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Abstract This chapter deals with a crucial step in the decision aiding process:
the aggregation of the alternatives’ performances on each criterion in order to
faithfully model the overall preference of the decision maker. The approach we
follow is that of conjoint measurement, which aims at determining under which
conditions a preference can be represented in a particular aggregation model. This
approach is first illustrated with the classical additive value function model. Then,
we describe two broad families of preference models, which constitute a framework
encompassing many aggregation models used in practice. The aggregation rules
that fit with the second family of models rely on the aggregation of preference
differences. Among this family we find, in particular, models for the outranking
relations (concordance relations with vetoes) that are used in several case studies in
this book.
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3.1 Introduction

In this chapter, we address a very peculiar point in a particular step of the decision
aiding process as it has been described in Chap. 2. We try to deal in a general way
with the operation of aggregating descriptions on various dimensions into a global
object, called preference, that synthesises all relevant features of the alternatives
and incorporates the preference of the client in a given problem situation P . To
this end, we follow the tradition of conjoint measurement theory, first developed in
Economics by Debreu (1960) and in Psychology by Luce and Tukey (1964), and
then adopted in decision analysis by Edwards (1971) and Raiffa (1969). It provides
us with families of models that decompose the preference into elements related
to the description of the alternatives along the various dimensions. Besides these
families of models, conjoint measurement theory provides us with very powerful
tools: the axiomatic characterizations of these models. The characterisations take
the following form: if a preference satisfies some conditions (called axioms), then it
admits a description within a particular model. Characterising a model amounts to
finding the properties of all the preferences that fit into the model.

Knowing the axioms characterizing a model can help the analyst to determine
whether that model is adequate in the given problem situation. He can for instance
ask the client how he feels the preference behaves in the situations evoked in the
axioms. Depending on the answers, he can then decide to work further with that
model or to reject it and examine another one. A deep understanding of a model can
also help the analyst to elicit the parameters involved in that model.

Another possible framework for the analysis of aggregation techniques is social
choice theory (see Chapter 5 in Bouyssou et al. 2006). In spite of the interest of this
framework, we will not present it here because of size constraints.

Before analysing very general and abstract families of models, we will start
with a somewhat easier section (Sect. 3.2), focussing on a specific and well-known
model: the additive value function model. This will give us the opportunity to
introduce some notation, to define many concepts and to discuss many aspects of
conjoint measurement theory.

In Sects. 3.3 and 3.4, we will mainly analyse two types of models. In the first one,
the comparison of two alternatives results from the comparison of the description
of each of them on the various dimensions. In the second type of models, for each
pair of alternatives and each dimension, the differences of preference between these
alternative on that dimension is assessed and the model makes the balance between
all these differences in order to determine which of the two alternatives is the
preferred one. Each type of model has its own logic and suggests a corresponding
strategy of elicitation. Section 3.5 is devoted to concordance relations.
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3.2 The Additive Value Function Model

Suppose that, within a certain problem formulation, we have started to build an
evaluation model: we have determined a set of alternatives A and n dimensions
that can describe all the aspects relevant to the decision problem at hand. We
shall assume that the set of functions gi used to describe the alternatives on each
dimension is exhaustive, so that any alternative a can be identified with the vector
.g1.a/; : : : ; gi .a/; : : : ; gn.a//. We may work with the set of vectors representing
the alternatives instead of the alternatives themselves. These vectors form a subset
f.g1.a/; : : : ; gn.a//; a 2 Ag of the Cartesian product X D X1�X2�: : : Xi�: : : Xn

of the various scales. We assume further that each vector of X corresponds to
an alternative and that the client’s preferences, denoted by %, is a relation on
the whole 1 set X . Hence, any alternative will be identified with a vector x D
.x1; : : : ; xn/ of X where x1; : : : ; xi ; : : : ; xn denote the evaluations of the alternative
x on the n criteria. And any vector x D .x1; : : : ; xn/ of X represents an alternative.

Conjoint measurement theory studies the links that may exist—depending on the
properties of %—between any pair .x; y/ of vectors of X and the fact that x % y or
not.

In the most popular model of this theory, it can be determined that x is preferred
to y by comparing the values that a function u, defined on X , assigns to x and y; u
is called a multi-attribute value function (MAV function). A very particular case for
u, but also by far the most frequent in practice, is when u decomposes into a sum of
n functions ui each of a single variable, i.e. u.x/ D u.x1; : : : ; xn/ D Pn

iD1 ui .xi /.
The main model of conjoint measurement—called additive value function model—
thus deals with preferences on X such that for all x; y 2 X :

x % y , u.x/ D
nX

iD1

ui .xi / � u.y/ D
nX

iD1

ui .yi /; (3.1)

where ui is a function from Xi into R for all i . In this representation, the relative
importance of the criteria is reflected in the magnitude of the functions ui .

There is an alternative way of representing the same model, which makes more
explicit the importance of the criteria:

x % y , v.x/ D
nX

iD1

ki vi .xi / � v.y/ D
nX

iD1

ki vi .yi /; (3.2)

1 This postulates the extension to all the Cartesian product X of the preference relation that is
perceived on g.A/ D f.g1.a/; : : : ; gn.a//; a 2 Ag. In practice, such an extension could force the
client to compare alternatives that appear artificial or unrealistic to him. Despite possible unwanted
practical consequences and provided that the range Xi is not unrealistic, we consider that the
extension of % to X is not an outrageous assumption.



38 D. Bouyssou et al.

in which ki are nonnegative “weighting factors” summing up to 1. Representa-
tions (3.1) and (3.2) are perfectly equivalent; indeed, it suffices to set ui D kvi to
find that any relation representable in (3.1) is also representable in (3.2). Depending
on the context, one or another formulation of the model may offer an advantage.

3.2.1 Additive Value Function and Conjoint Measurement

The above model, in either of its forms (3.1) or (3.2), will be referred to as the
additive value function model; u is called an additive MAV function. Conjoint
measurement theory is concerned with establishing conditions on % under which
a representation according to model (3.1) (or (3.2)) exists. Conditions of uniqueness
of the representation are also looked for.

Why is this interesting? Clearly, if we have reasons to believe that a preference
might obey model (3.1), we can try to determine the preference—which is usually
not known explicitly—by constructing the functions ui ; alternatively, for eliciting
model (3.2), we should construct the functions vi and estimate the coefficients ki .
Each model suggests a strategy (or several ones) for eliciting preferences that are
representable in the model. Of course, not all preferences satisfy model (3.1); we
shall not specify here the necessary and sufficient conditions but just mention the
following two important and obvious requirements on the preference:

• % must be a weak order, i.e. a transitive and complete preference, in other words
a complete ranking, possibly with ties. This is clearly a necessary requirement
since model (3.1) exactly says that the order % on X is obtained by transporting
the natural order on R onto X by means of the function u.

