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Abstract. In some MCDM techniques Ð most notably in Outranking Methods Ð the result of

the comparison of a finite set of alternatives according to several criteria is summarised using a

fuzzy preference relation. This fuzzy relation does not, in general, possess "nice properties"

such as transitivity or completeness and elaborating a recommendation on the basis of such

information is not an obvious task. The purpose of this paper is to study techniques exploiting

fuzzy preference relations in order to choose or rank. We present a number of results

concerning techniques based on the "min in Favour" score, i.e. the minimum level with which

an alternative is "at least as good as" all other alternatives.
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1 Introduction

Consider a finite set of alternatives that are evaluated along several criteria. In order to select a

subset of alternatives or to rank order them, methods related to the "Outranking Approach" (see

[16] or [17]) usually proceed in two steps. The construction step consists in a pairwise

comparison of the alternatives taking all criteria into account. In most methods this is done

using a "concordance-discordance" principle which leads to declaring that "alternative a is at

least as good as alternative b" when:

Ð a "sufficient" majority of criteria supports this proposition and

Ð the opposition of the minority is not "too strong".

In many methods, e.g., in ELECTRE III (see [15]) or in PROMETHEE (see [8]), the result

of these pairwise comparisons is summarised using a fuzzy relation. This means that a number

between 0 and 1 is associated to each ordered pair (a,Êb) of alternatives indicating the

credibility of the proposition "a is at least as good as b", e.g. the sum of the weights of the

criteria favouring a in the comparison (eventually corrected to take into account the opposition

of the other criteria). Such a way of modelling comparisons made along several dimensions is

quite reminiscent of classical electoral techniques which summarise a ballot by an "electoral



matrix" giving for each ordered pair (a, b) of candidates the number of voters having declared

that "a is at least as good as b". It is well-known in Social Choice Theory that it is not easy to

tell which candidate(s) should be elected on the basis of an "electoral matrix" as soon as the

opinion of the voters is "sufficiently" conflictual. A similar problem occurs with fuzzy

preference relations built in Outranking Methods. When the different criteria taken into account

are conflictual, these relations do not, in general, possess "nice properties" such as transitivity

or completeness. With the construction technique of ELECTRE III, it is shown in [6] that a

stronger conclusion holds: any reflexive fuzzy preference relation may be obtained as soon as

there is a "sufficient" number of "sufficiently conflicting" criteria. Therefore, it is far from

being an easy task to select a subset of alternatives or to rank order them on the basis of such

information. This calls for the application of specific techniques which constitute the

"exploitation step" of Outranking Methods. Many such techniques have been proposed in the

literature (see, e.g., [16] or [17]) most often on a purely ad hoc  basis. This has often been seen

as a major weakness of Outranking Methods. The aim of this paper is to contribute to their

analysis. We present a number of results concerning choice and ranking techniques that are

based on the "min in Favour" (mF) score, i.e. the minimum level with which an alternative is

"at least as good as" all other alternatives, consolidating and extending previous results

appeared in [3], [5], [12], [13] and [14]. The axiomatic characterisations presented here will

hopefully allow to emphasise the specific features of the techniques studied and, hence, to

compare them more easily with other ones.

This paper is organised as follows. We introduce our definitions and notations in section 2.

In section 3 we analyse a choice technique based on the mF score. Two ranking techniques

based on the mF score are then studied in section 4. A final section, discussing the results and

mentioning open problems, concludes the paper.

2 Definitions and Notations

Throughout this paper X will denote a non empty finite set of "alternatives". A fuzzy (binary)

relation T on X is a function from XxX to [0, 1]. With ELECTRE III in mind, we shall

interpret fuzzy relations as "large" preference relations, the valuation of (a, b) indicating the

credibility of the proposition "a is at least as good as b". Thus, all fuzzy relations in this paper

will be supposed to be reflexive (a fuzzy relation T on X is reflexive if T(a, a) = 1, for all

aÊÎÊX). If Y Í X and T is a fuzzy relation on X, we denote by T/Y the restriction of T to Y,

i.e. the fuzzy relation on Y such that for all a, b Î Y, T/Y(a, b) = T(a, b). A fuzzy relation T on

X such that T(a, b) Î {0, 1}, for all a, b Î X, is said to be crisp. We often write aÊT b instead

of T(a, b) = 1 and Not(a T b) instead of T(a, b) = 0 when T is a crisp relation. We denote by

X (resp. X) the set of all fuzzy (resp. crisp) reflexive relations on X.

