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Abstract.

In this paper we study a particular method that builds a partial ranking on the basis of a valued

preference relation. This method which is used in the MCDM method PROMETHEE I, is

based on "leaving" and "entering" flows. We show that this method is characterized by a

system of three independent axioms.

I- Introduction
Suppose that a number of decision alternatives are to be compared taking into account different

points of view, e.g. several criteria or the opinion of several voters. As argued in Barrett et al.

(1990) and Bouyssou (1990), a common practice in such situations is to associate with each

ordered pair (a, b) of alternatives, a number indicating the strength or the credibility of the

proposition "a is at least as good as b", e.g. the sum of the weights of the criteria favoring a or

the percentage of voters declaring that a is preferred or indifferent to b. In this paper we study a

particular method allowing to build a partial ranking, i.e. a reflexive and transitive binary

(crisp) relation2, on A given such information. Since a partial ranking is not necessarily

complete, the method considered in this paper will allow two alternatives to be declared

incomparable. Though this may seem strange, it must not be forgotten that the available

information may be very poor or conflictual. Declaring that a and b are incomparable thus

means that it seems difficult to take, at least at this stage of the study, a definite position on the

comparison of a and b.

Let A be a finite set of objects called "alternatives" with at least three elements. We define a

valued (binary) relation3 on A as a function R associating with each ordered pair of alternatives

(a, b) ∈ A2 with a ≠ b an element of [0, 1]. A method ≥≥≥ building a partial ranking, or, for

short, a partial ranking method, is a function assigning a partial ranking ≥≥≥(R) on A to any

valued relation R on A.

In this paper, we study a partial ranking method used in PROMETHEE I (see, e.g., Brans et

1 We wish to thank Marc Pirlot and Philippe Vincke for their helpful comments on earlier drafts of this
text.

2 A (crisp) binary relation S on A is reflexive if a S a, for all a ∈ A. It is transitive if for all a, b, c ∈ A, a
S b and b S c imply a S c. It is complete if for all a, b ∈ A, a S b or b S a.

3 From a technical point of view, the condition a ≠ b could be omitted from this definition at the cost of a
minor modification of our axioms. However, since it is clear that the values R(a, a) are immaterial in order
to rank the alternatives, we will use this definition throughout the paper.
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al. (1984) or Brans and Vincke (1985)) and defined by:

a ≥≥≥L/E(R) b  iff  [L(a, R) ≥ L(b, R) and E(a, R) ≤ E(b, R)] (1)

where:

L(a, R)  =  ∑  R(a, c) [Leaving flow]
c ∈ A\{a}

and

E(a, R)  =  ∑  R(c, a) [Entering flow]
c ∈ A\{a}

It is easily checked that the method defined by (1) is indeed a partial ranking method and that

≥≥≥L/E(R) is not necessarily complete4.

We will refer to the partial ranking method defined by (1) as the L/E Method. Besides its use in

PROMETHEE I, the interest of the L/E method lies in its simplicity and intuitive appeal. The

L/E method generalizes, through the use of entering and leaving flows, to the valued case the

idea of declaring that a is preferred to b if a "beats" more alternatives than b and is "beaten" by

less alternatives.

It should be emphasized that the L/E Method makes use of the "cardinal" properties of the

valuations. In fact, it is obvious from (1) that we may well have:

≥L/E(R) ≠ ≥≥≥L/E(Rφ)

where Rφ is defined by Rφ(a, b) = φ(R(a, b)) for all a, b ∈ A and φ is a strictly increasing

transformation on the real line such that φ(0) = 0 and φ(1) = 1. Thus this method does not seem

to be appropriate when the comparisons of the valuations only have an ordinal meaning in term

of credibility.

The purpose of this paper is to present an axiomatic characterization of the L/E method. The

axioms and the characterization are presented in the next section. In a final section we present

our proofs and show how the characterization of the L/E method can be extended to a much

wider class of partial ranking methods.