• % must satisfy (strong) preference independence. The decomposition of u into
a sum of functions each of a single variable reveals that if x % y while x and
y have received the same assessment on dimension i , then, if we change that
common level into another level still keeping it common, the transformed x and
y will compare in the same way as before. More formally, let x and y be such
that xi D yi D ai ; let x0 be equal to x except that x0

i D bi ¤ xi and let y0 be
equal to y except that y0

i D bi ¤ yi , then:

x % y , x0 % y0

since

ui .ai /C
X

j ¤i

uj .xj / � ui .ai /C
X

j ¤i

uj .yj / ,

ui .bi /C
X

j ¤i

uj .xj / � ui .bi /C
X

j ¤i

uj .yj /
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The independence property of the preference has far-reaching consequences; it
allows in particular for ceteris paribus reasoning, i.e. comparing alternatives the
evaluations of which differ only on a few attributes without specifying the common
level of their evaluations on the remaining attributes; the independence property
guarantees that the result of such a comparison is not altered when changing the
common level on the attributes that do not discriminate the alternatives. We shall
further discuss this property below in Sect. 3.2.5.

The two conditions stated above are not sufficient for ensuring that % satis-
fies (3.1). In case the evaluation space X is infinite, various sets of sufficient
conditions have been provided in the literature; they are often categorised in two
branches, the algebraic and the topological theories, respectively (see e.g. Fishburn,
1970, ch. 5). We give a schematic outline of the algebraic approach in Sect. 3.2.6. In
case the set of possible levels Xi on each dimension is finite, the situation is rather
unpleasant: the sufficient conditions (Fishburn, 1970, ch. 4) are quite complex and
not very insightful. We therefore do not present them.

3.2.2 Uniqueness Issues

If the model is to be used in order to elicit preferences through the construction of
functions ui , it may also be important to know whether these ui are uniquely deter-
mined. If they are not and provided we find a way of eliciting them independently
of one another, at the end, it will remain to make sure that the obtained versions of
the ui ’s are compatible, i.e. that they can be used directly in (3.1).

Actually, the ui ’s are not unique. For a preference % that fits in the additive value
model, there is a family of value functions u that both

• decompose additively as u.x/ DPn
iD1 ui .xi /

• and represent the preference i.e.satisfy x % y , u.x/ � u.y/.

Suppose indeed that we start with a particular representation of %, u.x/ DPn
iD1 ui .xi / and we transform ui into u0

i by a positive affine transformation

u0
i D ˛ui C ˇi ; (3.3)

with ˛ > 0 and ˇi a real number (that may vary with i ). By using u0
i instead of ui

in the additive model, we get

u0.x/ D
nX

iD1

u0
i .xi / D ˛

nX

iD1

ui .xi /C
nX

iD1

ˇi D ˛u.x/C
nX

iD1

ˇi :

Clearly, u0 is an alternative representation of the preference % since x % y ,
u.x/ � u.y/, u0.x/ � u0.y/. So, the ui ’s to be used in an additive representation
are at best determined up to a positive affine transformation.
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In case X is infinite, it is possible to prove that the ui ’s are actually unique up
to a positive affine transformation (with the same ˛ and possibly different ˇ). This
requires the use of a non-necessary condition ensuring that each set Xi is sufficiently
rich (see Sect. 3.2.6 for more details).

Assuming that the ui ’s are determined up to a positive affine transformation, we
shall briefly explain in Sect. 3.2.4 how we can take advantage of this to construct an
additive representation of the preference.

3.2.3 Marginal Preferences Within the Additive Value Model

Under the hypothesis that % fits with model (3.1), the model suggests that functions
ui could be elicited. Going one step further, it is readily seen that ui .xi / must be
compatible with the marginal preference relation %i defined as:

xi %i yi , 8 a�i 2 Xi; .xi ; a�i / % .yi ; a�i /; (3.4)

where .xi ; a�i / represents an alternative that has xi as i th component while the other
components are those of vector a. So, .xi ; a�i / and .yi ; a�i / are two alternatives
that may only differ on attribute i ; they have common evaluations aj on all attributes
j but for j D i . If the client states .xi ; a�i / % .yi ; a�i /, this means, in terms of the
marginal preference relation %i , that xi %i yi and it translates in model (3.1) into:

ui .xi /C
X

j ¤i

uj .aj / � ui .yi /C
X

j ¤i

uj .aj /;

from which we deduce ui .xi / � ui .yi /. Thus, for all levels xi ; yi in Xi , we have
xi %i yi iff ui .xi / � ui .yi /. Therefore, in model (3.1), the function ui interprets as a
numerical representation of the marginal preference %i , which is a weak order.

The fact that the marginal preference is a weak order has strong links with the
independence property of the preference % (see Sect. 3.3.5). There remains however
a difficulty; the ui functions that we need for using in the additive representation of
the preference are not just any numerical representation of the marginal preference
relations %i . Among the whole set of possible representations of the weak order %i ,
we have to select the right one (determined up to a positive affine transformation),
the one that is needed for a representation of the global preference in the additive
model.

Example 3.1 (Buying a Sports Car) Let us consider an example extensively dis-
cussed in chapter 6 of Bouyssou et al. (2000). We recall briefly the context. A
student, Thierry, who is also passionate about sports cars but earns little money,
assesses fourteen cars among which he considers to buy one, on the five dimensions
that are of importance to him, namely cost, acceleration, pick up, brakes and
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Table 3.1 Ranges of the five
dimensions in the “Buying a
sports car example”

Attribute i Xi Unit To be

Cost 1 Œ13I 21� 1; 000e Minimised

Acceleration 2 Œ28I 31� Second Minimised

Pick up 3 Œ34I 42� Second Minimised

Brakes 4 Œ1I 3� Qualitative Maximised

Roadholding 5 Œ1I 4� Qualitative Maximised

roadholding. Assume that his preference fits with the additive value model (3.1)
and let us help Thierry to build a value function u that represents his preference
according with the additive model.

We first settle the ranges Xi in which the attributes will reasonably vary (in
view of the evaluations of the fourteen selected cars). These ranges are shown in
Table 3.1. The evaluations on the first three attributes are expressed in “physical”
units (thousands of e, and, twice, seconds, respectively); the latter two belong to a
qualitative scale. On the first three attributes scales, the less is the better, while on
the latter two, the more is the better. What is the relationship between the evaluations
and the value function u? There are two main features that we want to emphasise:

• the information contained in the evaluations is transferred to the value function
through the marginal preferences;

• the marginal preferences—which are weak orders in the additive model (3.1)—
cannot be identified with the natural ordering of the evaluations although these
weak orders are not unrelated.