Let T be a crisp relation on X. It is said to be complete if [a T b or b T a] and transitive if



[a T b and b T c Þ a T c], for all a, b, c Î X. A weak order is a crisp, complete and transitive
binary relation. Let T be a weak order on X.We denote by Uk(X, T) the kth equivalence class

of T, i.e. for k = 1, 2, 3,ÊÉ, Uk(X, T) = {a Î X[T, k]Ê: a T b, for all b Î X[T, k]}, where

X[T, 1] = X and for k = 2, 3, ..., X[T,Êk] = X[T, k-1]\UkÐ1(X, T). Observe that U1(X, T) is

always non empty and that all non empty equivalence classes of a weak order are disjoint.

A choice rule C is a function associating with each finite set X and each fuzzy relation R Î
X a choice set C(X, R) such that C(X, R) Í X and C(X, R) ¹ ¯. A choice rule therefore

allows to select a non empty choice set on the basis of any reflexive fuzzy relation defined on a

finite set. Similarly, a ranking rule f is a function associating with each finite set X and each
fuzzy relation R Î X a weak order f(X, R) on X. Such definitions are adapted to methods

such as ELECTRE III which can lead to any reflexive fuzzy relation on a finite set.

As shown in [2], a simple way to define choice and ranking rules is to make use of a

scoring function (for alternative ways of building such rules, we refer to [9]). A scoring

function S is a function associating a real number S(a, R, X) with each finite set X, each R Î
X and each a Î X. We shall interpret the number S(a, R, X) as a measure of the "attractive-

ness" of alternative a within the set X endowed with the fuzzy relation R. Given a scoring

function, selecting the alternatives with the highest score (resp. rank ordering the alternatives

according to their scores) defines a choice rule (resp. a ranking rule). Formally we define the
choice rule CS and the ranking rule fS associated to the scoring function S, letting, for all

finite set X, all a, b Î X and all R Î X:

CS(X, R) = {c Î X : S(c, R, X) ³ S(d, R, X) for all d Î X} and

a fS(X, R) b  Û  S(a, R, X) ³ S(b, R, X).

As argued in [1], an alternative way of defining a ranking rule also deserves interest. It

consists in the (downward) iteration of a choice rule which leads to a weak order in the

following way. The alternatives selected by the choice rule form the first equivalence class of

the weak order. These alternatives are then removed from consideration. The alternatives

selected in the reduced set form the second equivalence class and so on. Formally, the iteration
of a choice rule C leads to a ranking rule f such that, for all finite set X and for all R Î X, we

have (T standing for f(X, R)): Uk(X, T) = C(X[T, k], R/X[T, k]), for all integer k such that

X[T, k] is non empty. Though the ranking rule directly based on scores is much simpler than

the one defined by iterated choice, the latter deserves attention since it corresponds to a very

intuitive behaviour for ranking objects: the objects ranked in first place are the "best" objects

(according to a choice rule), the objects ranked in second place are the best objects between

those remaining and so on. Associated with a scoring function S we have thus defined the
choice rule CS, the ranking rule fS and the ranking rule fIS corresponding to the iteration of

CS. It should be observed that fS and fIS are not identical in general.

In this paper, we shall be concerned with the "min in Favour" scoring function, i.e. the
scoring function such that, for all finite set X, all R Î X and all a Î X,



mF a X R Min R a b
b X a
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It indicates the credibility with which an alternative is at least as good as other alternatives. This
scoring function defines the min in Favour choice rule CmF, the min in Favour ranking rule

fmF  and the Iterated min in Favour ranking rule fImF. The following numerical example

illustrates these three rules. Let X = {a, b, c, d} and let R Î X be defined by the following

table (to be read from row to column):

R a b c d

a 0.9 0.4 1

b 0.5 0.3 0.3

c 0.7 0.6 0.4

d 0.2 . .

