
w 0 0 0 1 1
t 0 0 0 1 1

% x y z w t
x 1 1 1 1 1 5 3
y 1 1 1 1 1 5 3
z 0 0 1 1 1 3 0
w 0 0 0 1 1 2 −3
t 0 0 0 1 1 2 −3

2 2 3 3 5
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Standard model Standard model

Example

X = {x, y, z,w, t}
x % x, y % y, z % z, w % w, t % t

x % y, x % z, x % w, x % t
y % x, y % z, y % w, y % t

z % w, z % t
w % t
t % w

x, y

z

w, t
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Standard model Numerical representation

Numerical representation

Problem
Let % be a weak order on X
Can we always build a numerical representation of %?

Question
Given a weak order % on X is there a mapping v : X → R such that, for all
x, y ∈ X ,

x % y ⇔ v(x) ≥ v(y)

Obvious answer: No (thanks Georg!)

any total order on 2R cannot have a numerical representation
there is no injection from 2R to R

go faster
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Standard model Numerical representation

Quick reminder on sets

Finite sets
The set X is finite if there n ∈ N such that there is a bijection between X and
{0, 1, 2, . . . ,n}

Countably infinite sets
The set X is countably infinite if there is a bijection between X and N or,
equivalently, N+ = N \ {0}

Denumerable sets
the set X is denumerable if it is finite or countably infinite
the union or the Cartesian product of two denumerable sets is denumerable
Z and Q are denumerable
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Standard model Numerical representation

Quick reminder on sets

Cardinality
the set X have a larger cardinality at least as large as Y is there a
mapping of X onto Y
this defines a complete and transitive relation

Infinite sets
the set R have a larger cardinality than the set Q
the converse is false
Rn and R have the same cardinality
2X has a cardinality that is strictly larger than that of X
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Standard model Numerical representation

Results

Theorem (Cantor, 1895)
Let X be a denumerable set (i.e., finite or countably infinite). Let % be a
binary relation on X .
There is a real valued function v on X such that

x % y ⇔ v(x) ≥ v(y)
for all x, y ∈ X
if and only if
% is a weak order

skip proof
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Standard model Numerical representation

Proof

Proof.
Necessity is clear.
Let us show sufficiency. Since X is denumerable, we can number its elements in
such a way that X = {xi : i ∈ K ⊆ N+}.
To each y ∈ X define N (y) = {i ∈ K : y % xi}.
Define u letting u(y) =

∑
i∈N(y) 1/2i . This series obviously converges.

If x % y we have, using transitivity, N (x) ⊇ N (y) so that u(x) ≥ u(y).
Conversely suppose that u(x) ≥ u(y) and Not[x % y]. We have y % x, using
completeness, and Not[x % y]. Hence N (y) ) N (x), so that u(y) > u(x), a
contradiction.
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Standard model Numerical representation

General case

Remark
There are weak orders on sets having at most the cardinality of R that do not
have a numerical representation

Lexicographic preferences
Let X = R× {1, 0}. Define % letting

(x, α) % (y, β)⇔
{

x > y or
x = y and α ≥ β

It is clear that % is a weak order.
Suppose that there is a numerical representation of %. Take any x > y. We
have (x, 1) � (x, 0) � (y, 1) � (y, 0) so that v(x, 1) > v(x, 0) > v(y, 1) > v(y, 0).
But there is a rational number ρ(x) in the interval (v(x, 0), v(x, 1)) and there is
a there is a rational number ρ(y) in the interval (v(y, 0), v(y, 1)). We have
x > y ⇒ ρ(x) > ρ(y). Hence ρ is an injection from R to Q, which is impossible.
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Standard model Numerical representation

General case

Q is dense in R
Let x, y ∈ R. If x > y then there is z ∈ Q such that x > z > y.

Denseness
Let % be a weak order on X . The set Y ⊆ X is dense in X for % if, for all
x, y ∈ X such that x � y, we have x % z % y, for some z ∈ Y .