Take for example the cost attribute. Clearly, a car, say x, that costs 15; 000e is
not preferred over a car y that costs 14; 000e if both cars are tied on all other
dimensions. And the conclusion will be the same when comparing the former car
with any other one that costs less and has the same evaluations on all other attributes.
More formally, the car x can be described by the vector .15; a2; a3; a4; a5/ and y

by .14; a2; a3; a4; a5/; the first dimension of these vectors represent the cost (in
thousands of e) and ai , for i D 2; : : : ; 5, designates any level on the other attributes.
The car y is certainly at least as preferred as x (y%x) since y is cheaper than x

and all other evaluations are identical for both cars. It is a typical case in which
“ceteris paribus” reasoning applies; the property of the preference we use here is
weak preference independence (see Definition 3.1, p. 45); it is implied by strong
preference independence which is a necessary condition for a preference being
represented in the additive value model (3.1).

The fact that car y is preferred over x, independently of the value of aj , can
be translated into a statement involving the marginal preference %1 on the Cost
attribute, namely 14%115. For all pairs of costs x1; y1 in the range 13I 21, we would
similarly have y1%1x1 as soon as x1 � y1. But x1 > y1 does not necessarily
implies y1%1x1 because a small difference between x1 and y1 could be considered
as negligible with respect to the imprecision in the evaluation of the costs.
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3.2.4 Leaning on the Additive Value Model for Eliciting
Preferences

The additive value model suggests a general strategy for the elicitation of a pref-
erence that fits with the model. We assume here that the conditions of uniqueness
of the additive representation are fulfilled (see Sect. 3.2.2). The strategy consists
in eliciting the functions ui , relying upon the fact that the ui ’s are numerical
representations of the marginal preferences. The main problem is to find among
the many representations of the marginal preferences, the essentially unique ones
that can be summed up and yield an additive representation u of the preference.
This can be done in many different ways, which have been well-studied (see, e.g.,
Fishburn, 1967; Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). For
the reader’s convenience, we briefly illustrate the method of standard sequences
on the example of ranking sports cars evoked in the previous section; we refer the
reader to Bouyssou et al. (2000, ch. 6) for more detail and for the illustration of
other elicitation methods applied to the same example.

We start with considering two hypothetical cars that differ only on cost and
acceleration attributes, their performance levels on the other dimensions being
tied. We assume that the two cars differ in cost by a noticeable amount, say for
instance 1; 000e; we locate an interval of cost of that amplitude, for example, in
the middle of the cost range, say Œ16; 500I 17; 500�e. Then we fix a value of the
acceleration, also in the middle of the acceleration range, say, 29:5 s in the middle
of Œ28I 31�. We ask the client to consider a car costing 16; 500e and accelerating
in 29:5 s, the evaluations on the other dimensions being fixed at an arbitrary (say
mid-range) value. We ask the client to assess a value x2 of the acceleration such
that he would be indifferent between the cars .16:5I 29:5/ and the car .17:5I x2/.
This question amounts to determining which improvement on the performance
on the acceleration attribute (starting from a value of 29:5 s) would be worth a
cost increase of 1; 000e (starting from 16; 500e), all other performance levels
remaining constant. Since the client is supposed to be fond of sports cars, he could
say for instance that x2 D 29:2 s, which would result in the following indifference
judgement: .16:5I 29:5/ � .17:5I 29:2/. In view of the hypothesis that the client’s
preference fits into the additive value model, this indifference judgement can be
translated into the following equality:

u1.16:5/C u2.29:5/C
5X

j D3

uj .xj / D u1.17:5/C u2.29:2/C
5X

j D3

uj .xj / (3.5)

Since the performance of both cars on attributes j D 3; 4; 5 are equal, the
corresponding terms of the sum cancel and we are left with u1.16:5/C u2.29:5/ D
u1.17:5/C u2.29:2/ or:

u1.16:5/� u1.17:5/ D u2.29:2/� u2.29:5/: (3.6)
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The second question to the client uses his answer to the first question; we ask him to
assess the value x2 of the acceleration that would leave him indifferent between the
two cars .16:5I 29:2/ and .17:5I x2/. Suppose the answer is x2 D 28:9; we would
then infer that:

u1.16:5/� u1.17:5/ D u2.28:9/� u2.29:2/: (3.7)

Note that the lefthand side has remained unchanged: we always ask for acceleration
intervals that are considered as equivalent to the same cost interval.

The next question asks for a value x2 such that .16:5I 28:9/ � .17:5I x2/ and so
on. We may imagine that the sequence of answers could be e.g.: 29:5; 29:2; 28:9;
28:7; 28:5; 28:3; 28:1. In view of (3.6), this amounts to saying that this sequence
of levels on the marginal value scale of the acceleration attribute are equally spaced
and that all differences of value between consecutive pairs of levels in the list are
worth the same difference of cost, namely a difference of 1; 000e placed between
16; 500 and 17; 500e. In other words, the client values 1; 000e an improvement of

0:3 s w.r.t.a performance level of 29.5 s or 29.2 s
0:2 s w.r.t.a performance level of 28.9 s, 28.7 s, 28.5 s or 28.3 s

on the acceleration attribute. He thus praises more improvements in the lower
range of the scale. Similar questions are asked for the upper half of the range
of the acceleration attribute, i.e. from 29:5 to 31 s. We ask the client to assess x2

such that he would be indifferent between .16:5I x2/ and .17:5I 29:5/. Assume the
client’s answer is x2 D 30:0. Then we go on asking for x2 such that .16:5I x2/ �
.17:5I 30:0/ and suppose we get x2 D 31. From all these answers, one understands
that the client values in the same way a gain in acceleration performance of 1 s
between 31 and 30 and a gain of 0:2 s between e.g.between 28:9 and 28:7, a ratio of
1 to 5.

What can we do with this piece of information? We can build a piecewise
linear approximation of the function u2 (defined on the range going from 28 to
31 s). Using an arbitrary unit length on the vertical axis [the unit length represents
1; 000e or more precisely the difference u1.16:5/ � u1.17:5/], we get the function
u2 represented on Fig. 3.1; it is in fact a linear interpolation of nine points the
first coordinate of which correspond to the answers made by the client to seven
indifference judgments; the second coordinate of these points have just to be
equally spaced (by one unit length). The position of the origin is arbitrary. We have
extrapolated the line from 28:1 to 28 (thinner piece of line). Note that the function
u2 is decreasing since smaller is better with the measure chosen for evaluating the
acceleration.