1

1

1

0 8 0 5 1

The min in Favour Choice rule obviously gives CmF(X, R) = {a, c}. Using fmF, we obtain

the following weak order (using obvious abbreviated notations): (ac) > b > d. Using fImF,

we obtain: (ac) > d > b. This shows that fmF and fImF are distinct rules in spite of the fact

that U1(X, fmF(X, R)) = U1(X, fImF(X, R)) = CmF(X, R).

Though many other scoring functions have been proposed in the literature (see [2]), a

remarkable feature of the min in Favour scoring function is that it leads to choice and ranking

rules that do not make use of the cardinal properties of the valuations R(a, b). Though this

might be seen as too radical an interpretation of fuzziness, it is not clear from the construction

technique of the numbers R(a, b) in many outranking methods and especially in ELECTRE III,

whether or not they convey any information beyond the fact that R(a, b) ³ R(c, d) means that

the proposition "a is at least as good as b" is no less credible than the proposition "c is at least

as good as d". Using only the ordinal information conveyed by the fuzzy relation may thus be

seen as a principle of prudence.

3 The Min in Favour Choice Rule

The aim of this section is to provide an axiomatic characterisation of the min in Favour choice
rule CmF. Our first axiom is designed to capture the already-mentioned ordinal character of

CmF. We say that a choice rule C is ordinal if, for all finite set X, all R Î X and all strictly

increasing and one-to-one transformation f on [0, 1], C(X, R) = C(X, f[R]), where f[R] is
the element of X such that f[R](a, b) = f(R(a, b)) for all a, b Î X. It is not difficult to see

that CmF is indeed ordinal. There are many ordinal choice rules; the "Max in Favour" choice

rule CMF and the "Max Against" choice rule CMA that respectively use the scores
MF a X R Max R a b

b X a
( , , ) ( , ),

\
=

Î { }
 MA a X R Max R b a

b X a
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\
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are both ordinal.



Consider a crisp relation R Î X. If the set G(X, R) = {a Î X: a R b for all b Î X}, i.e.,

the set of the greatest elements in X given R, is non empty, there exist alternatives in X that are

unambiguously "at least as good as" all other alternatives. Thus, it seems that there is little point

in selecting alternatives outside of G(X, R). This motivates the following axiom. We say that a
choice rule C is greatest faithful if, for all finite set X and all R Î X, [R Î X and G(X, R)

¹ ¯] Þ C(X, R) Í G(X, R).
It is not difficult to see that CmF is greatest faithful contrary to CMF and CMA. The

conjunction of ordinality and greatest faithfulness does not characterize CmF however. This is

because greatest faithfulness imposes a constraint on the result of a choice rule when applied to

crisp relations whereas ordinality imposes a constraint on the result of the choice rule for
"ordinaly equivalent" fuzzy relations. Since no truly fuzzy relation (i.e. belonging to X\ X)

can be ordinaly equivalent to a crisp relation, the conjunction of these two axioms imposes very

few constraints on the Behavior of C when applied to truly fuzzy relations. Furthermore it
should be observed that CmF cannot be seen as the largest or the smallest (w.r.t inclusion)

choice rule in the set of all ordinal and faithful choice rules: a choice rule discriminating among
the elements of CmF according to their MF score is ordinal and greatest faithful but smaller

than CmF; a choice rule coinciding with CmF for crisp relations and selecting all alternatives

otherwise is ordinal and greatest faithful but larger than CmF. This calls for axioms that would

relate the result of a choice rule when applied to crisp relations and truly fuzzy ones. Hence, we
introduce the following continuity requirement which is obviously fulfilled by CmF.

