Social choice theory A brief introduction

Denis Bouyssou

CNRS–LAMSADE Paris, France

Motivation

Introduction

Aims

- analyze a number of properties of electoral systems
- present a few elements of the classical theory

Social Choice Theory

• aim: study decision problems in which a group has to take a decision among several alternatives

Motivation

- abstract theory
 - nature of the decision
 - size of the group
 - nature of the group
- many (deep) results
 - Economics, Political Science, Applied Mathematics, OR

Motivation

• two Nobel Prizes: Kenneth J. Arrow, Amartya Sen

Areas of applications

Applications

3

- political elections
- other types of elections
 - fewer voters and candidates (e.g., electing a Dean)
- decision with multiple criteria
- artificial intelligence
 - multiple agents
 - multiple rules

Vocabulary: political elections

- group
 - society
- members of the group
 - voters
- alternatives
 - candidates

Problem

• study election problems in which a society has to take a decision among several candidates

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < ○ <

Today's problem

Problem

5

- choice of *one* among several candidates
 - French or US presidential elections

Electing several candidates: assembly

- apply same rules in each electoral district
- many specific problems: gerrymandering, technical problems (as sometimes seen in the USA)

Motivation

Proportional representation

- PR does not solve the decision problem in the Parliament!
 - one bill will adopted on each issue
- PR raises many difficult problems (What is a just PR? How to achieve it? PR and Power indices)

A glimpse at PR

Problem 1: # of seats and power

- Parliament: 100 MPs
- voting rule in the Parliament: simple majority (> 50 %)

Motivation

• # of votes exactly proportional to # of seats

Example

 $\overline{7}$

- party A: 45 % of votes
- party B: 15 % of votes
- party C: 40 % of votes
- all coalitions of 1 party are loosing coalitions
- all coalitions of at least 2 parties are winning coalitions

Motivation

- entirely symmetric situation
- all parties have the same power

A glimpse at PR

Problem 2: obtaining a fair PR

- in general # of voters $\gg \#$ of MPs
- # of MPs must be integer!
- rounding off procedures

Hamilton's rule

• 2100000 voters, 3 parties, 20 MPs

• results

- party A: 928000, quota: $r_A = 928000/2100000 = 8.84$
- party B: 635000, quota: $r_B = 635000/2100000 = 6.05$
- party C: 537000, quota: $r_C = 537000/2100000 = 5.11$
- party x gets at least $\lfloor r_x \rfloor$ seats
- if all seats are allocated: done
- if not: allocate the remaining seats according to the $r_x \lfloor r_x \rfloor$

Hamilton's rule

• party A: 928000, quota: $r_A = 8.84 = 928000/2100000$

Motivation

- party B: 635000, quota: $r_B = 6.05 = 635000/2100000$
- party C: 537000, quota: $r_C = 5.11 = 537000/2100000$

Results

- party A gets 8 seats
- party B gets 6 seats
- party C gets 5 seats
- 8 + 6 + 5 = 19 < 20
- party A gets the extra seat because 0.84 > 0.11 > 0.05

Motivation

・・・<・・<・<・<・<・<・・</l>・・・<l

Example

20 seats

9

- party A: $r_A = 8.84, 8 + 1 = 9$ seats
- party B: $r_B = 6.05$, 6 seats
- party C: $r_C = 5.11, 5$ seats

21 seats

- party A: $r_A = 9.28$, 9 seats
- party B: $r_B = 6.35$, 6 seats
- party C: $r_C = 5.37, 5 + 1 = 6$ seats

22 seats: Alabama paradox (1881)

- party A: $r_A = 9.72, 9 + 1 = 10$ seats
- party *B*: $r_B = 6.65, 6 + 1 = 7$ seats
- party C: $r_C = 5.63, 5$ seats

Common sense

• the choice of the candidate will affect all members of the society

Motivation

Motivation

• the choice of the candidate should take the opinion of all members of society into account

Intuition

 $Democracy \Rightarrow Elections \Rightarrow Majority$

Elections

Philosophical problems

- "general will" and elections
- majority and protection of minorities
- formal vs real freedom

Political problems

- direct or undirect democracy?
- rôle of parties?
- who can vote? (age, sex, nationality, paying taxes, ...)
- who can be candidate?
- what type of mandate?
- how to organize the campaign?
- rôle of polls?

