Preference Modelling A brief introduction

Denis Bouyssou

CNRS–LAMSADE Paris, France

2011

Introduction

Lemma

- if you have no preference...
- then there is no need to worry about decisions!

Aims

- present the standard model of preference modelling
 - analyze a few classical questions within the standard model

Motivation

• introduce some extensions of the standard model

Preference Modelling

Motivation

Variety of disciplines

- Economics
 - consumer theory
- Psychology
 - experiments
- Political Science
 - voters
- Marketing
 - consumers
- Operations Research
 - objective function
- Multiple Criteria Decision Making
 - criteria

3

< (1)< (1)<

Preference Modelling

Variety of perspectives

- Normative
 - link between preference models and "rational behavior"
- Descriptive
 - preference models as compatible with experimental results

Motivation

- Prescriptive
 - help someone structure a preference model

Preference Modelling

Variety of objects to compare

- vectors in \mathbb{R}^k
 - Operations Research: Linear Programming (LP)

Motivation

- Economics: consumer theory
- finite list defined implicitly
 - Operations Research: combinatorial optimization
- finite list defined explicitly
 - candidates in an election
 - $\bullet\,$ investment projects

Consequence

- huge literature
- aim: brief introduction
 - vocabulary
 - main structures
 - main questions

Remarks

5

Position in the decision process

- a set of objects has been identified: X
- one and only one element of X will be finally implemented

Motivation

Ignored

- experiments
 - framing & presentation effects (Kahneman & Tversky, 1981)
- sophisticated recent models
 - reference points (Kahneman & Tversky, 1979)

Standard model

Standard model Intuitive elucidation

How to compare the objects in X?

- simple procedure
 - build a mapping $f: X \to \mathbb{R}$
 - compare objects using f

 $x \succeq y \Leftrightarrow f(x) \ge f(y)$

Interpretation

- f "measures" the desirability of the objects
- \gtrsim is a binary relation on the set X
 - \succeq reads "at least as good as"

Hypotheses

- f is "known" with precision
- **2** f is given for all objects
- \bullet there is only one f

Remark

• model ignores "cardinal properties" of f

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

10

Standard model Intuitive elucidation

Examples

Example 1: grading students

- X is a set of students
- f is the grade (0–20 scale) obtained at a written exam

 $x \succsim y \Leftrightarrow f(x) \geq f(y)$

Example 2: choosing investment projects

- X is a set of projects
- f gives the NPV (\in) of the projects

 $x \succsim y \Leftrightarrow f(x) \geq f(y)$

Example 3: Linear Programming

- X is a convex polytope in \mathbb{R}^k , $\mathbf{x} \in X$
- $f(\mathbf{x}) = \sum_{i=1}^{k} c_i x_i$: value of the objective function

$$x \succeq y \Leftrightarrow f(x) \ge f(y)$$

• a binary relation T on a set A is a subset of $A \times A$

Standard model

Quick refresher

• we write a T b instead of $(a, b) \in T$

Operations on binary relations

- binary relations are sets
- we may use standard set operations on them: $T \cap R$, $T \cup R$, $T \subseteq R$
- product of two binary relation T and R on A
 - $a \ T \cdot R \ b \Leftrightarrow [a \ T \ c \ \text{and} \ c \ R \ b, \text{ for some } c \in A]$

13

Standard model Quick refresher

Quick reminder

Properties of binary relation

A binary relation T on a set A is:

- reflexive if a T a
- irreflexive if $Not[a \ T \ a]$
- symmetric if $a \ T \ b \Rightarrow b \ T \ a$
- antisymmetric if $a \ T \ b$ and $b \ T \ a \Rightarrow a = b$
- asymmetric if $a \ T \ b \Rightarrow Not[b \ T \ a]$
- weakly complete if $a \neq b \Rightarrow a \ T \ b \text{ or } b \ T \ a$
- complete if a T b or b T a
- transitive if $a \ T \ b$ and $b \ T \ c \Rightarrow a \ T \ c$
- negatively transitive if $Not[a \ T \ b]$ and $Not[b \ T \ c] \Rightarrow Not[a \ T \ c]$

for all $a, b, c \in A$

• there are many links between these properties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quick reminder

Links

- transitivity $T^2 \subseteq T$
- asymmetry \Rightarrow irreflexivity
- complete \Leftrightarrow reflexive and weakly complete
- [asymmetry and negatively transitivity] \Rightarrow transitivity
- [completeness and transitivity] \Rightarrow negatively transitivity

Standard model Quick refresher

Symmetric and asymmetric parts

- asymmetric part of $T: x T^{\alpha} y \Leftrightarrow [x T y \text{ and } Not[y T x]]$
- symmetric part of T: $x T^{\sigma} y \Leftrightarrow [x T y \text{ and } y T x]$

15

Representation of a binary relation

Matrix representation

Let $A = \{a, b, c, d, e\}$. Consider the binary relation $\succeq = \{(a, b), (b, a), (b, c), (d, b), (d, d)\}.$