Consider a sequence of fuzzy relations (Ri Î X, i = 1, 2, ...). We say that this sequence

converges to R Î X if, for all e Î  with e > 0, there is an integer k such that, for all j ³ k,

|Rj(a, b) Ð R(a,Êb)| < e, for all a, b Î X. A choice rule C is said to be continuous if, for all

finite set X, all R Î X and all sequences (Ri Î X, iÊ= 1, 2, ...) converging to R, [a Î C(X,

Ri) for all Ri in the sequence] Þ [aÊÎ C(X, R)].

Considering a sequence of strictly increasing transformations converging (pointwise) to a

step function, it is not difficult to see that ordinality and continuity imply that if a Î C(X, R)
then for any l Ê Î (0, 1], a Î C(X, Rl) where Rl denotes the l- cut of R, i.e. the crisp

relation such that, for all c, d Î X, cÊRl d Û R(c, d) ³ l. The following result (first obtained

in [5]) is based on this simple observation coupled with the fact that, since l- cuts are crisp

relations, the result of a choice rule with such relations may be constrained by greatest faithful-

ness.

Proposition 1. The min in Favour choice rule CmF is the only ordinal, continuous and

greatest faithful choice rule.

Proof. We already observed that CmF is ordinal, continuous and greatest faithful. It remains to

be shown that if a choice rule C is ordinal, continuous and greatest faithful then, for all finite



set X, all RÊÎ X and all a, b Î X:

mF(a, X, R) > mF(b, X, R) Þ b Ï C(X, R) and (i)

mF(a, X, R) = mF(b, X, R) and b Î C(X, R) Þ a Î C(X, R). (ii)

In contradiction with (i), suppose that mF(a, X, R) > mF(b, X, R) and b Î C(X, R) for

some ordinal, continuous and greatest faithful choice rule C. Let l Î (mF(b, X, R), mF(a, X,
R)). Consider any sequence of strictly increasing and one-to-one transformations (fi, i = 1, 2,

...) on [0, 1] converging pointwise to the step function f on [0, 1] such that f(x) = 1 iff x ³ l
and f(x) = 0 otherwise. By construction, the sequence (fi[R], i = 1, 2, ...) converges to the

l- cut Rl of R. Ordinality implies that b Î C(X, fi[R]) for all fi in the sequence and using

continuity we obtain bÊÎ C(X, f[R]) = C(X, Rl). The set G(X, Rl) is non empty (since a Î
G(X, Rl)) and b Ï G(X, Rl). Using greatest faithfulness we obtain a contradiction. This

proves (i).

In order to prove (ii), suppose that mF(a, X, R) = mF(b, X, R) = l and b Î C(X, R), for

some ordinal, continuous and greatest faithful choice rule C. Since b Î C(X, R), we know,
using (i), that mF(b, X, R) ³ mF(c, X, R) for all c Î X. Consider a sequence (Ri Î X, iÊ= 1,

2 ...) of fuzzy relations identical to R except that Ri(b, c) = Max(0 ; R(b, c) Ð 1/i) for all

cÊÎÊX\{b} such that R(b, c) = l and Ri(a, d) = Min(1 ; R(a, d) + 1/i) for all dÊÎÊX\{a} such

that R(a, d) = l. This sequence converges to R. For all Ri in the sequence, we have, by

construction, mF(a, X, Ri) > mF(c, X, Ri) for all c Î X\{a}. From (i) we know that C(X, Ri)

= {a} for all Ri in the sequence. Continuity implies a Î C(X, R) which proves (ii) and

completes the proof. nn

We conclude this section with some remarks.

a) As shown by the following examples, ordinality, continuity and greatest faithfulness

are independent properties.
i- The Sum in Favour choice rule CSF based on the following score:
SF a X R R a b

b X a

( , , ) ( , )
\

=
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is greatest faithful and continuous but not ordinal.
ii- CMF is continuous and ordinal but not greatest faithful.

iii- Define CL as:

CL(X, R) = {a Î CmF(X, R): MF(a, R) ³ MF(b, R) for all b Î CmF(X, R)},

i.e. as the choice rule discriminating among the elements selected with CmF according to their

MF score. It is easy to see that this choice rule is ordinal and greatest faithful but not

continuous.