II- The main result
Throughout the paper, we note ===(R) and >>>(R) the symmetric and asymmetric parts of ≥≥≥(R),

i..e.  for all a, b ∈ A, [a ===(R) b iff a ≥≥≥(R) b and b ≥≥≥(R) a] and [a >>>(R) b iff a ≥≥≥(R) b and

Not (b ≥≥≥(R) a)].

We say that a partial ranking method ≥≥≥ is non-discriminatory if for all valued relation R on A

and all a, b ∈ A,
[R(a, b) = R(b, a) and R(a, c) = R(b, c), R(c, a) = R(c, b) for all c ∈ A\{a, b}] ⇒ a ===(R) b.

Non-discrimination says that if two alternatives are compared similarly vis-à-vis any other

alternatives then they should be considered indifferent. It seems rather an unobjectionable

property in this context. It is obvious that the L/E Method is non-discriminatory.

4 This will only happen if R has some special properties, e.g. if R(c, d) + R(d, c) is constant for all c, d ∈
A.
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Non-discrimination has strong connections with the classical property of neutrality (see, e.g.,

Henriet (1985) and Rubinstein (1980)). A partial ranking method ≥≥≥ is said to be neutral if, for

all permutation σ on A, for all valued relation R on A and all  a, b ∈ A:

a ≥≥≥(R) b ⇔ σ(a) ≥≥≥(Rσ) σ(b)

where Rσ is defined by Rσ(σ(a), σ(b)) = R(a, b) for all a, b ∈ A.

Neutrality expresses the fact that a partial ranking method does not discriminate between

alternatives just because of their labels. It is easily checked that neutrality implies non-

discrimination for partial ranking methods always leading to a complete binary relation. When

incomparability is tolerated, neutrality implies that for all valued relation R on A and all a, b ∈
A,

[R(a, b) = R(b, a) and R(a, c) = R(b, c), R(c, a) = R(c, b) for all c ∈ A\{a, b}] ⇒
a ===(R) b or (Not[a ≥≥≥(R) b] and Not[b ≥≥≥(R) a]).

Non-discrimination excludes the latter case.

A ranking method is said to be monotonic if it does not respond "in the wrong direction" to a

modification of R. More formally, ≥≥≥ is monotonic if, for all valued relation R on A and all

a, b ∈  A:

a ≥≥≥(R) b      ⇒      a ≥≥≥(R') b

where R' is identical to R except that [R(a, c) < R'(a, c) or R(c, a) > R'(c, a) for some

c ∈ A\{a}] or [R(b, d) > R'(b, d) or R(d, b) < R'(d, b) for some d ∈ A\{b}].

A partial ranking method is strongly monotonic if it responds "in the right direction" to a

modification of R. More formally, ≥≥≥ is strongly monotonic if, for all valued relation R on A

and all a, b ∈ A:
a ≥≥≥(R) b      ⇒      a >>>(R') b,

where R' is as before.

As defined here, monotonicity seems rather an unobjectionable property in the context of partial

ranking methods. Strong monotonicity is much more demanding, excluding, in particular, the

use of any threshold in the treatment of the valuations. However, it is obvious that the L/E

Method is strongly monotonic and thus monotonic.

In order to introduce our final axiom let us recall some well-known definitions used in Graph

Theory. A digraph consists in a set of nodes X and a set of arcs U ⊆ X2. We say that a is the

initial extremity and b is the final extremity of the arc u = (a, b) ∈ U.

A cycle of length q (abbreviated as a q-cycle) in a digraph is an ordered collection of arcs (u1,

u2, ..., uq) such that for i = 1, 2, ..., q, ui ≠ ui+1, one of the extremities of ui is an extremity

of ui–1 and the other an extremity of ui+1, where u0 is interpreted as uq and uq+1 as u1. A

cycle is elementary if each node being the extremity of one arc in the cycle is the extremity of

exactly two arcs in the cycle. An arc ui in a cycle is forward if its common extremity with ui-1
is its initial extremity and backward otherwise. A cycle is said to be alternated if every forward

arc in the cycle is followed by a backward arc and vice versa. Thus, the length of an alternated

cycle is necessarily even.
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Define A+ and A-  as disjoint duplications of A. We note a+ (resp. a- ) the element of A+ (resp.