Q	a	b	С	d	e
a	0	1	0	0	0
b	1	0	1	0	0
c	0	0	0	0	0
d	0	1	0	1	0
e	0	0	0	0	0
M_{ab}^{T}	= {	$\left\{ \begin{matrix} 1 \\ 0 \end{matrix} \right.$	if otl	a T herv	b vise

Standard model Quick refresher

Representation of a binary relation

Graph representation

Let $A = \{a, b, c, d, e\}$. Consider the binary relation $\succeq = \{(a, b), (b, a), (b, c), (d, b), (d, d)\}$.

d

Graph

- elements of X are vertices
- elements related by T define arcs

17

・・・

Standard model Standard model

Standard model

Model

$x \succsim y \Leftrightarrow f(x) \ge f(y)$

Two obvious properties of \succsim

- \succeq is complete $x \succeq y$ or $y \succeq x$, for all $x, y \in X$
- \succeq is transitive $[x \succeq y \text{ and } y \succeq z] \Rightarrow x \succeq z$, for all $x, y, z \in X$

Definition

A complete and transitive relation is called a weak order (complete preorder, total preorder)

Remarks

- if f is injective, \succeq becomes antisymmetric
- a complete, antisymmetric and transitive relation is a total order

Strict preference and Indifference

Asymmetric part of \succeq

$$x\succ y \Leftrightarrow [x\succsim y \text{ and } Not[y\succsim x]] \Leftrightarrow f(x) > f(y)$$

Standard model Standard model

- \succ is interpreted as strict preference
- \succ is asymmetric, transitive, negatively transitive
 - $[Not[x \succ y] \text{ and } Not[y \succ z]] \Rightarrow Not[x \succ z], \text{ for all } x, y, z \in X$

Symmetric part of \succeq

$$x \sim y \Leftrightarrow [x \succeq y \text{ and } y \succeq x] \Leftrightarrow f(x) = f(y)$$

- \sim is interpreted as indifference
- \sim is reflexive, symmetric, transitive
- \sim is an equivalence

20

Standard model Standard model

Notation

 $\begin{array}{l} x \succsim y \Leftrightarrow y \precsim x \\ x \succ y \Leftrightarrow y \prec x \end{array}$

Properties

Completeness of \succeq implies that:

$$x \succeq y \Leftrightarrow Not[y \succ x]$$

Standard model Standard model

Strict preference and Indifference

Summary

 with a weak order ≿ we have equivalence classes of ~ that are totally ordered by ≻

Remarks

- $\begin{aligned} x\succ y &\Leftrightarrow [x\succsim y \text{ and } Not[y\succsim x]]\\ x\sim y &\Leftrightarrow [x\succsim y \text{ and } y\succsim x] \end{aligned}$
- \succ and \sim are exhaustive: for all $x, y \in X$ we at least one among

•
$$x \sim y, x \succ y, y \succ x$$

- ≻ and ~ are exclusive: for all x, y ∈ X we at most one among
 x ~ y, x ≻ y, y ≻ x
- there are no incomparable objects

Standard model Standard model

Summary

$$\begin{array}{c|ccc} y \succsim x & Not[y \succsim x] \\ \hline x \succsim y & x \sim y & x \succ y \\ Not[x \succeq y] & y \succ x & \varnothing \end{array}$$

Alternative presentation

- question: "is x at least as good as y?"
- two exclusive answers
 - YES: $x \succeq y$
 - NO: $Not[x \succeq y]$
- these answers are such that \succeq is complete and transitive

Some obvious properties

Standard model Standard model

$$\succ \cdot \sim \subseteq \succ$$
$$\sim \cdot \succ \subseteq \succ$$

24

・ロト・日本・モン・モン・モックへで

Standard model Standard model

Example

$$X = \{x, y, z, w, t\}$$

$$x \succeq x, y \succeq y, z \succeq z, w \succeq w, t \succeq t$$

$$x \succeq y, x \succeq z, x \succeq w, x \succeq t$$

$$y \succeq x, y \succeq z, y \succeq w, y \succeq t$$

$$z \succeq w, z \succeq t$$

$$w \succeq t$$

$$t \succeq w$$

\succeq	x	y	z	w	t
x	1	1	1	1	1
y	1	1	1	1	1
z	0	0	1	1	1
w	0	0	0	1	1
t	0	0	0	1	1

rows and columns have been ordered according to degrees

▲□▶<@▶<≧▶<≧▶ ≧ のQ()</p>

Example

\sim	x	y	z	w	t
x	1	1	1	1	1
y	1	1	1	1	1
z	0	0	1	1	1
w	0	0	0	1	1
t	0	0	0	1	1

26

・< 日 > < 目 > < 目 > < 目 > < 目 > < 目 > < < < へ ○

Standard model Standard model

Example

Standard model Numerical representation

Numerical representation

Problem

Let \succeq be a weak order on X

Can we always build a numerical representation of \gtrsim ?