b) The proof of proposition 1 shows that, in presence of ordinality and greatest
faithfulness, the full power of continuity is not needed to prove that C(X, R) Í CmF(X, R) for

all finite set X and all R Î X. Requiring continuity only for sequences of fuzzy relations

converging to a crisp relation suffices. This leads to an alternative characterisation of CmF as



the largest choice rule among the ones that are ordinal, greatest faithful and weakly continuous

in the above sense.

c) Retaining ordinality and continuity, an obvious modification of greatest faithfulness, re-

quiring for crisp relations that the choice set should always be included in the set of "unbeaten"
alternatives when this set is non empty, allows to characterize CMA.

d) Our definition of continuity uses a distance between fuzzy relations that makes use of the

cardinal properties of the numbers R(a, b). Though ordinality and continuity are not contradic-

tory, as shown by proposition 1, coupling these two axioms is somewhat awkward since or-

dinality implies that the cardinal properties of the numbers R(a, b) should not be used. The

following proposition, adapted from [14], shows that the conjunction of ordinality and

continuity is equivalent to a "strong ordinality" requirement involving non-decreasing transfor-

mations (at the cost of a more complex proof, it is possible to consider only non-decreasing and

continuous transformations). The use of strong ordinality avoids making explicit reference to a

distance on the set of fuzzy relations.

Proposition 2. A choice rule C is ordinal and continuous if and only if it is strongly ordinal,
i.e., C(X, R) Í C(X, f[R]), for all finite set X, all R Î X and all non-decreasing transforma-

tion f on [0, 1] such that f(0) = 0 and f(1) = 1.

Proof. [Ordinality and continuity Þ strong ordinality]. Let X be a finite set and R Î X. Con-

sider any non-decreasing transformation f on [0, 1] such that f(0) = 0 and f(1) = 1. We can
find a sequence of strictly increasing and one-to-one transformations (fi, i = 1, 2, ...) on [0, 1]

that converges pointwise to f and it can be supposed w.l.o.g. that f1 is the identity function

on [0, 1]. By construction, the sequence (fi[R], i = 1, 2, ...) converges to f[R]. Let a Î C(X,

R). Since f1[R] = R, ordinality implies that a Î C(X, fi[R]) for all fi in the sequence. Using

continuity, we obtain a Î C(X, f[R]), which shows that C is strongly ordinal.

[Strong ordinality Þ ordinality and continuity]. Let f be strictly increasing and one-to-one

on [0, 1]. Thus fÐ1 is also strictly increasing and one-to-one. Strong ordinality leads to C(X,
R) Í C(X, f[R]) Í C(X, fÐ1[f[R]]) = C(X, R), which shows that C is ordinal. Let R Î X
and consider a sequence of fuzzy relations (Ri Î X, iÊ= 1, 2, ...) converging to R Î X and

such that e Î C(X, Ri) for all Ri in the sequence. Let |X| = n. Observe that R can take at most

n(n-1) distinct values on the set of the n(n-1) ordered pairs of distinct elements in X. Suppose
that R takes exactly 

�
 distinct values k1, k2, É, k� . Suppose w.l.o.g that 0 £ k1 < k2 < k3 <

... < k�  £ 1 and define e as:

  
e = -

=
-Min k k

j
j j

2
1

,...,
.

l

Since (Ri Î X, iÊ= 1, 2, ...) converges to R, we can find an integer j such that |Rj(a, b) Ð

R(a,Êb)| < e/2, for all a, b Î X. Define a function f from [0, 1] to [0,Ê1] such that, for all j
=1, 2, , 

�
, [|x-kj| < e/2] Þ  f(x) = kj] and f(x) = x otherwise. It is clear that f is non-



decreasing and such that f(1) = 1 and f(0) = 0. By construction, we have R = f[Rj]. Since e

Î C(X, Rj), we obtain e Î C(X, R) using strong ordinality, which completes the proof. nn

4 The Min Ranking Rule and the Iterated Min Ranking Rule

Adapting the axioms introduced for choice rules to the case of ranking rules is straightforward.