A-) corresponding to a ∈ A. Consider a digraph G which set of nodes is X=A+∪A- and which

set of arcs is U = {(x+, y-) ∈ X2 : x+ ∈ A+, y- ∈ A- and x ≠ y}. It is obvious that there is a

one-to-one correspondence between valued relations on A and valuations between 0 and 1 of

the arcs of G. In the sequel, we identify a valued relation R with its associated valued digraph

in which for all a, b ∈ A the valuation vR(u) of the arc u = (a+, b-) is R(a, b). It should be

noticed that all cycles in G are alternated by construction.

A transformation on a elementary cycle consists in adding a positive or negative quantity to the

valuations of the forward arcs in the cycle and subtracting it from the valuations of the

backward arcs. A transformation on an elementary cycle is admissible if all the transformed

valuations are still between 0 and 1. When we apply an admissible transformation to the graph

associated with a valued relation R, we obtain another valued relation R' and we say that R' has

been obtained from R through an admissible transformation.

A partial ranking method is independent of alternated cycles if for all valued relations R and R':

[R' can be obtained from R through an admissible transformation on an elementary alternated
4-cycle or 6-cycle] ⇒   ≥≥≥(R) = ≥≥≥(R').

It is easy to see that if R' can be obtained from R through an admissible transformation on an

elementary alternated cycle then L(a, R) = L(a, R') and E(a, R) = E(a, R') for all a ∈ A so that

the L/E Method is independent of alternated cycles (see Figure 1).

Figure 1 : An admissible transformation on an elementary alternated 4-cycle.
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It is easy to see that the L/E method is not the only partial ranking method that is non-

discriminatory, monotonic and independent of alternated cycles. This is also the case for the

method which, for all a, b ∈ A and all valued relation R on A, always declares that a ===(R) b.

This method, however, is not strongly monotonic. Unfortunately, the L/E method is not the

only partial ranking method that is non-discriminatory, strongly monotonic and independent of

alternated cycles. For instance, this is also the case for the following method based on net

flows:

a ≥≥≥(R) b  iff  E(a, R) - L(a, R) ≥ E(b, R) - L(b, R),

which has been characterized by Bouyssou (1990).

Nevertheless, it turns out that partial ranking methods that are non-discriminatory, (strongly)

monotonic and independent of alternated cycles have strong connections with the L/E Method

and we have the following:

Theorem.

If a partial ranking method ≥≥≥ is non-discriminatory, monotonic and independent of alternated

cycles then, for all valued relation R on A and all a, b ∈ A, [a ≥≥≥L/E(R) b ⇒  a ≥≥≥ (R) b].

Furthermore, if ≥≥≥ is strongly monotonic then, for all valued relation R on A and all a, b ∈ A, [a

>>>L/E(R) b ⇒ a >>>(R) b].

This theorem says that the L/E method is the smallest (in the sense of inclusion) partial ranking

method that is non-discriminatory, monotonic and independent of alternated cycles. If ≥≥≥ is non-

discriminatory, monotonic and independent of alternated cycles, it may happen that a >>>L/E(R)

b and a ===(R) b. The second part of the theorem says that such a situation is impossible if ≥≥≥ is

strongly monotonic. Thus the L/E method "imposes" its indifferences and strict preferences to

every partial ranking method that is non-discriminatory, strongly monotonic and independent of

alternated cycles. These partial ranking methods differ from the L/E method by comparing in

terms of indifference or strict preference alternatives that were declared incomparable with the

L/E Method.

We already noticed that the L/E Method is non-discriminatory, strongly monotonic and

independent of alternated cycles. The proof of the theorem appears in the next section. Let us

first observe that these three axioms are independent as shown by the following examples:

i- Let Φ : A  → {1, 2, ..., |A|} be a one-to-one function.