For determining u3, u4 and u5, we search successively, in the same way as for
acceleration, for intervals on the pick up, brakes and roadholding scales that would
compensate exactly the cost interval .16:5I 17:5/ in terms of preference.
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Fig. 3.1 Piecewise linear
interpolation of the marginal
value function u2 on the
acceleration attribute

28.0 28.5 29.0 29.5 30.0 30.5 31.0

Fig. 3.2 Piecewise linear
interpolation of the marginal
value function u2 on the cost
attribute

13 14 15 16 17 18 19 20 21

Finally, we have to do the same recoding for the cost itself. We fix an interval for
instance on the acceleration scale, say Œ29:2I 29:5�. We already know the answer to
one question: .17:5I 29:2/ is indifferent with .x1; 29:5/ when x1 D 16:5. We then
ask the client, which level x1 on the cost scale would leave him indifferent between
.16:5I 29:2/ and .x1; 29:5/. A cost lower than 16; 500e is expected and we use it in
the next question, and so on. We might end up for instance with the curve shown on
Fig. 3.2. Looking at that curves indicates that the client is inclined to pay more for
the same improvement on the acceleration attribute for a car priced in the lower part
of the cost range than in the upper part. Plausibly, with a limited budget as a student,
Thierry can reasonably spend up to 17; 500e on buying a car; paying more would
imply restrictions on other expenses.

Suppose we have built that way piecewise linear approximations of u1 to u5. If
we have chosen the same unit on all vertical axes to represent intervals equivalent to
u1.16:5/� u1.17:5/, it only remains to add up these functions to obtain a piecewise
linear approximation of u; ranking in turn the alternatives according with their
decreasing value of u [formula (3.1)] yields the preference % (or an approximation
of it). For the sake of illustration, we show in Table 3.2 the additive value function2

computed for the five best cars among the 14 cars selected as alternatives by Thierry.

2In reality, these values have been determined by means of another elicitation method; details are
provided in Bouyssou et al. (2000, ch. 6).
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Table 3.2 Ranking of the
cars in decreasing order of the
value function u

Cars Value u Rank

Peugeot 309/16 0.85 1

Nissan Sunny 0.75 2

Honda Civic 0.66 3

Peugeot 309 0.65 4

Renault 19 0.61 5

3.2.5 Independence and Marginal Preferences

We have seen in Sect. 3.2.3 how it is possible to use the preference relation % in
order to define a preference relation on a single dimension (i.e., on the set Xi ).
We now extend this concept of marginal preferences to subsets of dimensions. We
denote by N the set of integers f1; 2; : : : ; ng. For any nonempty subset J of N , xJ

is the product set
Q

i2J Xi and we define the marginal relation %J induced on XJ

by % letting, for all xJ ; yJ 2 XJ :

xJ %J yJ , .xJ ; z�J /%.yJ ; z�J /; for all z�J 2 X�J ;

with asymmetric (resp. symmetric) part �J (resp.�J ). When J D fig, we often
abuse notation and write %i instead of %fig (see the Definition (3.4) of %i on p. 40).
Note that if % is reflexive (resp. transitive), the same will be true for %J . This is
clearly not true for completeness however.

Definition 3.1 (Independence) Consider a binary relation % on a set X DQn
iD1 Xi and let J � N be a nonempty subset of dimensions. We say that % is

independent for J if, for all xJ ; yJ 2 XJ ,

Œ.xJ ; z�J /%.yJ ; z�J /; for some z�J 2 X�J �) xJ %J yJ :

If % is independent for all nonempty subsets of N , we say that % is independent
(or strongly independent). If % is independent for all subsets containing a single
dimension, we say that % is weakly independent.

In view of (3.1), it is clear that the additive value model will require that
% is independent. This crucial condition says that common evaluations on some
dimensions do not influence preference. Whereas independence implies weak
independence, it is well-know that the converse is not true (Wakker, 1989).

Independence, or at least weak independence, is an almost universally accepted
hypothesis in multiple criteria decision making. It cannot be overemphasised that it
is possible to find examples in which it is inadequate. Yet, many authors (Keeney,
1992; Roy, 1996; von Winterfeldt and Edwards, 1986) have argued that such failures
of independence were almost always due to a poor structuring of dimensions.
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When % is a weak order and is weakly independent, marginal preferences are
also weak orders and combine in a monotonic manner with the preference %.
For instance, if an alternative is preferred to another on all dimensions, then the
former should be globally preferred to the latter. This monotonicity property of the
preference with respect to the marginal preferences has strong links with the idea of
dominance.

It should however be kept in mind that preferences that are not weak orders may
show different behaviours. For more general preferences, the marginal preferences
may no longer be the adequate tool on which to lean for eliciting the preference.
This will be strongly emphasised and analysed in the generalisations of the additive
value model discussed in Sects. 3.3, 3.4, and 3.5.

3.2.6 The Additive Value Model in the “Rich” Case

The purpose of the rest of Sect. 3.2 is to present the conditions under which a
preference relation on a product set may be represented by the additive value
function model (3.1) and how such a model can be assessed. Some limitations of
this approach will also be discussed. We begin here with the case that most closely
resembles the measurement of physical dimensions such as length.

When the structure of X is supposed to be “adequately rich”, conjoint measure-
ment is an adaptation of the process that is used for the measurement of physical
extensive quantities such as length. The basic idea of this type of measurement
(called extensive measurement, see Krantz et al., 1971, ch. 3) consists in comparing
the object to be measured to a standard object that can be replicated while the length
of the chains of replicas is an integer number of times that of the standard “unit”
object. What will be measured here is the “length” of preference intervals on a
dimension using a preference interval on another dimension as a standard.

3.2.6.1 The Case of Two Dimensions

Consider first the two dimension case, where the relation % is defined on a set
X D X1 �X2. In Sect. 3.2.1, p.38, we already identified necessary conditions for a
relation to be representable in the additive value model, namely, we have to assume
that % is an independent weak order. In such a case, %1 and %2 are weak orders, as
stated in Sect. 3.2.5. Consider two levels x0

1 ; x1
1 2 X1 on the first dimension such

that x1
1�1x

0
1 , i.e. x1

1 is preferable to x0
1 . Note that we will have to exclude the case

in which all levels on the first dimension would be marginally indifferent in order to
be able to find such levels.