Hint
with this definition N is dense in itself for ≥

Theorem (Debreu, 1954)
Let % be a binary relation on X . There is a numerical representation of % if
and only if % is a weak order and there is a denumerable set Y ⊆ X that is
dense in X for %.
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Standard model Numerical representation

Uniqueness

Uniqueness
Suppose that % on X has a numerical representation v. This numerical
representation is not unique. Indeed, it is easy to see that Φ ◦ v is also a
numerical representation as soon as Φ is strictly increasing. It is easy to see
that these are the only possible transformations that can be applied to v.
Hence v is an ordinal scale.

Scales
ordinal scale: unique up to a strictly increasing transformation u = Φ ◦ v
interval scale: unique up to a positive affine transformation u = αv + β
with α > 0
ratio scale: unique up to a positive linear transformation u = αv with
α > 0

Question
how could we obtain an interval or a ratio scale?

skip meaningfulness

36



Standard model Numerical representation

Ordinal scales

Example

v1 v2 v3 v4
x 0 0 0 1
y 3 9 27 3
z 4 16 64 3.5
w 5 25 125 1000

the functions v1, v2, v3, v4 are all numerical representations of the weak
order w � z � y � x
assertion: the average desirability of x and w is larger than the average
desirability of y and z
we have (v1(w) + v1(x))/2 < (v1(z) + v1(y))/2
but (v2(w) + v2(x))/2 > (v2(z) + v2(y))/2
this is an example of a meaningless statement
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Standard model Numerical representation

Meaningfulness

Meaningful and meaningless statements
I weigh twice as much as you

meaningful (but may be false!)
Average temperature are twice higher in Paris than in Moscow

meaningless (unless you use the Kelvin scale!)
the difference in average temperature between Paris and Moscow is twice
the difference in average temperature between Rome and London

meaningful (but may be false!)
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Standard model Choice and preference

How do I observe %?

Observability
I cannot simply ask for % for epistemological reasons
I cannot simply ask for the performance measure that is used

Samuelson (1938)

Solution: choice functions
Let P(X) be the set of all nonempty subsets of X . A choice function C is a
function from P(X) to P(X) such that C (A) ⊆ A, for all A ∈ P(X).
The set C (A) contains the objects that are judged “choosable” in A.

Remarks
a choice function can be observed
is it possible to infer preference from choices?
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Standard model Choice and preference

Revealed preferences

Rationalizable choice function
A choice function C is rationalizable if there is a binary relation % such that,
for all A ∈ P(X),

C (A) = M (A,�) = {b ∈ A : Not[a � b] for all a ∈ A}

when A is finite, it is clear that if % is a weak order on X , M (A,�) is
nonempty for all A ∈ P(X)
the same is true as soon as � has no circuit

Not all choice functions can be rationalized
Let X = {a, b, c}. Suppose that

C ({a, b}) = {a}
C ({b, c}) = {b}
C ({a, c}) = {c}

Then we must have a � b, b � c and c � a. This implies that M (X ,�) is
empty. Hence C cannot be rationalized.
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Standard model Choice and preference

Revealed preferences

Condition α

x ∈ B ⊆ A
x ∈ C (A)

}
⇒ x ∈ C (B)

If the World champion is Italian, she must be the champion of Italy

Condition β

B ⊆ A
x, y ∈ C (B)

y ∈ C (A)

⇒ x ∈ C (A)

If there are two Italian champions (tied) and one of them is a World champion,
the other must also be a World champion
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Standard model Choice and preference

Revealed preferences: results

Theorem (Sen, 1970)
Let C be a choice function on a finite set X . It can be rationalized by a weak
order if and only if it satisfies conditions α and β.

Numerous extensions
C is not observed for all elements of P(X)
X is not finite
rationalization by an acyclic relation �
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Standard model Choice and preference

Revealed preferences: questions

Condition α
if I have to choose in {Steak,Sole Meunière}

I choose Steak
if I have to choose in {Steak,Sole Meunière,Frog Legs}

I choose Sole Meunière
epistemic value of the menu
violates condition α

Condition β
if I have to choose in {Bike,Horse}

I am indifferent and both are choosable
if I have to choose in {Bike,Bike with bell,Horse}

I am indifferent between Bike with bell and Horse (both are choosable)
violates condition β
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Standard model Aggregation

Aggregation

Question
let %1, %2, . . . , %k be weak orders on X
do “reasonable” aggregation methods of these k weak orders always lead
to a weak order?