Define ≥≥≥ as:

a ≥≥≥(R) b  iff  [L1(a, R) ≥ L1(b, R) and E(a, R) ≤ E(b, R)]

where L1(c, R) = L(c, R).Φ(c), for all c ∈ A.

This partial ranking method is strongly monotonic (and, thus, monotonic) and independent of

alternated cycles but not non-discriminatory.

ii- Define ≥≥≥ as:

a ≥≥≥(R) b  iff  E(a, R) ≥ E(b, R) and L(a, R) ≤ L(b, R).

This partial ranking method is non-discriminatory and independent of alternated cycles but not
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monotonic (and, thus, not strongly monotonic).

iii- Define ≥≥≥ as:

a ≥≥≥(R) b  iff  [L3(a, R) ≥ L3(b, R) and E3(a, R) ≤ E3(b, R)]

where L3(c, R) = ∑    R(c, d)2  and  E3(c, R) =  ∑    R(d, c)2, for all c ∈ A.
d ∈ A\{c} d ∈ A\{c}

This partial ranking method is non-discriminatory and strongly monotonic but not independent

of alternated cycles.

III- Proofs and remarks
Lemma 1. For all valued relations R and R', if [R' can be obtained from R through an

admissible transformation on an elementary alternated cycle] then [R' can be obtained from R

through a finite number of admissible transformations on elementary alternated 4-cycles and/or

6-cycles].

Proof of Lemma 1.

The proof is by induction on k where 2k is the length of an elementary alternated cycle in G. If

k = 2 or 3, then the lemma is proved. Suppose now that the lemma is true for k ≥ 3 and let us

show that it is true for k+1.

Consider an elementary alternated cycle C of length 2(k+1) in G, i.e., an ordered collection of

ordered pairs of alternatives ((xi+, yi-) ; (xi+1+, yi-) : i = 1, 2, ..., k+1) with for all i, j ∈{1,

2, ..., k+1}:

xi ≠ yi, xi+1 ≠ yi (because arcs of the type (a+, a-) are not in G) (2)

and

xi ≠ xj and yi ≠ yj (because the cycle is elementary) (3)

where xk+2 is interpreted as x1.

Let us show that any admissible transformation on C can be obtained through a finite number

of admissible transformations on elementary alternated cycles of length greater than 4 and

smaller than 2k. In order to show this, we claim that for some j ∈ {1, 2, ..., k+1},

Cj = ((x1+, y1-), (x2+, y1-), (x2+, y2-), (x3+, y2-), ..., (xj+, yj-), (x1+, yj-))

and

C'j = ((x1+, yj-), (xj+1+, yj-), (xj+1+, yj+1-), (xj+2+, yj+1-), ..., (xk+1+, yk+1-), (x1+,

yk+1-))

both correspond to elementary alternated cycles in G.

Condition (2) implies that we must look for candidates in {2, 3, ..., k}. From (3), we know

that {2, 3, ..., k} contains at most one element t such that x1 = yt. Let J be the set obtained by

removing t, if such a t exists, from {2, 3, ..., k}. We have |J| ≥ (k-1)-1 = k-2. Since k≥3, J is

not empty and the claim is proved.

By construction, Cj and C'j are both of length greater than 4 and smaller than 2k (see

Figure 2). These two elementary alternated cycles have only the arc (x1+, yj-) in common.
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This arc is backward in Cj and forward in C'j.

Suppose now that R' has been obtained from R through an admissible transformation of ε on

C. If ε = 0, there is nothing to prove. Suppose now that ε > 0 (the other case being symmetric).

If R(x1, yj) > 0 then we can find a sufficiently large integer n such that performing a

transformation of ε/n on Cj is an admissible transformation. After this first transformation,

performing a transformation of ε/n is an admissible transformation on C'j. It is easily seen that,

after having repeated n times these transformations, we obtain R'.

If R(x1, yj) = 0, then performing a transformation of ε on C'j is an admissible transformation.

After this first transformation, performing a transformation of ε on Cj is an admissible

transformation. We obtain R' after these two transformations. This completes the proof of

lemma 1. nn

Figure 2 : A transformation on C via transformations on Cj and C'j.
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The following lemma establishes a crucial link between admissible transformations on

elementary alternated cycles and Leaving and Entering flows.