Choose any x0
2 2 X2. The, arbitrarily chosen, element .x0

1 ; x0
2/ 2 X will be

our “reference point”. The basic idea is to use this reference point and the “unit”
on the first dimension given by the reference preference interval Œx0

1 ; x1
1 � to build a
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standard sequence on the preference intervals on the second dimension. Hence, we
are looking for an element x1

2 2 X2 that would be such that:

.x0
1; x1

2/�.x1
1 ; x0

2/: (3.8)

Clearly this will require the structure of X2 to be adequately “rich” so as to find
the level x1

2 2 X2 such that the reference preference interval on the first dimension
Œx0

1 ; x1
1 � is exactly matched by a preference interval of the same “length” on the

second dimension Œx0
2 ; x1

2 �. Technically, this calls for a solvability assumption or,
more restrictively, for the supposition that X2 has a (topological) structure that is
close to that of an interval of R and that % is “somehow” continuous.

If such a level x1
2 can be found, model (3.1) implies:

u1.x
0
1/C u2.x

1
2/ D u1.x

1
1/C u2.x

0
2/ so that

u2.x
1
2/� u2.x

0
2/ D u1.x

1
1/� u1.x

0
1/:

(3.9)

Let us fix the origin of measurement letting: u1.x
0
1/ D u2.x

0
2/ D 0; and our unit

of measurement letting: u1.x
1
1/ D 1 so that u1.x

1
1/ � u1.x

0
1/ D 1: Using (3.9), we

therefore obtain u2.x
1
2/ D 1. We have therefore found an interval between levels on

the second dimension (Œx0
2 ; x1

2 �) that exactly matches our reference interval on the
first dimension (Œx0

1 ; x1
1�). We may proceed to build our standard sequence on the

second dimension (see Fig. 3.3) asking for levels x2
2 ; x3

2 ; : : : such that:

.x0
1 ; x2

2/�.x1
1 ; x1

2/;

.x0
1 ; x3

2/�.x1
1 ; x2

2/;

: : :

.x0
1 ; xk

2 /�.x1
1 ; xk�1

2 /:

As above, using (3.1) leads to:

u2.x
2
2/ � u2.x

1
2/ D u1.x

1
1/� u1.x

0
1/;

u2.x
3
2/ � u2.x

2
2/ D u1.x

1
1/� u1.x

0
1/;

: : :

u2.x
k
2 / � u2.x

k�1
2 / D u1.x

1
1/� u1.x

0
1/;

so that:

u2.x
2
2/ D 2; u2.x

3
2/ D 3; : : : ; u2.x

k
2 / D k:
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Fig. 3.3 Building a standard
sequence on X2
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This process of building a standard sequence of the second dimension therefore
leads to defining u2 on a number of, carefully, selected elements of X2. Suppose
now that there is a level y2 2 X2 that can never be “reached” by our standard
sequence, i.e.such that y2�2x

k
2 , even for very large k. This is clearly not compatible

with an additive representation as in (3.1). We therefore need to exclude this case by
imposing a specific condition, called Archimedean because it mimics the property of
the real numbers saying that for any positive real numbers x; y it is true that nx > y

for some integer n, i.e. y, no matter how large, may always be exceeded by taking
any x, no matter how small, and adding it with itself and repeating the operation a
sufficient number of times.

Now that a standard sequence is built on the second dimension, we may use
any part of it to build a standard sequence on the first dimension. This will
require finding levels x2

1 ; x3
1; : : : 2 X1 such that (see Fig. 3.4): .x2

1 ; x0
2/�.x1

1 ; x1
2/,

.x3
1 ; x0

2/�.x2
1 ; x1

2/, . . . .xk
1 ; x0

2/�.xk�1
1 ; x1

2/. Using (3.1) leads to:

u1.x
2
1/ � u1.x

1
1/ D u2.x

1
2/� u2.x

0
2/;

u1.x
3
1/ � u1.x

2
1/ D u2.x

1
2/� u2.x

0
2/;

: : :

u1.x
k
1 / � u1.x

k�1
1 / D u2.x

1
2/� u2.x

0
2/;
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Fig. 3.4 Building a standard sequence on X1
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Fig. 3.5 The grid

so that: u1.x
2
1/ D 2; u1.x

3
1/ D 3; : : : ; u1.x

k
1 / D k. As was the case for the second

dimension, the construction of such a sequence will require the structure of X1

to be adequately rich, which calls for a solvability assumption. An Archimedean
condition will also be needed in order to be sure that all levels of X1 can be reached
by the sequence.

We have defined a “grid” in X (see Fig. 3.5) and we have u1.x
k
1 / D k and

u2.x
k
2 / D k for all elements of this grid. Intuitively such numerical assignments

seem to define an adequate additive value function on the grid. We have to prove
that this intuition is correct. Let us first verify that, for all integers ˛; ˇ; �; ı:

˛ C ˇ D � C ı D �) .x˛
1 ; x

ˇ
2 /�.x

�
1 ; xı

2/: (3.10)

When � D 1, (3.10) holds by construction because we have: .x0
1 ; x1

2/�.x1
1 ; x0

2/.
When � D 2, we know that .x0

1 ; x2
2/�.x1

1 ; x1
2/ and .x2

1; x0
2/�.x1

1 ; x1
2/ and the claim

is proved using the transitivity of �.
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Consider the � D 3 case. We have .x0
1 ; x3

2/�.x1
1 ; x2

2/ and .x0
1 ; x3

2/�.x1
1 ; x2

2/.
It remains to be shown that .x2

1 ; x1
2/�.x1

1 ; x2
2/ (see the dotted arc in Fig. 3.5).

This does not seem to follow from the previous conditions that we more or less
explicitly used: transitivity, independence, “richness”, Archimedean. Indeed, it does
not. Hence, we have to suppose that: .x2

1; x0
2/�.x0

1 ; x2
2/ and .x0

1; x1
2/�.x1

1 ; x0
2/

imply .x2
1 ; x1

2/�.x1
1; x2

2/. This condition, called the Thomsen condition, is clearly
necessary for (3.1). The above reasoning easily extends to all points on the grid,
using weak ordering, independence and the Thomsen condition. Hence, (3.10) holds
on the grid.

It remains to show that:

� D ˛ C ˇ > �0 D � C ı) .x˛
1 ; x

ˇ
2 /�.x

�
1 ; xı

2/: (3.11)

Using transitivity, it is sufficient to show that (3.11) holds when � D �0 C
1. By construction, we know that .x1

1 ; x0
2/�.x0

1 ; x0
2/. Using independence this

implies that .x1
1 ; xk

2 /�.x0
1 ; xk

2 /. Using (3.10) we have .x1
1; xk

2 /�.xkC1
1 ; x0

2/ and
.x0

1 ; xk
2 /�.xk

1 ; x0
2/. Therefore we have .xkC1

1 ; x0
2/�.xk

1 ; x0
2/, the desired conclusion.