We say that a ranking rule f is:

Ð ordinal if, for all strictly increasing and one-to-one transformation f on [0, 1],

f(X, R) = f(X, f[R]),
Ð continuous if, for all sequences (Ri Î X, iÊ= 1, 2, ...) converging to R and all a, b Î X,

[a f(X, Ri) b for all Ri in the sequence] Þ [a f(X, R) b].

Ð greatest faithful if [R Î X and G(X, R) ¹ ¯] Þ U1[X, f(X, R)] Í G(X, R),

for all finite set X and all R Î X.

It is not difficult to see that fmF is ordinal, continuous and greatest faithful. Rephrasing the

proof of proposition 1 immediately leads to the following result (adapted from [3]).

Proposition 3. The min in Favour ranking rule fmF is the only ranking rule that is ordinal,

continuous and greatest faithful.

Some remarks on this proposition are in order.

a) Contrary to the case of choice rules, greatest faithfulness is not a particularly intuitive re-

quirement for ranking rules (some alternative axioms may be found in [3]). A much more

intuitive axiom would consist in imposing that f(X, T) = T for all weak orders T on X. It is
easy to see that fmF is not faithful in this sense since, when T is crisp, fmF(X, T) consists

of at most two equivalence classes. When T is a weak order, it is however true that U1(X,

f(X, T)) = U1(X, T). In presence of ordinality and continuity, this last condition is not

sufficient to characterize CmF as shown by the following example. Define the scoring function:
S a X R Max R b a

b X Not aEb
( , , ) ( , ),

: ( )
= -

Î{ }
where E is the equivalence relation on X defined by:

a E b Û [R(a, b) = R(b, a) and R(a, c) = R(b, c), R(c, a) = R(c, b) for all c Î X\{a, b}].

The ranking rule based on this score is obviously ordinal. It is not difficult to show that it is
continuous and that, when T is a weak order, U1(X, f(X, T)) = U1(X, T).

b) Examples similar to the ones used in section 3 show that the axioms used in proposition

3 are independent.

c) As was the case with choice rules, the conjunction of ordinality and continuity in

proposition 3 is not entirely satisfactory. Similarly to what has been done in proposition 2, it is

possible to replace ordinality and continuity by the following strong ordinality requirement:

a f(X, R) b Þ a f(X, f[R]) b,



for all finite set X, all R Î X, all a, b Î X and all non-decreasing transformation f on [0, 1]

such that f(0) = 0 and f(1) = 1,

which is equivalent to the conjunction of ordinality and continuity.

Alternative ways out of the ordinality-continuity puzzle are described in the next remark
d) The alternative characterisation of fmF presented in [13] Ð and anticipated in [12] Ð uses

neither ordinality nor continuity. We briefly recall here the essential elements of this result.

Consider two fuzzy relations R and R¢ on a finite set X and let a, b be distinct elements of X.

We say that R and R¢ are related by translation on {a, b} if R¢ is identical to R except that, for

some e Î [Ð1, 1], R(a, c) = R¢(a, c) + e, for all c Î X\{a}and R(b, d) = R¢(b, d) + e, for all

dÊÎ X\{b}.

A ranking rule f is said to be translation invariant if for all finite set X, all distinct a, b Î
X and all R, R¢ Î X:

[R and R¢ are related by translation on {a, b}] Þ [a f(X, R) b Û a f(X, R¢) b].

A ranking rule f is said to be:
Ð weakly reversible if a f(X, R) b Þ  [for all c Î X\{a}, there is a relation RcÊÎÊ X
identical to R except that Rc(a, c) £ R(a, c) and such that b f(X, Rc) a],

Ð strictly reversible if a f(X, R) b Þ [for all c Î X\{a} such that R(b, c) ¹ 0, there is a
relation Rc Î X identical to R except that Rc(a, c) £ R(a, c) and such that b s(X, Rc) a],

for all finite set X, all R Î X and all a, b Î X.