Question

Given a weak order \succeq on X is there a mapping $v: X \to \mathbb{R}$ such that, for all $x, y \in X$,

$$x \succsim y \Leftrightarrow v(x) \ge v(y)$$

Obvious answer: No (thanks Georg!)

- any total order on $2^{\mathbb{R}}$ cannot have a numerical representation
- there is no injection from $2^{\mathbb{R}}$ to \mathbb{R}

29

Standard model Numerical representation

Quick reminder on sets

Finite sets

The set X is finite if there $n \in \mathbb{N}$ such that there is a bijection between X and $\{0, 1, 2, \dots, n\}$

Countably infinite sets

The set X is countably infinite if there is a bijection between X and N or, equivalently, $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$

Denumerable sets

- the set X is denumerable if it is finite or countably infinite
- the union or the Cartesian product of two denumerable sets is denumerable
- \mathbb{Z} and \mathbb{Q} are denumerable

Standard model Numerical representation

Quick reminder on sets

Cardinality

- the set X have a larger cardinality at least as large as Y is there a mapping of X onto Y
- this defines a complete and transitive relation

Infinite sets

- the set \mathbb{R} have a larger cardinality than the set \mathbb{Q}
- the converse is false
- \mathbb{R}^n and \mathbb{R} have the same cardinality
- 2^X has a cardinality that is strictly larger than that of X

Standard model Numerical representation

Results

Theorem (Cantor, 1895)

Let X be a denumerable set (i.e., finite or countably infinite). Let \succeq be a binary relation on X.

There is a real valued function v on X such that

$$x \succeq y \Leftrightarrow v(x) \ge v(y)$$

for all $x, y \in X$ if and only if \succeq is a weak order < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

Necessity is clear.

Let us show sufficiency. Since X is denumerable, we can number its elements in such a way that $X = \{x_i : i \in K \subseteq \mathbb{N}_+\}$. To each $y \in X$ define $N(y) = \{i \in K : y \succeq x_i\}$. Define u letting $u(y) = \sum_{i \in N(y)} 1/2^i$. This series obviously converges. If $x \succeq y$ we have, using transitivity, $N(x) \supseteq N(y)$ so that $u(x) \ge u(y)$. Conversely suppose that $u(x) \ge u(y)$ and $Not[x \succeq y]$. We have $y \succeq x$, using completeness, and $Not[x \succeq y]$. Hence $N(y) \supseteq N(x)$, so that u(y) > u(x), a contradiction.

33

Standard model Numerical representation

General case

Remark

There are weak orders on sets having at most the cardinality of $\mathbb R$ that do not have a numerical representation

Lexicographic preferences

Let
$$X = \mathbb{R} \times \{1, 0\}$$
. Define \succeq letting
 $(x, \alpha) \succeq (y, \beta) \Leftrightarrow \begin{cases} x > y \text{ or} \\ x = y \text{ and } \alpha \ge \beta \end{cases}$

It is clear that \succeq is a weak order.

Suppose that there is a numerical representation of \succeq . Take any x > y. We have $(x,1) \succ (x,0) \succ (y,1) \succ (y,0)$ so that v(x,1) > v(x,0) > v(y,1) > v(y,0). But there is a rational number $\rho(x)$ in the interval (v(x,0), v(x,1)) and there is a there is a rational number $\rho(y)$ in the interval (v(y,0), v(y,1)). We have $x > y \Rightarrow \rho(x) > \rho(y)$. Hence ρ is an injection from \mathbb{R} to \mathbb{Q} , which is impossible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General case

$\mathbb Q$ is dense in $\mathbb R$

Let $x, y \in \mathbb{R}$. If x > y then there is $z \in \mathbb{Q}$ such that x > z > y.

Denseness

Let \succeq be a weak order on X. The set $Y \subseteq X$ is dense in X for \succeq if, for all $x, y \in X$ such that $x \succ y$, we have $x \succeq z \succeq y$, for some $z \in Y$.

Hint

• with this definition \mathbb{N} is dense in itself for \geq

Theorem (Debreu, 1954)

Let \succeq be a binary relation on X. There is a numerical representation of \succeq if and only if \succeq is a weak order and there is a denumerable set $Y \subseteq X$ that is dense in X for \succeq .

Standard model

Numerical representation

35

・・・・<・<・<・<・<・<・・<l

Uniqueness

Uniqueness

Suppose that \succeq on X has a numerical representation v. This numerical representation is not unique. Indeed, it is easy to see that $\Phi \circ v$ is also a numerical representation as soon as Φ is strictly increasing. It is easy to see that these are the only possible transformations that can be applied to v. Hence v is an ordinal scale.