Technical problems

Majority

When there are only two candidates

• elect the one receiving the more votes

Motivation

Majority

When there are more than candidates

- many ways to extend this simple idea
- not equivalent
- sometimes leading to unwanted results

Typology of elections

Two main criteria

- type of ballots admitted
 - one name
 - ranking of all candidates
 - other types (acceptable candidates, grading candidates, etc.)

Motivation

2 method for organizing the election and for tallying ballots

Consequences

- many possible types of elections
- many have been proposed
- many have have been used in practice

Hypotheses

• all voters are able to rank order the set of all candidates (ties admitted) $a\succ b\succ [d\sim e]\succ c$

• each voter has a weak order on the set of all candidates

Motivation

- **2** voters are sincere
 - if I have to vote for one candidate, I vote for a

15

Plurality voting: UK

Rules

- one round of voting
- ballots with one name
- "first past the post"

Remark

- ties are neglected (unlikely)
 - one voter has special power (the Queen chooses in case of a tie)
 - one candidate receives special treatment (the older candidate is elected)

Examples Ballots with one name

• random tie breaking rule

Plurality voting

Example

- 3 candidates $\{a, b, c\}$
- 21 voters (or 21 000 000 or 42 000 000...)

10 voters:	$a \succ b \succ c$
6 voters:	$b\succ c\succ a$
5 voters:	$c\succ b\succ a$

Examples

Ballots with one name

Results

```
a:10 b:6 c:5
```

- a is elected...
- but an absolute majority of voters (11/21) prefer all loosing candidates to the elected one!

a: Tory, b: Labour, c: LibDem

20

Examples Ballots with one name

Plurality voting

Remarks

- problems are expected as soon as there are more than 2 candidates
- a system based on an idea of "majority" may well violate the will of a majority of voters
- sincerity hypothesis is heroic!

590

Ξ.

□ > < ⊡ > < Ξ > < Ξ >

Examples Ballots with one name

Plurality with runoff: France

Rules

- ballots with one name
- first round
 - the candidate with most votes is elected if he receives more than 50% of votes
 - otherwise go to the second round
- second round
 - keep the two candidates having received more votes
 - apply plurality voting

Variants

• rule are slightly different for the "élections législatives"

22

Examples Ballots with one name

Plurality with runoff

Previous example

- 3 candidates $\{a, b, c\}$
- 21 voters

10 voters:	$a \succ b \succ c$
6 voters:	$b \succ c \succ a$
5 voters:	$c\succ b\succ a$

Results

- $a: 10 \quad b: 6 \quad c: 5$
- absolute majority: $\lceil 21/2 \rceil = 11$ votes
- go to the second round with a and b

$$a:10 \quad b:11$$

- b is elected
- no candidate is preferred to b by a majority of voters

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Plurality with runoff

Example

- 4 candidates $\{a, b, c, d\}$
- 21 voters (may be also 21 000 000 or 42 000 000)

10 voters:	$b\succ a\succ c\succ d$
6 voters:	$c\succ a\succ d\succ b$
5 voters:	$a \succ d \succ b \succ c$

Examples Ballots with one name

Results: 1st round	Results: 2nd round
 a:5 b:10 c:6 d:0 absolute majority: [21/2] = 11 votes go to the second round with b and c 	 b:15 c:6 b is elected (15/21) an absolute majority of voters (11/21) prefer a and d to b

24

・・・・<・<・<・<・<・<・<・・</l>・・・<l

Examples Ballots with one name

Plurality with runoff

Plurality vs plurality with runoff

- the French system does only a little better than the UK one
- preferences used in the above example are not bizarre
 - try replacing a, b, c, d by MoDem, UMP, PS, PCF, FN, etc.
- sincerity and wasted votes

Plurality with runoff: manipulation

Example

- 4 candidates $\{a, b, c, d\}$
- 21 voters
- 10 voters: $b \succ a \succ c \succ d$ 6 voters: $c \succ a \succ d \succ b$ 5 voters: $a \succ d \succ b \succ c$