Lemma 2. For all valued relations R and R',

[L(a, R) = L(a, R') and E(a, R) = E(a, R') for all a ∈ A] ⇔
[R' can be obtained from R through a finite number of admissible transformations on

elementary alternated cycles].

Proof of lemma 2.

The ⇐ part is obvious. In order to prove the ⇒ part, suppose that for some R and R' and for

all c ∈ A we have L(c, R) = L(c, R') and E(c, R) = E(c, R'). If R = R' the lemma is proved. If

R ≠ R' then R(a, b) ≠ R'(a, b) for some a, b ∈ A with a ≠ b and we suppose for definiteness
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that R(a, b) > R'(a, b) (the other case being symmetric). We claim that R(a, d) < R'(a, d) for

some d ∈ A\{a}, for otherwise R(a, d) ≥ R'(a, d) for all d ∈ A\{a, b} and  R(a, b) > R'(a, b)

would contradict L(a, R) = L(a, R'). Using a similar argument, there is a c ∈ A\{d} such that

R(c, d) > R'(c, d). This process leads to the construction of an ordered collection of arcs in G

[(a+, b- ), (a+, d- ), (c+, d- )]. Repeating the same process will lead to the creation of an

elementary cycle in G since the number of alternatives is finite. Let ∆ be the minimum over the

arcs (s+, t-) in the cycle of |R(s, t) – R'(s, t)|. It is easily checked that adding ∆ to the arcs in the

cycle such that R(x, y) < R'(x, y) and subtracting it from the arcs in the cycle such that

R(x, y) > R'(x, y) is an admissible transformation on the cycle. After performing this

transformation, we thus obtain a valued relation R1. If R1 = R' the lemma is proved. If not, we

can repeat the same argument starting with R1 instead of R.

Because A is finite, there is only a finite number of arcs such that R(x, y) ≠ R'(x, y). Since, at

each step the number of arcs on which the current relation and R' are different is decreased by

at least one unit, this process will terminate after a finite number of steps, which completes the

proof of lemma 2. nn

Proof of the Theorem.
In order to prove the first part of the theorem, we have to show that ≥≥≥ is non-discriminatory,

monotonic and independent of alternated cycles then:
L(a, R) ≥ L(b, R) and E(a, R) ≤ E(b, R) ⇒ a ≥≥≥(R) b.

Let us first show that if ≥≥≥ is non-discriminatory, monotonic and independent of alternated

cycles then:
L(a, R) = L(b, R) and E(a, R) = E(b, R) ⇒ a ===(R) b. (4)

In order to prove (4) consider a valued binary relation R on A such that L(a, R) = L(b, R) and

E(a, R) = E(b, R) for some a, b ∈ A. Define R by:

R(a, b) = R(b, a) = (R(a, b) + R(b, a))/2,

R(a, c) = R(b, c) = (R(a, c) + R(b, c))/2 for all c ∈ A\{a, b},

R(c, a) = R(c, b) = (R(c, a) + R(c, b))/2 for all c ∈ A\{a, b},

R(c, d) = R(c, d) for all c, d ∈ A\{a, b}.

It is easily checked that R is a valued relation on A.

We have R(a, b) = R(b, a), R(a, c) = R(b, c) and R(c, a) = R(c, b) for all c ∈ A\{a, b}. Thus

non-discrimination implies a ===(R) b.

We also have L(c, R) = L(c, R) and E(c, R) = E(c, R) for all c ∈ A. Given lemma 2, we know

that R can be obtained from R through a finite number of transformations on elementary

alternated cycles. Given lemma 1, independence of alternated cycles implies ≥≥≥(R) = ≥≥≥(R).

Thus a ===(R) b which establishes (4).

Let us now show that if ≥≥≥ is non-discriminatory, monotonic and independent of alternated

cycles then:

L(a, R) ≥ L(b, R) and E(a, R) ≤ E(b, R), at least one of these inequalities being strict,
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⇒ a ≥≥≥(R) b (5)

which will complete the proof of the first part of the theorem.