Scales

- ordinal scale: unique up to a strictly increasing transformation $u = \Phi \circ v$
- interval scale: unique up to a positive affine transformation $u = \alpha v + \beta$ with $\alpha > 0$
- ratio scale: unique up to a positive linear transformation $u = \alpha v$ with $\alpha > 0$

Question

• how could we obtain an interval or a ratio scale?

Standard model Numerical representation

Ordinal scales

Example

	v_1	v_2	v_3	v_4
x	0	0	0	1
y	3	9	27	3
z	4	16	64	3.5
w	5	25	125	1000

- the functions v_1, v_2, v_3, v_4 are all numerical representations of the weak order $w \succ z \succ y \succ x$
- assertion: the average desirability of x and w is larger than the average desirability of y and z
- we have $(v_1(w) + v_1(x))/2 < (v_1(z) + v_1(y))/2$
- but $(v_2(w) + v_2(x))/2 > (v_2(z) + v_2(y))/2$
- this is an example of a meaningless statement

37

Standard model Numerical representation

Meaningfulness

Meaningful and meaningless statements

- I weigh twice as much as you
 - meaningful (but may be false!)
- Average temperature are twice higher in Paris than in Moscow
 - meaningless (unless you use the Kelvin scale!)
- the difference in average temperature between Paris and Moscow is twice the difference in average temperature between Rome and London
 - meaningful (but may be false!)

How do I observe \gtrsim ?

Observability

- I cannot simply ask for \succeq for epistemological reasons
- I cannot simply ask for the performance measure that is used

Samuelson (1938)

Solution: choice functions

Let P(X) be the set of all nonempty subsets of X. A choice function C is a function from P(X) to P(X) such that $C(A) \subseteq A$, for all $A \in P(X)$. The set C(A) contains the objects that are judged "choosable" in A.

Remarks

- a choice function can be observed
- is it possible to infer preference from choices?

40

Standard model Choice and preference

Revealed preferences

Rationalizable choice function

A choice function C is rationalizable if there is a binary relation \succeq such that, for all $A \in P(X)$,

$$C(A) = M(A, \succ) = \{ b \in A : Not[a \succ b] \text{ for all } a \in A \}$$

- when A is finite, it is clear that if \succeq is a weak order on X, $M(A, \succ)$ is nonempty for all $A \in P(X)$
- the same is true as soon as \succ has no circuit

Not all choice functions can be rationalized

Let $X = \{a, b, c\}$. Suppose that

$$C(\{a, b\}) = \{a\}$$
$$C(\{b, c\}) = \{b\}$$
$$C(\{a, c\}) = \{c\}$$

Then we must have $a \succ b$, $b \succ c$ and $c \succ a$. This implies that $M(X, \succ)$ is empty. Hence C cannot be rationalized.

Standard model Choice and preference

Revealed preferences

Condition α

$$\left.\begin{array}{l}x\in B\subseteq A\\x\in C(A)\end{array}\right\}\Rightarrow x\in C(B)$$

If the World champion is Italian, she must be the champion of Italy

Condition β

$$\left. \begin{array}{c} B \subseteq A \\ x, y \in C(B) \\ y \in C(A) \end{array} \right\} \Rightarrow x \in C(A)$$

If there are two Italian champions (tied) and one of them is a World champion, the other must also be a World champion

42

Standard model Choice and preference

Revealed preferences: results

Theorem (Sen, 1970)

Let C be a choice function on a finite set X. It can be rationalized by a weak order if and only if it satisfies conditions α and β .

Numerous extensions

- C is not observed for all elements of P(X)
- X is not finite
- rationalization by an acyclic relation \succ

Standard model Choice and preference

Revealed preferences: questions

Condition α

- if I have to choose in {Steak, Sole Meunière}
 - I choose Steak
- if I have to choose in {Steak, Sole Meunière, Frog Legs}
 - I choose Sole Meunière
- epistemic value of the menu
- violates condition α

Condition β

- if I have to choose in {Bike, Horse}
 - I am indifferent and both are choosable
- if I have to choose in {Bike, Bike with bell, Horse}
 - I am indifferent between Bike with bell and Horse (both are choosable)
- violates condition β

44

Standard model Aggregation

Aggregation

Question

- let $\succeq_1, \succeq_2, \ldots, \succeq_k$ be weak orders on X
- do "reasonable" aggregation methods of these k weak orders always lead to a weak order?

Answer

• No!!!! (thanks Marie Jean Antoine Nicolas!)