Examples Ballots with one name

• b is elected

Non-sincere voting

• the 6 voters for which $c \succ a \succ d \succ b$ vote as if their preferences were $a \succ c \succ d \succ b$

Results

- *a* is elected at the first round (11/21)
- profitable to the six manipulating voters (for them $a \succ b$)

26

Examples Ballots with one name

Manipulable voting rules

Definition

a voting rule is manipulable if it may happen that some voters may have an interest to vote in a non-sincere way

Problems

- elections are no more a means to reveal preferences
 - manipulations and counter-manipulations
 - equilibrium
- bonus to clever voters

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 • ⊙ < @

Examples Ballots with one name

Plurality with runoff: monotonicity

Example: before campaign• 3 candidates $\{a, b, c\}$ • 17 voters6 voters: $a \succ b \succ c$ 5 voters: $c \succ a \succ b$ 4 voters: $b \succ c \succ a$ 2 voters: $b \succ a \succ c$

Results: before campaign

absolute majority: $\lceil 17/2 \rceil = 9$

$$a:6$$
 $b:6$ $c:5$

a:11 b:6

- *a* is elected!
- a gets more money to campaign against b

28

Examples Ballots with one name

Plurality with runoff

6	voters:	$a \succ b \succ c$
5	voters:	$c \succ a \succ b$
4	voters:	$b \succ c \succ a$
2	voters:	$b \succ a \succ c$

- 2 voters $b \succ a \succ c$ change their minds in favor of a
- new preference: $a \succ b \succ c$

absolute majority: $\lceil 17/2 \rceil = 9$

$$a:8 \quad b:4 \quad c:5 \\ a:8 \quad c:9$$

- c is elected!
- the good campaign of a is fatal to him/her
- non-monotonic method: increasing possibilities of manipulation

▶ skip participation

Plurality with runoff: participation

Example

- 3 candidates $\{a, b, c\}$
- 11 voters

4 voters: $a \succ b \succ c$ 4 voters: $c \succ b \succ a$ 3 voters: $b \succ c \succ a$

Results

absolute majority: $\lceil 11/2 \rceil = 6$

 $a:4 \quad b:3 \quad c:4 \\ a:4 \quad c:7$

- c is elected
- this is not a nice outcome for the first 4 voters
- 2 of them go fishing and abstain (at the two rounds)

30

Examples Ballots with one name

Before		
• c elected • c elected • c voters: $a \succ b \succ c$ • $a \succ b \succ a$ • $b \succ c \succ a$	After 2 voters: $a \succ b \succ c$ 4 voters: $c \succ b \succ a$ 3 voters: $b \succ c \succ a$	
Results		
absolute majority: $\lceil 11/2 \rceil = 6$		
a:2 $b:3$ $c:4$		
b:5 $c:4$		
• b is elected		
• the abstention of the two voters who think $b \succ c$ has been very rational		

ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

- 3 candidates $\{a, b, c\}$
- 26 voters in two districts (13 + 13)

District 1	District 2
4 voters: $a \succ b \succ c$ 3 voters: $b \succ a \succ c$ 3 voters: $c \succ a \succ b$ 3 voters: $c \succ b \succ a$	4 voters: $a \succ b \succ c$ 3 voters: $c \succ a \succ b$ 3 voters: $b \succ c \succ a$ 3 voters: $b \succ a \succ c$
$ \begin{array}{c} $	$ \begin{array}{c} $
• a is elected $(7/13)$	• a is elected $(7/13)$

32

(ロ)

Examples Ballots with one name

Plurality with runoff

Nationwide			
	4 voters:	$a \succ b \succ c$	
	3 voters:	$b \succ a \succ c$	
	3 voters:	$c \succ a \succ b$	
	3 voters:	$c\succ b\succ a$	
	4 voters:	$a \succ b \succ c$	
	3 voters:	$c \succ a \succ b$	
	3 voters:	$b \succ c \succ a$	
	3 voters:	$b \succ a \succ c$	
	a:8 b	:9 c:9	
• a looses at the first rou	und		

- method is not separable
- decentralization of decisions?

Summary

French vs UK system

- the French system does only a little better better than the UK one on the "democratic side"
- it has many other problems
 - manipulable
 - not monotonic
 - no incentive to participate
 - not separable
- are there other (hopefully better!) systems?
- conventional wisdom ("au premier tour on choisit, au deuxième tour on élimine") must be used with great care!