Hence, we have built an additive value function of a suitably chosen grid (see
Fig. 3.6). The logic of the assessment procedure is then to assess more and more
points somehow considering more finely grained standard sequences. Going to the
limit then unambiguously defines the functions u1 and u2. Clearly such u1 and u2 are
intimately related. Once we have chosen an arbitrary reference point .x0

1 ; x0
2/ and a

level x1
1 defining the unit of measurement, the process just described entirely defines

u1 and u2. It follows that the only possible transformations that can be applied to u1

and u2 is to multiply both by the same positive number ˛ and to add to both a,
possibly different, constant. This is usually summarised saying that u1 and u2 define
interval scales with a common unit.

Fig. 3.6 The entire grid
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The above reasoning is a rough sketch of the proof of the existence of an additive
value function when n D 2, as well as a sketch of how it could be assessed. Careful
readers will want to refer to Fishburn (1970, ch. 5), Krantz et al. (1971, ch. 6) and
Wakker (1989, ch. 3).

It is worth emphasising that the assessment technique using standard sequences
outlined above makes no use of the vague notion of the “importance” of the various
dimensions. The “importance” is captured here in the lengths of the preference
intervals on the various dimensions.

A common but critical mistake is to confuse the additive value function
model (3.1) with a weighted average and to try to assess weights asking whether
a dimension is “more important” than another. This makes no sense.

3.2.6.2 The Case of More Than Two Dimensions

The good news is that the process is exactly the same when there are more than two
dimensions. With one surprise: the Thomsen condition is no longer needed to prove
that the standard sequences defined on each dimension lead to an adequate value
function on the grid. A heuristic explanation of this strange result is that, when
n D 2, there is no difference between independence and weak independence. This
is no more true when n � 3 and assuming independence is much stronger than just
assuming weak independence.

We use below the “algebraic approach” (Krantz, 1964; Krantz et al., 1971; Luce
and Tukey, 1964). A more restrictive approach using a topological structure on X

is given in Debreu (1960), Fishburn (1970, ch. 5) and Wakker (1989, ch. 3). We
formalise below the conditions informally introduced in the preceding section. The
reader not interested in the precise statement of the results or, better, having already
written down his own statement, may skip this section.

Definition 3.2 (Thomsen Condition) Let % be a binary relation on a set X D
X1 �X2. It is said to satisfy the Thomsen condition if

.x1; x2/�.y1; y2/ and .y1; z2/�.z1; x2/) .x1; z2/�.z1; y2/;

for all x1; y1; z1 2 X1 and all x2; y2; z2 2 X2.

Figure 3.7 shows how the Thomsen condition uses two “indifference curves” (i.e.
curves linking points that are indifferent) to place a constraint on a third one. This
was needed above to prove that an additive value function existed on our grid.
Remember that the Thomsen condition is only needed when n D 2; hence, we
only stated it in this case.

Definition 3.3 (Standard Sequences) A standard sequence on dimension i 2 N

is a set fak
i W ak

i 2 Xi; k 2 Kg where K is a set of consecutive integers
(positive or negative, finite or infinite) such that there are x�i ; y�i 2 X�i satisfying
NotŒ x�i ��i y�i � and .ak

i ; x�i /�.akC1
i ; y�i /, for all k 2 K .
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Fig. 3.7 The Thomsen
condition
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Fig. 3.8 Restricted
solvability on X1
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A standard sequence on dimension i 2 N is said to be strictly bounded if there
are bi ; ci 2 Xi such that bi�ia

k
i �i ci , for all k 2 K . It is then clear that, when

model (3.1) holds, any strictly bounded standard sequence must be finite.

Definition 3.4 (Archimedean) For all i 2 N , any strictly bounded standard
sequence on i 2 N is finite.

The following condition rules out the case in which a standard sequence cannot be
built because all levels are indifferent.

Definition 3.5 (Essentiality) Let % be a binary relation on a set X D X1 � X2 �
� � � � Xn. dimension i 2 N is said to be essential if .xi ; a�i /�.yi ; a�i /, for some
xi ; yi 2 Xi and some a�i 2 X�i .

Definition 3.6 (Restricted Solvability) Let % be a binary relation on a set X D
X1 �X2 � � � � �Xn. Restricted solvability is said to hold with respect to dimension
i 2 N if, for all x 2 X , all z�i 2 X�i and all ai ; bi 2 Xi , Œ.ai ; z�i /%x%.bi ; z�i /�)
Œx�.ci ; z�i /, for some ci 2 Xi�.

Restricted solvability is illustrated in Fig. 3.8 in the case where n D 2. It says
that, given any x 2 X , if it is possible find two levels ai ; bi 2 Xi such that when
combined with a certain level z�i 2 X�i on the other dimensions, .ai ; z�i / is
preferred to x and x is preferred to .bi ; z�i /, it should be possible to find a level
ci , between ai and bi , such that .ci ; z�i / is exactly indifferent to x.

We are now in position to state the central results concerning model (3.1). Proofs
may be found in Krantz et al. (1971, ch. 6) and Wakker (1991).
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Theorem 3.1 (Additive Value Function When n D 2) Let % be a binary relation
on a set X D X1 � X2. If restricted solvability holds on all dimensions and each
dimension is essential then % has a representation in model (3.1) if and only if % is
an independent weak order satisfying the Thomsen and the Archimedean conditions.

Furthermore in this representation, u1 and u2 are interval scales with a common
unit, i.e.if u1; u2 and w1; w2 are two pairs of functions satisfying (3.1), there are real
numbers ˛; ˇ1; ˇ2 with ˛ > 0 such that, for all x1 2 X1 and all x2 2 X2

u1.x1/ D ˛w1.x1/C ˇ1 and u2.x2/ D ˛w2.x2/C ˇ2:

When n � 3 and at least three dimensions are essential, the above result simplifies
in that the Thomsen condition can now be omitted.

Theorem 3.2 (Additive Value Function When n � 3) Let % be a binary relation
on a set X D X1 � X2 � : : : � Xn with n � 3. If restricted solvability holds on all
dimensions and at least three dimensions are essential then % has a representation
in (3.1) if and only if % is an independent weak order satisfying the Archimedean
condition. Furthermore in this representation u1, u2; : : : ; un are interval scales with
a common unit.