Aggregation

- $X = \{x, y, z\}$ is a set of candidates
- three voters express preferences on X as weak orders
- social preference is an aggregation of individual preferences:

 $x\succsim y\Leftrightarrow |\{i\in N: x\succsim_i y\}|\geq |\{i\in N: y\succsim_i x\}|$

 $1: x \succ_1 y \succ_1 z$ $2: z \succ_2 x \succ_2 y$ $3: y \succ_3 z \succ_3 x$

47

Standard model Special structures

Special structures for X

Structure of X

- left unspecified until now
- when X has a special structure it may be possible to take advantage of this extra structure

Examples of special structures

- decision under risk
 - X is a set of probability distribution on a set of consequences C
- decision under uncertainty
 - X has a homogeneous Cartesian product structure: Y^n is there are n states of nature
- multiple criteria decision making
 - X has a Cartesian product structure: $X_1 \times X_2 \times \cdots \times X_n$

Special structures for X

Independence properties

independence wrt probabilistic mixtures: expected utility (von Neumann & Morgenstern, 1947)

Standard model Special structures

$$f(x) = \sum_{\gamma \in C} p_x(\gamma) u(\gamma)$$

• sure thing principle: subjective expected utility (Savage, 1954)

$$f(x) = \sum_{e \in E} p(e)u(x(\gamma))$$

• independence: additive value functions (Debreu, 1960, Luce & Tukey 1964)

$$f(x) = \sum_{i=1}^{n} v_i(x_i)$$

50

Classical extensions Models with incomparability

More than one performance measure

How to compare the objects in X?

- simple procedure
 - build several mappings f_1, f_2, \ldots, f_n

$$x \succeq y \Leftrightarrow \begin{cases} f_1(x) \ge f_1(y) \\ f_2(x) \ge f_2(y) \\ \dots \\ f_n(x) \ge f_n(y) \end{cases}$$

• dominance ("Pareto front" and the like)

Alternative: lexicographic aggregation

$$x \succ y \Leftrightarrow \begin{cases} f_1(x) > f_1(y) \\ f_1(x) = f_1(y) \text{ and } f_2(x) > f_2(y) \\ \dots \\ f_1(x) = f_1(y), \dots, f_{n-1}(x) = f_{n-1}(y) \text{ and } f_n(x) > f_n(y) \end{cases}$$

Quasi orders

$$c \succeq y \Leftrightarrow \begin{cases} f_1(x) \ge f_1(y) \\ f_2(x) \ge f_2(y) \\ \vdots \\ f_n(x) \ge f_n(y) \end{cases}$$

Classical extensions Models with incomparability

Two obvious properties of \succeq

- \succeq is reflexive $(x \succeq x, \text{ for all } x \in X)$
- \succeq is transitive $([x \succeq y \text{ and } y \succeq z] \Rightarrow x \succeq z, \text{ for all } x, y, z \in X)$

Quasi order

54

- a reflexive and transitive relation is called a quasi order
- if \succeq is antisymmetric it is a partial order

Classical extensions Models with incomparability

Quasi orders

Any partial order on a set X can be obtained as the intersection of a number of total orders. When X is finite, it only takes a finite number of total orders to obtain a partial order (dimension of a partial order, Dushnik & Miller, 1941). The same is true for quasi orders and weak orders.

Theorem (Folk)

Any quasi order on a finite set has a numerical representation such that $x \succeq y \Leftrightarrow \begin{cases} u_1(x) \ge u_1(y) \\ u_2(x) \ge u_2(y) \\ \dots \\ u_k(x) \ge u_k(y) \end{cases}$

500

Classical extensions Models with incomparability

Example: partial order of dimension 3

56

Classical extensions Models with incomparability

Example

Remark

- \succ is asymmetric and transitive
- $M(A, \succ)$ is always nonempty when $A \neq \emptyset$ and is finite
- non-dominated solutions in MCDM

Standard model with caution

How to compare the objects in X?

- simple procedure
 - build a mapping $f: X \to \mathbb{R}$
 - compare objects using f with caution

$$\begin{aligned} x \succ y \Leftrightarrow f(x) > f(y) + q \\ x \sim y \Leftrightarrow |f(x) - f(y)| \ge q \end{aligned}$$

 $q \ge 0$: constant threshold

$$x \succsim y \Leftrightarrow f(x) \ge f(y) - q$$

Remark

• if q = 0 are back to the standard model

59

Classical extensions Models with threshold

Standard model with caution

Model

$$x \succsim y \Leftrightarrow f(x) \ge f(y) - q$$

 $q \ge 0$: constant threshold

Obvious properties of \succeq

- \succeq is complete $x \succeq y$ or $y \succeq x$, for all $x, y \in X$
- \succeq is not transitive but \succ is transitive

 $\succ \cdot \sim \subseteq \succ$ $\sim \cdot \succ \subseteq \succ$

Both these relations are **false**

 $y \succ x$ (the y interval does not intersect and is to the right of the x interval) $z \sim w$ (the z interval intersect the w interval)

> $z \sim w$ and $w \sim t$ but $t \succ z$ $t \succ z$ and $z \sim w$ but $t \sim w$ $w \sim t$ and $t \succ z$ but $w \sim t$

61

Classical extensions Models with threshold

Ferrers

Model

$$x \succeq y \Leftrightarrow f(x) \ge f(y) - q$$

Ferrers

$$\left.\begin{array}{c} x \succsim y \\ \text{and} \\ z \succsim w \end{array}\right\} \Rightarrow \left\{\begin{array}{c} x \succsim w \\ \text{or} \\ z \succsim y \end{array}\right.$$