Answer
No!!!! (thanks Marie Jean Antoine Nicolas!)
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Standard model Aggregation

Aggregation

X = {x, y, z} is a set of candidates
three voters express preferences on X as weak orders
social preference is an aggregation of individual preferences:

x % y ⇔ |{i ∈ N : x %i y}| ≥ |{i ∈ N : y %i x}|

1 : x �1 y �1 z
2 : z �2 x �2 y
3 : y �3 z �3 x

Condorcet’s paradox, 1785

x y

z

�

��

skip special structures
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Standard model Special structures

Special structures for X

Structure of X
left unspecified until now
when X has a special structure it may be possible to take advantage of
this extra structure

skip special structures

Examples of special structures
decision under risk

X is a set of probability distribution on a set of consequences C
decision under uncertainty

X has a homogeneous Cartesian product structure: Y n is there are n states
of nature

multiple criteria decision making
X has a Cartesian product structure: X1 ×X2 × · · · ×Xn

skip special structures
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Standard model Special structures

Special structures for X

Independence properties
independence wrt probabilistic mixtures: expected utility (von Neumann
& Morgenstern, 1947)

f (x) =
∑
γ∈C

px(γ)u(γ)

sure thing principle: subjective expected utility (Savage, 1954)

f (x) =
∑
e∈E

p(e)u(x(γ))

independence: additive value functions (Debreu, 1960, Luce & Tukey 1964)

f (x) =
n∑

i=1
vi(xi)
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Classical extensions Models with incomparability

More than one performance measure

How to compare the objects in X?
simple procedure

build several mappings f1, f2, . . . , fn

x % y ⇔


f1(x) ≥ f1(y)
f2(x) ≥ f2(y)

. . .

fn(x) ≥ fn(y)

dominance (“Pareto front” and the like)

Alternative: lexicographic aggregation

x � y ⇔


f1(x) > f1(y)
f1(x) = f1(y) and f2(x) > f2(y)
. . .

f1(x) = f1(y), . . . , fn−1(x) = fn−1(y) and fn(x) > fn(y)
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Classical extensions Models with incomparability

Quasi orders

x % y ⇔


f1(x) ≥ f1(y)
f2(x) ≥ f2(y)

...
fn(x) ≥ fn(y)

Two obvious properties of %
% is reflexive (x % x, for all x ∈ X)
% is transitive ([x % y and y % z] ⇒ x % z, for all x, y, z ∈ X)

Quasi order
a reflexive and transitive relation is called a quasi order

if % is antisymmetric it is a partial order
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Classical extensions Models with incomparability

Quasi orders

Any partial order on a set X can be obtained as the intersection of a number of
total orders. When X is finite, it only takes a finite number of total orders to
obtain a partial order (dimension of a partial order, Dushnik & Miller, 1941).
The same is true for quasi orders and weak orders.

Theorem (Folk)
Any quasi order on a finite set has a numerical representation such that

x % y ⇔


u1(x) ≥ u1(y)
u2(x) ≥ u2(y)

. . .

uk(x) ≥ uk(y)

skip examples
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Classical extensions Models with incomparability

Example: partial order of dimension 3

∅

{c} {b} {a}

{b, c} {a, c} {a, b}

{a, b, c}

skip examples
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Classical extensions Models with incomparability

Example

Let X = {x, y, z,w, t}.
x y

z w

t

Remark
� is asymmetric and transitive
M (A,�) is always nonempty when A 6= ∅ and is finite
non-dominated solutions in MCDM
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Classical extensions Models with threshold