3.2.6.3 Implementation: Standard Sequences and Beyond

The assessment procedure based on standard sequences is, as we have seen, rather
demanding; hence, it seems to be seldom used in the practice of decision analysis
(Keeney and Raiffa, 1976). Many other simplified assessment procedures have been
proposed that are less firmly grounded in theory. These procedures include (1) direct
rating techniques in which values of ui are directly assessed with reference to two
arbitrarily chosen points; (2) procedures based on bisection, the decision-maker
being asked to assess a point that is “half way”, in terms of preference, two reference
points, (3) procedures trying to build standard sequences on each dimension in
terms of “preference differences.” An excellent overview of these techniques may
be found in von Winterfeldt and Edwards (1986, ch. 7).

3.2.7 Insufficiency of Additive Conjoint Measurement

We now present two examples showing that there are preferences that are both
reasonable and do not satisfy the hypotheses for an additive representation. We also
present an example that can be represented within the additive value function model
but also in a more specific model than (3.1), with special ui functions.

Example 3.2 A solution of a Flexible Constraint Satisfaction Problem is assessed
by a vector of n numbers that represent the degree to which each of the n constraints



54 D. Bouyssou et al.

are satisfied; the satisfaction degree is usually modelled as a number between 0
and 1. For instance, in certain scheduling problems (Dubois et al., 1995; Dubois and
Fortemps, 1999), there may be an ideal range of time between the end of some tasks
and the starting of some other ones; if more (or less) time elapses, then the schedule
is less satisfactory; for each constraint of that type, the degree of satisfaction is equal
to 1 if the corresponding slack time lies in the ideal range; it decreases outside this
range and, outside a larger interval corresponding to the admissible delays between
the end of a task and the beginning of another, the degree of satisfaction reaches 0.
Usually, one considers that the scale on which the satisfaction degrees are assessed is
ordinal and the same for all constraints: one may meaningfully compare satisfaction
degrees (saying for instance that one is larger than the other), but the difference
between two degrees cannot be compared meaningfully to another difference;
moreover, the satisfaction degrees of two different constraints are commensurate:
it is meaningful to say that a constraint is satisfied at a higher level than another
one. A solution to such a scheduling problem is an assignment of a starting time to
each task; comparing two solutions amounts to comparing their associated vectors
of satisfaction degrees. Usually in practice, a solution is evaluated by its weakest
aspect, i.e. the lowest degree of satisfaction it attains on the set of constraints. In
other words, vectors of satisfaction can be compared using the “min-score”; for
x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, where xi and yi respectively denote the
degrees of satisfaction of constraint i by the two alternatives to be compared, one
has:

x % y , min.x1; : : : ; xn/ � min.y1; : : : ; yn/ (3.12)

Clearly, the relation comparing the vectors of satisfaction degrees can be viewed as
a relation % on the product set X D Œ0; 1�n. It is defined by means of the “min”-
score instead of an additive value function as in model (3.1). One can not exclude
a priori that the relation defined by (3.12) could also be represented in model (3.1).
This is however not the case, since this relation does not satisfy one of the necessary
conditions stated above, namely the strong independence property: we can indeed
transform an indifference into a strict preference by changing the common level
of satisfaction that is achieved by two alternatives on the same constraint. This
is shown by the following example. Suppose there are two constraints (n D 2)
and x D .0:6; 0:5/, y D .0:6; 0:7/; one has x � y, but lowering for instance
to 0.3 the common satisfaction level yields x0 � y0 (with x0 D .0:3; 0:5/ and
y0 D .0:3; 0:7/). It should be clear from this example that there are simple and well-
motivated procedures the additive value function model is not able to encompass.

Example 3.3 The other necessary condition for model (3.1), namely transitivity,
may also fail to be satisfied by some reasonable preferences. Let us just recall R. D.
Luce’s famous example (Luce, 1956) of the cup of coffee: a person who likes coffee
is indifferent between two cups of coffee that differ by the addition of one grain of
sugar; he normally would not be indifferent between a cup with no sugar and a cup
containing one thousand grains of sugar; he would definitely prefer the latter or the
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former. A long sequence of indifferent alternatives may thus result in preference,
contrary to the hypothesis of the additive value model, in which preferences are
weak orders, hence transitive.3

Example 3.4 Assume gi .a/ is a number. The PROMETHEE II method (Brans and
Vincke, 1985) starts with comparing alternatives, in a pairwise manner, with respect
to each attribute i . The intensity Si.a; b/ of the preference of a over b on attribute i

is a nondecreasing function Pi of the difference gi .a/ � gi .b/:

Si.a; b/ D Pi .gi .a/ � gi .b//: (3.13)

When the difference gi .a/ � gi .b/ is negative, it is assumed that Si.a; b/ D 0. The
global intensity of the preference of a over b is described by means of a weighted
sum of the Si functions:

S.a; b/ D
nX

iD1

wi Si .a; b/; (3.14)

where wi is the weight associated with attribute i . In a further step, the alternatives
are evaluated by their “net flow” defined by:

˚.a/ D
X

b2A
S.a; b/� S.b; a/: (3.15)

This score is then used to determine that a is preferred over b if ˚.a/ � ˚.b/. This
is the customary presentation of PROMETHEE II (see e.g. Vincke, 1992, p. 74).

By using Eq. (3.15), it is easy to rewrite ˚.a/ as follows:

˚.a/ D
nX

iD1

wi

X

b2A
ŒSi .a; b/� Si.b; a/�: (3.16)

The latter formula can be seen as defining an additive value model in which the
marginal value functions ui have the particular form:

ui .gi .a// D
X

b2A
ŒSi .a; b/� Si.b; a/�: (3.17)

The computation of function ui that models the influence of criterion i depends
on the other alternatives (thereby violating a property called “independence of
irrelevant alternatives” (Arrow, 1951)). Equation (3.17) suggests that constructing

3 For further discussion of the transitivity of preference issue, mainly in the context of decision
under risk, the reader could see Fishburn (1991a). For counter-arguments against considering
intransitive preferences, see (Luce, 2000, section 2.2).
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the preference can go through modelling for each dimension the value of any
echelon gi .a/ as the sum of its “advantages” and “disadvantages”, respectively
coded by Si .a; b/ and Si .b; a/. Model (3.1) makes no suggestion of intuitively
interpretable concepts that would suggest that ui could be viewed as a superposition
(through a sum) of more elementary elements.

In the following sections, we present more general conjoint measurement models
(providing more general representations of the preference); the proposed models all
induce concepts that can support the construction or elicitation process.

3.3 A First Line of Generalisation: Models Based
on Marginal Traces or Preferences

In this section we discuss a generalisation of the additive value function model while
preserving the possibility of using the fundamental construction tool suggested
by the model, namely marginal preferences that are weak orders represented
by the functions ui in (3.1). Interestingly, the generalised model admits a full
characterisation through fairly simple and intuitive axioms, which was not the case
with model (3.1) as we have just seen.