Necessity

$$\begin{split} x \succeq y \Rightarrow f(x) \geq f(y) - q \\ z \succeq w \Rightarrow f(z) \geq f(w) - q \\ Not[x \succeq w] \Rightarrow f(x) < f(w) - q \\ Not[z \succeq y] \Rightarrow f(z) < f(y) - q \\ \end{split}$$
we obtain $f(y) > f(w)$ and $f(w) > f(y)$, a contradiction

(ロ)

Classical extensions Models with threshold

Semi-transitivity

$$x \succeq y \Leftrightarrow f(x) \ge f(y) - q$$

Semi-transitivity

$$\begin{cases} x \succeq y \\ \text{and} \\ y \succeq z \end{cases} \} \Rightarrow \begin{cases} x \succeq w \\ \text{or} \\ w \succeq z \end{cases}$$

Necessity

$$\begin{split} x \succeq y \Rightarrow f(x) \geq f(y) - q \\ y \succeq z \Rightarrow f(y) \geq f(z) - q \\ Not[x \succeq w] \Rightarrow f(x) < f(w) - q \\ Not[w \succeq z] \Rightarrow f(w) < f(z) - q \end{split}$$

we obtain f(y) > f(w) and f(w) > f(y), a contradiction

63

・・

Classical extensions Models with threshold

Semiorder

Definition

A semiorder is a complete, Ferrers and semi-transitive binary relation

Theorem (Luce, 1956)

A binary relation on a finite set X is a semiorder if and only if there is a real valued function u on X and a threshold $q \ge 0$ such that: $x \succeq y \Leftrightarrow u(x) \ge u(y) - q$

Remarks

- not true if X is denumerable
- can be extended to countable set with a variable but consistent threshold

Example bfdgacebgaС feddbfacegbgaС f e

Classical extensions Models with threshold

▲□▶▲酉▶▲≣▶▲≣▶ ≣ めへぐ

Classical extensions Models with threshold

d

Example

b g a c f e d
b 1 1 1 1 1 1 1
$g \ 0 \ 1 \ 1 \ 1 \ 1 \ 1$
$a 0 1 \boxed{1 1 1 1 1} 1 1$
c 0 0 1 1 1 1 1
f 0 0 1 1 1 1 1
$e 0 0 \overline{0 0 1 1 1}$
$d 0 0 0 0 \overline{0 1 1}$
[c]
$\sqsubseteq a \longrightarrow$
$\vdash f \longrightarrow$
$\sqsubseteq e \dashrightarrow g \dashrightarrow b \dashrightarrow b$
$ \ \ d \ \ \ \ \ \ \ \ \ \ \$
\rightarrow

Traces

If \succeq is a semiorder, the relation \succeq^+ defined by $x \succeq^+ y \Leftrightarrow [y \succeq z \Rightarrow x \succeq z]$ is a weak order (note that it is always reflexive and transitive)

If \succeq is a semiorder, the relation \succeq^- defined by $x \succeq^- y \Leftrightarrow [z \succeq x \Rightarrow z \succeq y]$ is a weak order (note that it is always reflexive and transitive)

If \succeq is a semiorder, the relation \succeq^{\pm} defined by $x \succeq^{\pm} y \Leftrightarrow [x \succeq^{+} y \text{ and } x \succeq^{-} y]$ is a weak order (note that it is always reflexive and transitive)

- the relation \succeq^{\pm} is the weak order underlying the semiorder \succeq
- the matrix representation of a semiorder is stepped when rows and columns are arranged wrt \succeq^\pm

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Classical extensions Models with threshold

Uniqueness

67

Two representations of	of a semiorder $x \succ y$	$x, x \succ$	$z, y \sim$, z	
		$\frac{v_1}{2}$	$\frac{v_2}{2}$		
	y	0	0.5		
		0	0		
• irregular represe	ntation				

Standard model with (even more) caution

How to compare the objects in X?

- simple procedure
 - build a mapping $f: X \to \mathbb{R}$
 - compare objects using f with (even more) caution

$$x \succ y \Leftrightarrow f(x) > f(y) + q(y)$$
$$x \sim y \Leftrightarrow \left\{ \begin{array}{c} f(x) \le f(y) + q(y) \\ f(y) \le f(x) + q(x) \end{array} \right\}$$

 $q(\cdot) \geq 0$: variable threshold

$$x \succsim y \Leftrightarrow f(x) + q(x) \ge f(y)$$

1	ъ.	\sim	<u>ه</u>
r	٦.	U	
۰.			