In order to prove (5) suppose that L(a, R) ≥ L(b, R) and E(a, R) ≤ E(b, R), at least one of

these inequalities being strict. We note δ = L(a, R) - L(b, R) and ζ = E(b, R) - E(a, R).

We define the following sets of alternatives:

A1 = {c ∈ A \ {a, b} : R(a, c) > 0 }, A2 = {d ∈ A \ {a, b} : R(b, d) < 1 },

A3 = {e ∈ A \ {a, b} : R(e, a) < 1 }, A4 = {f ∈ A \ {a, b} : R(f, b) > 0 },

and denote by Bi the complement of Ai in A\{a, b}. If:
δ  ≤ ∑  R(a, c) +∑  (1 – R(b, d)) (6)

c ∈ A1 d ∈ A2

and

ζ  ≤ ∑  R(f, b) + ∑  (1 – R(e, a)) (7)
f ∈ A4 e ∈ A3

it is easy to see that it is possible to obtain a valued relation R' identical to R except on the

ordered pairs of alternatives (a, c) with c ∈ A1, (e, a) with e ∈ A3, (b, d) with d ∈ A2 and

(f, b) with f ∈ A4, such that L(a, R') = L(b, R') and E(a, R') = E(b, R'). Thus (4) implies

a ===(R') b and repeated applications of monotonicity lead to a ≥≥≥(R) b.

Let us show that (6) holds, the proof being similar for (7). We have:

L(a, R) = ∑  R(a, c) + R(a, b).
                      c ∈  A1
and
L(b, R) =     ∑  R(b, d) + R(b, a) + |B2|.
                  d ∈ A2
thus,
δ =    ∑  R(a, c) + R(a, b) - ∑  R(b, d) - R(b, a) - |B2|
       c ∈  A1                           d ∈  A2

and we have to show that:

  ∑  R(a, c) + R(a, b) - ∑  R(b, d) - R(b, a) - |B2|  ≤  ∑  R(a, c) + ∑  (1 – R(b, d)),
c ∈  A1                           d ∈  A2                                       c ∈  A1           d ∈  A2

i.e., |A2| + |B2| ≥ R(a, b) - R(b, a).

Noticing that |Ai| + |Bi| = |A| – 2, it is easy to see that (6) holds as soon as |A| ≥ 3, which

completes the proof of the first part of the theorem.
In order to prove the second part of the theorem, we have to show that if ≥≥≥  is non-

discriminatory, strongly monotonic and independent of alternated cycles then:

L(a, R) ≥ L(b, R) and E(a, R) ≤ E(b, R), at least one of these inequalities being strict
⇒ a >>>(R) b (8)

Since strong monotonicity implies monotonicity, we know that (4) holds. Then, using strong

monotonicity instead of monotonicity in the proof of (5) shows that (8) holds which completes

the proof of the theorem. nn

We conclude this paper by pointing out a straightforward extension of our results. Let:
Lφ(a, R)  =  ∑  φ (R(a, c)) and Eφ(a, R)  =  ∑  φ (R(c, a))

c ∈ A\{a}  c ∈ A\{a}
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where φ is a strictly increasing transformation on the real line such that φ(0) = 0 and φ(1) = 1. It

is not difficult to see that a similar method of proof can be used to characterize the partial

ranking method defined by:
a ≥≥≥(R) b  iff  [Lφ(a, R) ≥ Lφ(b, R) and Eφ(a, R) ≤ Eφ(b, R)],

by keeping non-discrimination and strong monotonicity unchanged and replacing our third

axiom by:

[R'φ can be obtained from Rφ through an admissible transformation on an elementary alternated

4-cycle or 6-cycle] ⇒   ≥≥≥(R) = ≥≥≥(R')

where Rφ and R'φ are defined by Rφ(a, b) = φ(R(a, b)) and R'φ(a, b) = φ(R'(a, b)) for all

a, b ∈  A.
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