Standard model with caution

How to compare the objects in X?
simple procedure

build a mapping f : X → R
compare objects using f with caution

x � y ⇔ f (x) > f (y) + q
x ∼ y ⇔ |f (x)− f (y)| ≥ q

q ≥ 0: constant threshold
x % y ⇔ f (x) ≥ f (y)− q

Remark
if q = 0 are back to the standard model
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Classical extensions Models with threshold

Standard model with caution

Model

x % y ⇔ f (x) ≥ f (y)− q
q ≥ 0: constant threshold

Obvious properties of %
% is complete x % y or y % x, for all x, y ∈ X
% is not transitive but � is transitive

�·∼ ⊆ �
∼·� ⊆ �

Both these relations are false

60



Classical extensions Models with threshold

f

f (x) f (x) + q

x y
z

w
t

y � x (the y interval does not intersect and is to the right of the x interval)
z ∼ w (the z interval intersect the w interval)

z ∼ w and w ∼ t but t � z
t � z and z ∼ w but t ∼ w
w ∼ t and t � z but w ∼ t
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Classical extensions Models with threshold

Ferrers

Model

x % y ⇔ f (x) ≥ f (y)− q

Ferrers

x % y
and

z % w

⇒
 x % w

or
z % y

Necessity

x % y ⇒ f (x) ≥ f (y)− q
z % w ⇒ f (z) ≥ f (w)− q

Not[x % w]⇒ f (x) < f (w)− q
Not[z % y]⇒ f (z) < f (y)− q

we obtain f (y) > f (w) and f (w) > f (y), a contradiction
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Classical extensions Models with threshold

Semi-transitivity

x % y ⇔ f (x) ≥ f (y)− q

Semi-transitivity

x % y
and

y % z

⇒
 x % w

or
w % z

Necessity

x % y ⇒ f (x) ≥ f (y)− q
y % z ⇒ f (y) ≥ f (z)− q

Not[x % w]⇒ f (x) < f (w)− q
Not[w % z]⇒ f (w) < f (z)− q

we obtain f (y) > f (w) and f (w) > f (y), a contradiction
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Classical extensions Models with threshold

Semiorder

Definition
A semiorder is a complete, Ferrers and semi-transitive binary relation

Theorem (Luce, 1956)
A binary relation on a finite set X is a semiorder if and only if there is a real
valued function u on X and a threshold q ≥ 0 such that:

x % y ⇔ u(x) ≥ u(y)− q

Remarks
not true if X is denumerable
can be extended to countable set with a variable but consistent threshold

skip examples go much faster
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Classical extensions Models with threshold

Example

b g a c f e d
b 1 1 1 1 1 1 1
g 0 1 1 1 1 1 1
a 0 1 1 1 1 1 1
c 0 0 1 1 1 1 1
f 0 0 1 1 1 1 1
e 0 0 0 0 1 1 1
d 0 0 0 0 0 1 1

b g a c f e d
b 1 1 1 1 1 1 1
g 0 1 1 1 1 1 1
a 0 1 1 1 1 1 1
c 0 0 1 1 1 1 1
f 0 0 1 1 1 1 1
e 0 0 0 0 1 1 1
d 0 0 0 0 0 1 1
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Classical extensions Models with threshold

Example

b g a c f e d
b 1 1 1 1 1 1 1
g 0 1 1 1 1 1 1
a 0 1 1 1 1 1 1
c 0 0 1 1 1 1 1
f 0 0 1 1 1 1 1
e 0 0 0 0 1 1 1
d 0 0 0 0 0 1 1

d
e

f
a

c

g b
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Classical extensions Models with threshold

Traces

If % is a semiorder, the relation %+ defined by
x %+ y ⇔ [y % z ⇒ x % z]

is a weak order (note that it is always reflexive and transitive)

If % is a semiorder, the relation %− defined by
x %− y ⇔ [z % x ⇒ z % y]

is a weak order (note that it is always reflexive and transitive)