Translation invariance means that adding a constant to all valuations leaving a and b does

not alter their respective comparison. Weak reversibility implies that the comparison between

any two alternatives may be reversed by sufficiently decreasing any of the valuations of the arcs

leaving the best ranked alternative. Strict reversibility asserts this reversal may be strict as soon

as there is no boundary problem. It is not difficult to show that these three conditions are
independent and are satisfied by fmF. The proof that it is the only ranking rule satisfying these

three conditions is easy once it has been observed that:
Ð if f is weakly reversible then [SmF(a, X, R) = 0] Þ [b f(X, R) a, for all b Î X] and

Ð if f is strictly reversible then [SmF(b, X, R) > SmF(a, X, R) = 0] Þ  [b s(X, R) a],

where s(X, R) denotes the asymmetric part of f(X, R).

A thorough comparison between this characterisation and the one presented in proposition 3

can be found in [13].

Using the above-mentioned consequences of weak and strict reversibility, another Ð new Ð
characterisation of fmF can easily be derived combining strong ordinality and the two

reversibility conditions. We have:

Proposition 4. The min in Favour ranking rule fmF is the only ranking rule that is strongly

ordinal, weakly reversible and strictly reversible.



Proof. We have already noted that fmF is strongly ordinal, weakly reversible and strictly

reversible. The proof will be complete showing that if a ranking rule f  satisfies these

conditions then, denoting by |(X, R) the symmetric part of f(X,ÊR):

[mF(a, X, R) > mF(b, X, R) Þ a s(X, R) b] and

[mF(a, X, R) = mF(b, X, R) Þ a |(X, R) b],
for all finite set X, all R Î X and all a, b Î X.

Suppose that mF(a, X, R) > mF(b, X, R) and consider a non-decreasing transformation f
on [0, 1] such that f(x) = 0 if x < mF(a, X, R) and f(x) = x otherwise. Since mF(a, X, f[R])

> mF(b, X, f[R]) = 0, strict reversibility implies that a s(X, f[R]) b and b f(X, R) a would

contradict strong ordinality. The proof that mF(a, X, R) = mF(b, X, R) Þ a |(X, R) b is

similar using weak reversibility and strong ordinality. nn

Let us now turn to the study of the Iterated min in Favour ranking rule fImF based on the

(downward) iteration of CmF. This ranking rule is clearly ordinal. The iteration process may

however create discontinuities as shown by the following example. Let X = {a, b, c, d} and
consider the family of relations Re Î X defined by the following table:

R a b c d

a 0 7 0.5 0

b 0 6 0 5 0

c 0 5 0 5 0 4 -

d 0 4

e

e

1

1

1

0 4 0 4 1

.

. .

. . .

. . .

For all e Î (0, 0.4), fImF leads to the weak order d > (abc). When e reaches 0, we obtain

(cd) > a > b, which violates continuity. Since U1(fImF(X, R)) = CmF(X, R), continuity

cannot be violated for the top-ranked elements however; hence the following requirement which
is obviously satisfied by fImF. A ranking rule f   is top continuous if, for all finite set X, all

R Î X and all sequences (Ri Î X, iÊ= 1, 2, ...) converging to R, [a Î U1(X, f(X, Ri)) for

all Ri in the sequence] Þ [a Î U1(X, f(X, R))].

Because U1( fImF(X, R)) = U1( fmF(X, R)), fImF is greatest faithful. Moreover, it

should be noticed that, contrary to the situation with fmF, it is also true for fImF that, when

T is a weak order, fImF(X, T) = T.

Since continuity implies top continuity and fImF is distinct from fmF, the conjunction of

ordinality, top continuity and greatest faithfulness does not characterize fImF. Replacing

greatest faithfulness by the requirement of being faithful on weak orders does not solve the

problem as shown by the example in remark a) above. This calls for an axiom that would
capture the iterative character of fImF. In order to do so, we use a condition proposed in [1],

lacking any less transparent way to do so. A ranking rule f is said to be top decomposable if,
for all finite set X and all R Î X, f(X, R)/Y = f(Y, R/Y), where Y stands for X\U1(X,

f(X, R)).