34

Examples Ballots with one name

Amendment procedure

Remarks

- the majority method works well with two candidates
- when there are more than two candidates, organize a series of confrontations between two candidates according to an agenda
- method used in most parliaments
 - a bill is proposed
 - amendments to the bill are proposed
 - compare the amended bill vs the status quo

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Examples Ballots with one name

Amendment procedure

Example

- 4 candidates $\{a, b, c, d\}$
- agenda: a, b, c, d

Examples Ballots with one name

Amendment procedure

Example

- 3 candidates $\{a, b, c\}$
- 3 voters

1 vo	ter:	$a \succ b \succ c$
1 vo	ter:	$c \succ a \succ b$
1 vo	ter:	$b \succ c \succ a$

- agenda a, b, c: c is elected
- agenda b, c, a: a is elected
- agenda c, a, b: b is elected
- results depending on the (arbitrary) choice of the agenda
 - power given to the agenda-setter
- candidates not treated equally
 - late-coming candidates are favored
 - method is not neutral

Examples Ballots with one name

Amendment procedure

Example

- 4 candidates $\{a, b, c, d\}$
- 30 voters
- agenda a, b, c, d

10 voters:	$b \succ a \succ d \succ c$
10 voters:	$c\succ b\succ a\succ d$
10 voters:	$a \succ d \succ c \succ b$

Results

- b beats a
- c beats b
- d beats c
- d is elected...
- 100% of the voters prefer a to d!
- method is not unanimous!

38

Examples Ballots with ordered lists

Ballots: ordered lists

Ballots with a single name

- poor performances...
- may be due to poor information on preferences
- ask for the full preference on each ballot

Remarks

- much richer information
 - practice?
- ballots with one name are a particular case

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Condorcet

Principles

- compare all candidates by pair
- declare that a is "socially preferred" to b if (strictly) more voters prefer a to b (social indifference in case of a tie)
- Condorcet's principle: if one candidate is preferred to all other candidates, it should be elected
- Condorcet Winner (CW: must be unique)

Remarks

- UK and French systems violate Condorcet's principle
- the UK system may elect a Condorcet looser
- Condorcet's principle does not solve the "dictature of the majority" difficulty
- a Condorcet winner is not necessarily "ranked high" by voters

41

Examples Ballots with ordered lists

Condorcet and plurality

Example

- 3 candidates $\{a, b, c\}$
- 21 voters

10 voters:	$a \succ b \succ c$
6 voters:	$b \succ c \succ a$
5 voters:	$c\succ b\succ a$

- *a* is the plurality winner
- *a* is the Condorcet looser
- *b* is the CW
 - *b* beats a (11/21)
 - b beats c (16/21)

Examples Ballots with ordered lists

Condorcet and plurality with runoff

Example

- 4 candidates $\{a, b, c, d\}$
- 21 voters
- 10 voters: $b \succ a \succ c \succ d$ 6 voters: $c \succ a \succ d \succ b$ 5 voters: $a \succ d \succ b \succ c$
- b is the plurality with runoff winner (beats c in the second round)
- a is the CW
 - *a* beats b (11/21)
 - *a* beats c (15/21)
 - *a* beats d(21/21)

43

Examples Ballots with ordered lists

Condorcet and ranks

Example

- 5 candidates $\{a, b, c, d, e\}$
- 50 voters

10 voters:	$a \succ b \succ c \succ d \succ e$
10 voters:	$b\succ c\succ e\succ d\succ a$
10 voters:	$e \succ a \succ b \succ c \succ d$
10 voters:	$a \succ b \succ d \succ e \succ c$
10 voters:	$b\succ d\succ c\succ a\succ e$

• a is the CW (beats 30/20 all other candidates)

Ranks						
		1	2	3	4	5
	\overline{a}	2	1	0	1	1
	b	2	2	1	0	0
	-					

Examples Ballots with ordered lists

Condorcet and dictature of the majority

Example

- 26 candidates $\{a, b, c, \dots, z\}$
- 100 voters

51 voters:
$$a \succ b \succ c \succ \cdots \succ y \succ z$$

49 voters: $z \succ b \succ c \succ \cdots \succ y \succ a$

- a is the CW
- *b* could be a reasonable choice

45

Examples Ballots with ordered lists

Condorcet's paradox

Electing the CW

- attractive ...
- but not always effective!