< (1)< (1)<

Classical extensions Models with threshold

Standard model with (even more) caution

$$x \succsim y \Leftrightarrow f(x) + q(x) \geq f(y)$$

 $q(\cdot) \ge 0$: variable threshold

Obvious properties of \succsim

- \succeq is complete $x \succeq y$ or $y \succeq x$, for all $x, y \in X$
- \succeq is not transitive but \succ is transitive

71

Classical extensions Models with threshold

Ferrers

$$x \succsim y \Leftrightarrow f(x) + q(x) \ge f(y)$$

Ferrers

$$\left.\begin{array}{c} x \succsim y \\ \text{and} \\ z \succsim w \end{array}\right\} \Rightarrow \left\{\begin{array}{c} x \succsim w \\ \text{or} \\ z \succsim y \end{array}\right.$$

Necessity

$$\begin{split} x \succeq y \Rightarrow f(x) + q(x) \geq f(y) \\ z \succeq w \Rightarrow f(z) + q(z) \geq f(w) \\ Not[x \succeq w] \Rightarrow f(x) + q(x) < f(w) \\ Not[z \succeq y] \Rightarrow f(z) + q(z) < f(y) \end{split}$$

we obtain $f(x) + q(x) > f(z) + q(z)$ and $f(z) + q(z) > f(x) + q(x)$, a contradiction.

ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interval order

Classical extensions Models with threshold

Definition

An interval order is a complete and Ferrers binary relation

Theorem (Fishburn, 1970)

A binary relation on a finite set X is an interval order if and only if there is a real valued function u on X and a nonnegative threshold function q such that: $x \succeq y \Leftrightarrow u(x) + q(x) \ge u(y)$

Remarks

- remains true if X is denumerable
- add order denseness condition in the general case

Classical extensions Models with threshold

Example

	a	b	с	0
a	1	1	1]
b	0	1	1	1
c	0	0	1	1
d	1	1	1	1

Semi-transitivity can be violated $\begin{array}{c} c \succeq d \\ and \\ d \succeq a \end{array} \right\} \left\{ \begin{array}{c} Not[c \succeq b] \\ and \\ Not[b \succeq a] \end{array} \right.$

Example

	a	b	c	d	
a	1	1	1	1	
b	0	1	1	1	
c	0	0	1	1	
d	1	1	1	1	

	a	b	d	c
a	1	1	1	1
d	1	1	1	1
b	0	1	1	1
c	0	0	1	1

- rows are arranged according to outdegrees
- columns are arranged according to indegrees

75

Classical extensions Models with threshold

Traces

If \succeq is an interval order, the relation \succeq^+ defined by $x \succeq^+ y \Leftrightarrow [y \succeq z \Rightarrow x \succeq z]$ is a weak order (note that it is always reflexive and transitive) It governs the order of the left side of intervals (outdegrees)

If \succeq is an interval order, the relation \succeq^- defined by $x \succeq^- y \Leftrightarrow [z \succeq x \Rightarrow z \succeq y]$ is a weak order (note that it is always reflexive and transitive) It governs the order of the right side of intervals (indegrees)

If \succeq is an interval order, the relation \succeq^{\pm} defined by $x \succeq^{\pm} y \Leftrightarrow [x \succeq^{+} y \text{ and } x \succeq^{-} y]$ may not be complete.

□ > < @ > < E > < E > E

DQ P

Standard model with (even even more) caution

How to compare the objects in X?

- simple procedure
 - build a mapping $f: X \to \mathbb{R}$
 - compare objects using f with (even even more) caution

$$x \succ y \Leftrightarrow f(x) > f(y) + q(x, y)$$

$$x \sim y \Leftrightarrow \left\{ \begin{array}{c} f(x) \leq f(y) + q(x, y) \\ f(y) \leq f(x) + q(y, x) \end{array} \right\}$$

 $q(x,y) = q(y,x) \ge 0$: symmetric threshold depending on both alternatives $x \succeq y \Leftrightarrow f(x) + q(x,y) \ge f(y)$

7	7
	1

Classical extensionsModels with thresholdStandard model with (even even more) caution

Model

$$\begin{aligned} x\succ y &\Leftrightarrow f(x) > f(y) + q(x,y) \\ x\succeq y &\Leftrightarrow f(x) + q(x,y) \geq f(y) \end{aligned}$$

 $q(x, y) = q(y, x) \ge 0$: symmetric threshold depending on both alternatives

Obvious properties of \succeq

- \succeq is complete $x \succeq y$ or $y \succeq x$, for all $x, y \in X$
- \succeq is not transitive, \succ is not transitive

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Model

$$\begin{aligned} x \succ y \Leftrightarrow f(x) > f(y) + q(x, y) \\ x \succeq y \Leftrightarrow f(x) + q(x, y) \ge f(y) \end{aligned}$$

 $q(x, y) = q(y, x) \ge 0$: symmetric threshold depending on both alternatives

Example

 $x\succ y, \ y\succ z, \ Not[x\succ z], \ Not[z\succ x] \ (x\sim z)$

 $\begin{array}{l} v(x)=10, \ v(y)=6, \ v(z)=2 \\ q(x,y)=q(y,x)=1, \ q(y,z)=q(z,y)=1, \ q(x,z)=q(z,x)=9 \end{array}$