Though this condition may look complex it admits a simple interpretation. The alternatives
that are ranked first in f(X, R) are those of U1(X, f(X, R)). Top decomposability says the

ranking of the remaining alternatives is unaltered if the alternatives U1(X, f(X, R)) are taken

out of X and the same ranking rule is applied to X\U1(X, f(X, R)), R being restricted to this

set. Top decomposability may be an important property in practice; if, for some reason, the best

alternatives in a certain set become unavailable, it is not necessary to apply the ranking rule to

the remaining alternatives: they will be ranked exactly as in the previous ranking. The technical

interest of top decomposability is obvious. Let f be a ranking rule. To this ranking rule we
associate a choice rule Cf  such that, for all finite set X and all R Î X, Cf (X, R) = U1(X,

fX(R)). By definition, f is top decomposable if and only if f is identical to the ranking rule

defined by the iteration of Cf . It is clear that f is greatest faithful if and only if Cf  is

greatest faithful. If f is ordinal (resp. top continuous) then Cf  is ordinal (resp. continuous).

Given top decomposability and proposition 1, this proves:

Proposition 5. The Iterated min in Favour ranking rule fImF is the only ranking rule that is

ordinal, top continuous, greatest faithful and top decomposable.

Since ordinality, continuity and greatest faithfulness are independent properties for choice
rules and fmF is ordinal, top continuous and greatest faithful but not top decomposable, it is

easily shown that the axioms used in proposition 5 are independent. We are not presently aware

of any axioms that would allow to dispense with the, strong, top decomposability requirement.

5 Discussion and Open Problems

The various results presented in section 3 and 4 raise many questions and leave open many

problems. We summarise here those that appear to be the most important ones.

This paper has been concerned with the study of choice and ranking rules operating on any

reflexive fuzzy relation defined on a finite set. Though we mentioned that this is an appropriate

setting for ELECTRE III, this is not true for other methods such as PROMETHEE or the ones

proposed in [1]. As shown in [6], though the fuzzy relations built with these methods do not

possess remarkable properties, they may not lead to any fuzzy relation. Among aggregation

methods leading to fuzzy relations, ELECTRE III which may produce any of them, may be
considered as an exception. Since our axioms make explicit use of the richness of the set X,

our results cannot be used to characterize exploitation techniques to be coupled with methods
that always produce fuzzy relations belonging to a proper subset of X.

In order to overcome this problem, one may try to characterize the subset of X that may be

obtained with a given aggregation technique and then analyse choice and ranking rules using

axioms adapted to this subset (an example of such an analysis is found in [6]). Alternatively,



and perhaps more fruitfully, one may try to characterize both steps of an Outranking Method,

i.e., a technique starting with alternatives evaluated on several criteria and leading to a choice or

a ranking, therefore ignoring the intermediate step of the construction of a fuzzy relation.

Numerous examples of such characterisations can be found in the literature in Social Choice

Theory (see, e.g., [18]). Much work remains to be done in this direction in the area of MCDM.

We mentioned that we interpreted our fuzzy relations as "large" preference relations in

accordance with their construction in ELECTRE III. Though this allows to motivate our

greatest faithfulness axioms, this also raises the problem of defining the symmetric and

asymmetric part of the relation, i.e. the indifference and the strict preference relation associated

with the large preference relation. This problem is known to be difficult for fuzzy relations (on

this point see [10] or [11]). It was not dealt with explicitly here. We were thus unable, for

instance, to consider choice rules that would discriminate among alternatives that are "at least as

good" as all other alternatives on the basis of the way they compare in terms of "indifference"

or "strict preference" to these alternatives.

Let us finally mention that many scores apart from the mF score would deserve attention. If

ranking and choice rules based on scores involving sums have already been well studied (see

[4], [7]), the min Difference score:
mD a X R Min R a b R b a

b X a
( , , ) ( ( , ) ( , )

\
= -

Î { }

which seems particularly interesting (see [2]) remains to be fully explored. Similarly, a general

characterisation of rules using scores based on ranks is yet to be obtained.
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