Condorcet's paradox

- 3 candidates $\{a, b, c\}$
- 3 voters

Condorcet

Condorcet's paradox

- the social strict preference relation may have circuits
 - prob. $\approx 40\%$ with 7 candidates and a large number of voters (impartial culture)
- McGarvey's theorem

Dealing with Condorcet's paradox

- weaken the principle so as to elect candidates that are not strictly beaten (Weak CW)
 - they may not exist
 - there may be more than one
- find what to do when there is no (weak) Condorcet winner

47

Examples Ballots with ordered lists

Schwartz

Principle

- build the social preference à la Condorcet
- the strict social preference may not be transitive
 - take its transitive closure
 - take the maximal elements of the resulting weak order

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Schwartz

Example

- 4 candidates $\{a, b, c, d\}$
- 30 voters

- taking the transitive closure gives a clique
- all candidates are declared socially indifferent
- but 100% of voters prefer a to b!

Examples Ballots with ordered lists

Copeland

49

Principles

- build the social preference à la Condorcet
- count the number of candidates that are beaten by one candidate minus the number of candidates that beat him (Copeland score)
- elect the candidate with the highest score
- sports league
 - +2 for a victory, +1 for a tie, 0 for a defeat
 - equivalent to Copeland's rule

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Copeland

- 5 candidates $\{x, a, b, c, d\}$
- 40 voters
- 10 voters: $x \succ a \succ d \succ c \succ b$ 10 voters: $x \succ a \succ b \succ c \succ d$ 10 voters: $a \succ d \succ c \succ b \succ x$ 10 voters: $b \succ c \succ d \succ x \succ a$

x	a	b	c	d
1	2	-2	-1	0

• a is elected!

• x is the unique weak CW

< □ ト < □ ト < 三 ト < 三 ト < 三 · ○ < ○</p>

51

Examples Ballots with ordered lists

Borda

Principles

- each ballot is an ordered list of candidates (exclude ties for simplicity)
- on each ballot compute the rank of the candidates in the list
- rank order the candidates according to the decreasing sum of their ranks

Remarks

- simple
- efficient: always lead to a result
- separable, monotonic, participation incentive

Borda and Condorcet principle

Example

- 4 candidates $\{a, b, c, d\}$
- 3 voters
 - 2 voters: $b \succ a \succ c \succ d$ 1 voter: $a \succ c \succ d \succ b$

Borda scores								
	a	b	С	d				
	5	6	8	11				
	_	_	_	_		_		

ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Results

- a is elected
- *b* is the obvious CW

53

bles Ballots with ordered lists

Borda and withdrawals

Example	Borda scores
• 4 candidates $\{a, b, c, d\}$ • 3 voters 2 voters: $b \succ a \succ c \succ d$ 1 voter: $a \succ c \succ d \succ b$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Example	Borda scores
 c and d are withdrawing 2 candidates {a, b} 2 voters 	
• 5 VOUERS	• h is elected

Examples

• introduce dummy candidates

Summary

Example

- 4 candidates $\{a, b, c, d\}$
- 27 voters
- 5 voters: $a \succ b \succ c \succ d$ 4 voters: $a \succ c \succ b \succ d$ 2 voters: $d \succ b \succ a \succ c$ 6 voters: $d \succ b \succ c \succ a$ 8 voters: $c \succ b \succ a \succ d$ 2 voters: $d \succ c \succ b \succ a$

Results

- *a* is the plurality with runoff winner
- *d* is the plurality winner
- *b* is the Borda winner
- c is the CW

55

Results Arrow's theorem

What are we looking for?