If % is a semiorder, the relation %± defined by
x %± y ⇔ [x %+ y and x %− y]

is a weak order (note that it is always reflexive and transitive)

the relation %± is the weak order underlying the semiorder %
the matrix representation of a semiorder is stepped when rows and
columns are arranged wrt %±
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Classical extensions Models with threshold

Uniqueness

Two representations of a semiorder

x � y, x � z, y ∼ z

v1 v2
x 2 2
y 0 0.5
z 0 0

irregular representation
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Classical extensions Models with threshold

Standard model with (even more) caution

How to compare the objects in X?
simple procedure

build a mapping f : X → R
compare objects using f with (even more) caution

x � y ⇔ f (x) > f (y) + q(y)

x ∼ y ⇔
{

f (x) ≤ f (y) + q(y)
f (y) ≤ f (x) + q(x)

}
q(·) ≥ 0: variable threshold

x % y ⇔ f (x) + q(x) ≥ f (y)
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Classical extensions Models with threshold

Example

f (x) f (x) + q(x)

x y
z

w
t

y � x (the y interval does not intersect and is to the right of the x interval)
z ∼ w (the z interval intersect the w interval)

t is indifferent to all other alternatives
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Classical extensions Models with threshold

Standard model with (even more) caution

x % y ⇔ f (x) + q(x) ≥ f (y)
q(·) ≥ 0: variable threshold

Obvious properties of %
% is complete x % y or y % x, for all x, y ∈ X
% is not transitive but � is transitive
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Classical extensions Models with threshold

Ferrers

x % y ⇔ f (x) + q(x) ≥ f (y)

Ferrers

x % y
and

z % w

⇒
 x % w

or
z % y

Necessity

x % y ⇒ f (x) + q(x) ≥ f (y)
z % w ⇒ f (z) + q(z) ≥ f (w)

Not[x % w]⇒ f (x) + q(x) < f (w)
Not[z % y]⇒ f (z) + q(z) < f (y)

we obtain f (x) + q(x) > f (z) + q(z) and f (z) + q(z) > f (x) + q(x), a
contradiction.
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Interval order

Definition
An interval order is a complete and Ferrers binary relation

Theorem (Fishburn, 1970)
A binary relation on a finite set X is an interval order if and only if there is a
real valued function u on X and a nonnegative threshold function q such that:

x % y ⇔ u(x) + q(x) ≥ u(y)

Remarks
remains true if X is denumerable
add order denseness condition in the general case

skip examples skip suborders
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Example

a b c d
a 1 1 1 1
b 0 1 1 1
c 0 0 1 1
d 1 1 1 1

c b a
d

Semi-transitivity can be violated

c % d
and

d % a


 Not[c % b]

and
Not[b % a]
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Example

a b c d
a 1 1 1 1
b 0 1 1 1
c 0 0 1 1
d 1 1 1 1

a b d c
a 1 1 1 1
d 1 1 1 1
b 0 1 1 1
c 0 0 1 1

rows are arranged according to outdegrees
columns are arranged according to indegrees
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Traces

If % is an interval order, the relation %+ defined by
x %+ y ⇔ [y % z ⇒ x % z]

is a weak order (note that it is always reflexive and transitive)
It governs the order of the left side of intervals (outdegrees)

If % is an interval order, the relation %− defined by
x %− y ⇔ [z % x ⇒ z % y]

is a weak order (note that it is always reflexive and transitive)
It governs the order of the right side of intervals (indegrees)

If % is an interval order, the relation %± defined by
x %± y ⇔ [x %+ y and x %− y]

may not be complete.
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Standard model with (even even more) caution

How to compare the objects in X?
simple procedure

build a mapping f : X → R
compare objects using f with (even even more) caution

x � y ⇔ f (x) > f (y) + q(x, y)

x ∼ y ⇔
{

f (x) ≤ f (y) + q(x, y)
f (y) ≤ f (x) + q(y, x)

}
q(x, y) = q(y, x) ≥ 0: symmetric threshold depending on both alternatives

x % y ⇔ f (x) + q(x, y) ≥ f (y)
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Standard model with (even even more) caution