79

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Classical extensions Models with threshold

Absence of circuits

Model

$$\begin{aligned} x \succ y \Leftrightarrow f(x) > f(y) + q(x, y) \\ x \succeq y \Leftrightarrow f(x) + q(x, y) \ge f(y) \end{aligned}$$

 $q(x, y) = q(y, x) \ge 0$: symmetric threshold depending on both alternatives

Absence of circuit

$$x_1 \succ x_2 \succ \ldots \succ x_k \Rightarrow Not[x_k \succ x_1] \ (\forall k > 1)$$

 $x_1 \succ x_2 \succ \ldots \succ x_k \succ x_1$

$$f(x_1) > f(x_2) + q(x_1, x_2)$$

$$f(x_2) > f(x_3) + q(x_2, x_3)$$

$$f(x_{k-1}) > f(x_k) + q(x_{k-1}, x_k)$$

$$f(x_k) > f(x_1) + q(x_k, x_1)$$

$$q(x_k, x_1) + \sum_{i=1}^{k} q(x_i, x_{i+1}) < 0, \text{ a contradiction since } q > 0$$

. . .

Definition

A suborder \succeq is a complete binary relation such that \succ has no circuit

Theorem (Fishburn, 1970)

A binary relation on a finite set X is a suborder if and only if there is a real valued function u on X and a nonnegative symmetric threshold function q such that:

$$x \succeq y \Leftrightarrow f(x) + q(x, y) \ge f(y)$$

Remarks

- remains true if X is denumerable
- add order denseness condition in the general case

81

Classical extensions Models with threshold

Summary: structures with threshold

suborder	variable threshold	$q(x, y) \ge 0$
interval order	variable threshold	$q(x) \ge 0$
semiorder	constant threshold	$q \ge 0$
weak order	null threshold	q = 0
total order	no indifference	\sim is trivial

Partial structures with threshold

Dominance with semiorders
$X = \{a, b, c\}$
$c \succ_1 a, c \sim_1 b, b \sim_1 a $ (semiorder)
$a \succ_2 b, a \sim_2 c, c \sim_2 b$ (semiorder)
$b \succ_3 c, b \sim_3 a, a \sim_3 c$ (semiorder)
Cycling

 $\begin{array}{l} a \succ b: \ a \sim_1 b, a \succ_2 b, a \sim_3 b \\ b \succ c: \ b \sim_1 c, b \sim_2 c, b \succ_3 c \\ c \succ a: \ c \succ_1 a, c \sim_2 a, c \sim_3 a \end{array}$

83

Non-classical extensions Hesitation

Structures with hesitation

Remarks

- \bullet in all models studied so far there is a sharp transition between \succ and \sim
- we may expect that in some case there is an "hesitation zone" between these two relations

Pseudo orders

$$\begin{aligned} x \succ y \Leftrightarrow f(x) > f(y) + p(y) \\ x \approx y \Leftrightarrow f(y) + p(y) \ge f(x) > f(y) + q(y) \\ x \sim y \Leftrightarrow [f(x) \le f(y) + q(y) \text{ and } f(y) \le f(x) + q(x)] \end{aligned}$$

• conditions on $\langle \succ, \leadsto, \sim \rangle$ are known (Roy & Vincke, 1987)

Interval orders

• intervals are associated to objects

Extensions

- associate other geometrical shapes objects
- circles, trapezoids, etc.

Extensions

• special points within intervals

87

Non-classical extensions Fuzzyness

Fuzzyness

Remarks

- all models use crisp binary relations
- either $x \succ y$ is true or it is false

Fuzzy models

- use fuzzy binary relations
- $x \succ y$ has a degree of credibility belonging to [0, 1]

Questions

- how to define classical properties (completeness, transitivity, etc) for fuzzy relations?
- not obvious but the use of cut relations is useful

 $x \succ_{\lambda} y \Leftrightarrow \succ (x, y) \ge \lambda$

Illustration

◆□ → < @ → < 差 → < 差 → < 差</p>

500

Non-classical extensions Fuzzyness

90

References

 Bouyssou, D., Vincke, Ph. (2005) Binary Relations and Preference Modeling in <i>Decision-making Process Concepts and Methods</i>, pp. 49–84 Bouyssou, D., Dubois, D., Pirlot, M. & Prade, H. (Eds), ISTE / Wiley, 2009.
Aleskerov, F., Bouyssou, D., Monjardet, B. (2007) Utility maximization, choice and preference Springer-Verlag, Berlin.
Fishburn, P. C. (1970) Utility theory for decision-making Wiley, New York.
Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A. (1971) Foundations of measurement, vol. 1: Additive and polynomial representations Academic Press, New York.
Roubens, M. and Vincke, Ph. (1985) Preference modelling

Springer-Verlag, Berlin.