Democratic method

- always giving a result like Borda
- always electing the Condorcet winner
- consistent w.r.t. withdrawals
- monotonic, separable, incentive to participate, not manipulable
- etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Arrow

Framework

- $n \ge 3$ candidates (otherwise use plurality)
- m voters ($m \ge 2$ and finite)
- ballots: ordered list of candidates

Problem

• find all electoral methods respecting a small number of "desirable" principles

Results Arrow's theorem

Arrow

Principles

- universality
 - the method should be able to deal with any configuration of ordered lists
- transitivity
 - the result of the method should be an ordered list of candidates
- unanimity
 - the method should respect a unanimous preference of the voters
- absence of dictator
 - the method should not allow for dictators
- independence
 - the comparison of two candidates should be based only on their respective standings in the ordered lists of the voters

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 • ○ < ♡

Arrow's theorem (1951)

Theorem

There is no method respecting the five principles

Borda

- universal, transitive, unanimous with no dictator
- cannot be independent

Condorcet

- universal, independent, unanimous with no dictator
- cannot be transitive

61

Sketch of proof

Decisive coalitions

 $V \subseteq N$ is decisive for (a, b) if

 $a \succ_i b$ for all $i \in V \Rightarrow a \succ b$

Results

Arrow's theorem

Almost decisive coalitions

$$\begin{split} V \subseteq N \text{ is almost decisive for } (a,b) \text{ if} \\ a \succ_i b \text{ for all } i \in V \\ b \succ_j a \text{ for all } j \notin V \end{split} \\ \end{smallmatrix} \\ \begin{array}{l} \Rightarrow a \succ b \end{split}$$

Lemma 1

Lemma

If V is almost decisive over some ordered pair (a, b), it is decisive over all ordered pairs.

Sketch of proof

Take $\{a, b, x, y\}$ and use universality to obtain: $V: x \succ a \succ b \succ y$ $N \setminus V: x \succ a, b \succ y, b \succ a$ The relative position of x and y for $N \setminus V$ is not specified. Unanimity implies $x \succ a$ and $b \succ y$. Almost decisiveness of V for (a, b) implies $a \succ b$. Transitivity implies $x \succ y$. Independence implies that this does not depends on the position of a and b. Hence V is decisive for (x, y).

63

Results Arrow's theorem

Lemma 2

Lemma

If V is decisive and |V| > 1, some proper subset of V is decisive

Sketch of proof

Partition V into V1 and V2.

Take $\{x, y, z\}$ and use universality to obtain:

 $V1: x \succ y \succ z$ $V2: y \succ z \succ x$ $N \setminus V: z \succ x \succ y$

Decisiveness of V implies $y \succ z$.

If $x \succ z$ then V1 is almost decisive for (x, z) and use Lemma 1 to conclude. Otherwise, we have $z \succeq x$, so that $y \succ x$. This implies that V2 is almost decisive for (y, x) and use Lemma 1 to conclude.

Proof

Proof

- \bullet unanimity implies that N is decisive
- since N is finite, the iterated use of Lemma 2 leads to the existence of a dictator

65

Analysis of principles

Principles

- Unanimity: no apparent problem
- Absence of dictator: minimal requirement of democracy!
- Universality: a group adopting functioning rules that would not function in "difficult situations" could be in big trouble!

Arrow's theorem

Interpretation

- no intensity of preference considerations
 - I "intensely" or "barely" prefer a to b
 - practice: manipulation, interpersonal comparisons?
- no consideration of a third alternative to rank order a and b

Borda and independence

Example Borda scores • 4 candidates $\{a, b, c, d\}$ dbca• 3 voters 56 8 11 2 voters: $c \succ a \succ b \succ d$ • a is elected 1 voter: $a \succ b \succ d \succ c$ Example Borda scores • 4 candidates $\{a, b, c, d\}$ \overline{d} bca• 3 voters 59 4 12 $c \succ a \succ b \succ d$ 2 voters: $a \succ c \succ b \succ d$ • c is elected 1 voter: dbcabdca< □ ト < □ ト < 三 ト < 三 ト < 三 · ○ < ○</p> 69

ResultsArrow's theorem

Transitivity

Remarks

- maybe too demanding if the only problem is to elect a candidate • absence of circuit is sufficient
- but... guarantees consistency

- in $\{a, c\}$, the maximal elements are a and c
- in $\{a, b, c\}$, the maximal element is a

Results Arrow's theorem

Relaxing transitivity

From weak orders to...