Model

x � y ⇔ f (x) > f (y) + q(x, y)
x % y ⇔ f (x) + q(x, y) ≥ f (y)

q(x, y) = q(y, x) ≥ 0: symmetric threshold depending on both alternatives

Obvious properties of %
% is complete x % y or y % x, for all x, y ∈ X
% is not transitive, � is not transitive
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Example

Model

x � y ⇔ f (x) > f (y) + q(x, y)
x % y ⇔ f (x) + q(x, y) ≥ f (y)

q(x, y) = q(y, x) ≥ 0: symmetric threshold depending on both alternatives

Example
x � y, y � z, Not[x � z], Not[z � x] (x ∼ z)

v(x) = 10, v(y) = 6, v(z) = 2
q(x, y) = q(y, x) = 1, q(y, z) = q(z, y) = 1, q(x, z) = q(z, x) = 9
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Absence of circuits

Model

x � y ⇔ f (x) > f (y) + q(x, y)
x % y ⇔ f (x) + q(x, y) ≥ f (y)

q(x, y) = q(y, x) ≥ 0: symmetric threshold depending on both alternatives

Absence of circuit
x1 � x2 � . . . � xk ⇒ Not[xk � x1] (∀k > 1)

x1 � x2 � . . . � xk � x1
f (x1) > f (x2) + q(x1, x2)
f (x2) > f (x3) + q(x2, x3)

. . .

f (xk−1) > f (xk) + q(xk−1, xk)
f (xk) > f (x1) + q(xk , x1)

q(xk , x1) +
∑k

i=1 q(xi , xi+1) < 0, a contradiction since q ≥ 0
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Suborders

Definition
A suborder % is a complete binary relation such that � has no circuit

Theorem (Fishburn, 1970)
A binary relation on a finite set X is a suborder if and only if there is a real
valued function u on X and a nonnegative symmetric threshold function q such
that:

x % y ⇔ f (x) + q(x, y) ≥ f (y)

Remarks
remains true if X is denumerable
add order denseness condition in the general case
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Summary: structures with threshold

suborder variable threshold q(x, y) ≥ 0
interval order variable threshold q(x) ≥ 0
semiorder constant threshold q ≥ 0
weak order null threshold q = 0
total order no indifference ∼ is trivial

skip examples jump to references
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Partial structures with threshold

Dominance with semiorders
X = {a, b, c}
c �1 a, c ∼1 b, b ∼1 a (semiorder)
a �2 b, a ∼2 c, c ∼2 b (semiorder)
b �3 c, b ∼3 a, a ∼3 c (semiorder)

Cycling
a � b: a ∼1 b, a �2 b, a ∼3 b
b � c: b ∼1 c, b ∼2 c, b �3 c
c � a: c �1 a, c ∼2 a, c ∼3 a
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Structures with hesitation

Remarks
in all models studied so far there is a sharp transition between � and ∼
we may expect that in some case there is an “hesitation zone” between
these two relations

Pseudo orders

x � y ⇔ f (x) > f (y) + p(y)
x _̂ y ⇔ f (y) + p(y) ≥ f (x) > f (y) + q(y)
x ∼ y ⇔ [f (x) ≤ f (y) + q(y) and f (y) ≤ f (x) + q(x)]

conditions on 〈�, _̂,∼〉 are known (Roy & Vincke, 1987)

skip exotic structures
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Extensions

Interval orders
intervals are associated to objects

Extensions
associate other geometrical shapes objects
circles, trapezoids, etc.

Extensions
special points within intervals
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Fuzzyness

Remarks
all models use crisp binary relations
either x � y is true or it is false

Fuzzy models
use fuzzy binary relations
x � y has a degree of credibility belonging to [0, 1]

Questions
how to define classical properties (completeness, transitivity, etc) for fuzzy
relations?
not obvious but the use of cut relations is useful

x �λ y ⇔ �(x, y) ≥ λ
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Illustration

�(x, a)

u(x)
u(a) u(b)

�(b, a)

�(b, a) ∈ [0, 1] is the credibility of the proposition “b � a”
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