- semi-orders and interval orders
 - no change (if more than 4 candidates)
- transitivity of strict preference
 - oligarchy: group O of voters st

$$a \succ_i b, \forall i \in O \Rightarrow a \succ b, \\ \exists i \in O : a \succ_i b \Rightarrow Not[b \succ a]$$

- absence of circuits
 - some voter has a veto power

$$a \succ_i b \Rightarrow Not[b \succ a]$$

71

Results Arrow's theorem

Underlying message

Naive conclusion

• despair

But...

- the existence of an "ideal" method would be dull!
 - analyze the pros and cons of each method
 - beware of "method-sellers"
- a group is "more complex" than an individual

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Extensions

Impossibility results

- logical tension between conditions
- Arrow
- Gibbard-Sattherthwaite
 - all "reasonable methods" may be manipulated (more or less easily or frequently)
- Moulin
 - no separable method can be Condorcet
 - no Condorcet method can give an incentive to participate
- Sen
 - tensions between unanimity and individual freedom

74

Results Extensions

Paretian Liberal Paradox

Remarks

- obvious tensions between the majority principle and the respect of individual rights
- tensions between the respect of individual rights and the unanimity principle

Theorem (Sen, 1970)

The combination of unanimity, universality and respect of individual rights implies problems

Sen: Paretian liberal paradox

Example

- 2 (male) individuals on a desert island
 - x the Puritan
 - y the Liberal
- a pornographic brochure
- 3 social states
 - a: x reads
 - b: y reads
 - c: nobody reads
- preferences
 - $x: c \succ a \succ b$
 - $y: a \succ b \succ c$

76

Results Extensions

Extensions

Characterization results

- find a list of properties that a method is the only one to satisfy simultaneously
 - Borda
 - Copeland
 - Plurality

Example of result

• neutral, anonymous and separable method are of Borda-type (Young, 1975)

Analysis results

- find a list of desirable properties
 - not an easy task!
- fill up the methods / properties table

Ideally

- characterization results will use intuitive axioms
- analysis results will lead to characterization and/or impossibility results

Results

Extensions

78

Extensions

Other aspects

- institutional setting
- welfare judgments
 - voting on taxes
- direct vs indirect democracy
- electoral platforms
- paradox of voting (why vote?)

Why vote?

Voting has a cost

- I have to go to the polling station
- I had rather go fishing

Analysis

- the probability that my vote will change the results is nil
- why should I bother?

Models

- economic explanations
- sociological explanations
 - not fully convincing on their own

80

Results Extensions

Ostrogorski's Paradox

Representative democracy

- you vote for a party that has a position on several issues (economic, social, international, etc.)
- no party can be expected to represent your opinion on every issue
- why vote for parties instead of issues?

◆□▶<□</p>
◆□▶<□</p>
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□</

Ostrogorski's Paradox

Example

• 5 voters, 2 parties (X and Y), 3 issues

	issue 1	issue 2	issue 3
voter 1	X	Y	Y
voter 2	Y	X	Y
voter 3	Y	Y	X
voter 4	X	X	X
voter 5	X	X	X

Results Extensions

- on issue 1, voter 1 agrees with party X
- if each voter votes for the party with which he agrees on a majority of issues, Y wins
- the loosing party X agrees with a majority of voters on each issue!

82

Results Extensions

Anscombe's paradox

Example

• 5 voters, 2 parties (X and Y), 3 issues

	issue 1	issue 2	issue 3	
voter 1	X	X	Y	minority
voter 2	Y	Y	Y	minority
voter 3	Y	X	X	minority
voter 4	X	Y	X	$\operatorname{majority}$
voter 5	X	Y	X	majority
result	X	Y	X	

• on issue 1, voter 1 agrees with party X

Analysis

- vote on issues
- a majority of voters can be frustrated on a majority of issues!

Direct and undirect democracy

Referendum paradox

- direct democracy: referendum
- indirect (representative) democracy: parliament

Paradox

- these two methods can lead to different results...
- even if each MP votes according to the opinion of the majority of his electors

Results Extensions

	MP1	•••	MP167	MP168	•••	MP200
Yes	7000		7000	15000		15000
No	8 000	•••	8 000	0	•••	0

- "No" wins in assembly (167/200 = 83%)
- "Yes" wins in referendum (55%)

84

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○