3.3.1 Decomposable Preferences

The so-called decomposable model has been introduced in Krantz et al. (1971, ch. 7)
as a natural generalisation of model (3.1). The preference % is supposed to be a weak
order and can thus be represented by a rule of the type

x % y , u.x/ � u.y/ (3.18)

with u, a real-valued function defined on X . Instead of specifying u as a sum of
functions ui of the variables xi , u is just supposed to be decomposable in the form

u.x/ D U.u1.x1/; : : : ; un.xn// (3.19)

where ui is a function from Xi to R (the set of real numbers) and U is increasing in
all its arguments.

The interesting point with this model is that it admits an intuitively appealing
characterisation. The basic axiom for characterising the above decomposable model
(with increasing U ) is the weak independence condition (see Definition 3.1).

For preferences that are weak orders, it is possible to prove that the weak
independence property is equivalent to the fact that the marginal preferences %i

are weak orders (Proposition 6.1 in Bouyssou et al. 2006). Moreover, it is easy to
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see that ui in (3.19) is necessarily a numerical representation of %i , i.e.xi %i yi iff
ui .xi / � ui .yi /. This is an important result since it opens the door to the elicitation
of the ui ’s by questioning in terms of the marginal preferences %i like was done in
the additive utility model.

The following theorem states a simple and important characterisation of the
decomposable model. This result was first proved in Krantz et al. (1971, ch. 7).

Theorem 3.3 (Representation in the Decomposable Model) A preference rela-
tion % on X admits a representation in the decomposable model:

x % y , U.u1.x1/; : : : ; un.xn// � U.ui .y1/; : : : ; ui .yn//

with U increasing in all its arguments iff % is a weak order and satisfies weak
independence.

If one intended to apply this model, one would go through specifying the type
of function U , possibly by verifying further conditions on the preference that
impose that U belongs to some parameterised family of functions (e.g.polynomials
of bounded degree). Although decomposable preferences form a large family of
preferences, it is not large enough to encompass all useful cases. A major restriction
is that not all preferences may be assumed to be weak orders, as illustrated in
Example 3.3 by the example of the cups of coffee.

3.3.2 Insufficiency of Marginal Analysis: Marginal Traces

In the decomposable model, the preference may be reconstructed on the basis of the
marginal preferences %i since it is represented by a function of the ui ’s, themselves
representing %i (at least in the strict decomposable model).

This is no longer the case when % is not a weak order because the relation %i on
Xi is not very discriminating.

Example 3.5 To fix the ideas, suppose a decision-maker has preferences that can be
represented by a % b iff

Pn
iD1 ui .ai / �Pn

iD1 ui .bi /� ı for some positive and real
ı. The reason for adding ı is that the decision-maker considers that small differences
between

Pn
iD1 ui .ai / and

Pn
iD1 ui .bi / are not significant. In particular, a � b iffPn

iD1 ui .ai / >
Pn

iD1 ui .bi / C ı. Suppose also n D 10 and the range of each
mapping ui is Œ0; 1�. Then the range of

Pn
iD1 ui .�/ is Œ0; 10� and it seems plausible

to use ı D 1. Let us now consider objects differing only on one attribute. We have
ai �i bi iff .ai ; a�i / � .bi ; a�i / iff

Pn
j D1 uj .aj / > ui .bi / CP

j ¤i uj .aj / C 1

iff ui .ai / > ui .bi / C 1. Since, the range of ui is Œ0; 1�, it will never be the case
that ui .ai / > ui .bi / C 1 and, hence ai �i bi for all ai ; bi 2 Xi . In other words,
the marginal preference %i is completely uninformative: it does not discriminate
any level of Xi . This case is obviously extreme but it is not uncommon that %i

discriminates only few levels.
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Is there a relation on Xi that has stronger links with the global preference % than
the marginal preference %i ? The answer is the marginal trace %i̇ that is defined
below.

Definition 3.7 (Marginal Trace)
The marginal trace %i̇ of relation % on the product set X D Q

Xi is the relation
on Xi defined by:

ai %i̇ bi iff

8
<

:

for all c; d 2 X;

Œ.bi ; c�i / % d�) Œ.ai ; c�i / % d� and
Œc % .ai ; d�i /�) Œc % .bi ; d�i /�

(3.20)

In other words, ai %i̇ bi iff substituting bi by ai in an alternative does not change
the way this alternative compares to others.

In the case of Example 3.5, one has ai %i̇ bi iff ui .ai / � ui .bi /, which is easily
verified. Suppose indeed that .bi ; c�i / % d for some c�i 2 X�i and d 2 X ; this
means that

ui .bi /C
X

j ¤i

uj .cj // �
nX

j D1

uj .dj /C 1: (3.21)

Substituting bi by ai W ui .ai / � ui .bi / preserves the inequality.
In models in which % is not supposed to be a weak order, the information con-

veyed in the marginal preferences may be insufficient to reconstruct the preference.
As we shall see, the marginal traces, when they are weak orders, always convey
enough information. The reason why the insufficiency of marginal preferences did
not show up in the decomposable model is a consequence of the following result.

Proposition 3.1 (Marginal Preferences and Marginal Traces) If a preference
relation % on X is reflexive and transitive, its marginal preferences %i and its
marginal traces %i̇ are confounded for all i .

The proposition almost immediately results from the definitions of marginal
preferences and traces. It makes clear that there is no need worrying about marginal
traces unless % is not transitive. More exactly, as we shall see below, the notion
that conveys all the information needed to reconstruct the global preference from
relations on each scale Xi is always the marginal traces; but when % is reflexive
and transitive, you may equivalently use marginal preferences instead. The converse
of the proposition is not true however: there are cases where % is not transitive
(e.g. when % is a semiorder) and %iD %i̇ (see Bouyssou and Pirlot, 2004,
Example 4).Instead of generalising again the decomposable model in order to
encompass preferences that are for instance semiorders, we propose and study a
much more general model. It is so general that it encompasses all relations on X .
Considering this model as a framework, we introduce successive specialisations that
will bring us back to the decomposable model, but “from above”, i.e.in a movement
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from the general to the particular. In this specialisation process, it is the marginal
trace—not the marginal preference—that is the central tool.

3.3.3 Generalising Decomposable Models Using Marginal
Traces

Consider the very general representation of a relation % described by:

x % y , F.u1.x1/; u2.x2/; : : : ; un.xn/; u1.y1/; u2.y2/; : : : ; un.yn// � 0 (L0)

The main difference w.r.t.the decomposable model is that the evaluations of the two
alternatives are not dealt with separately.

If no property is imposed on function F , the model is trivial since any relation
can be represented within it. It obviously generalises the decomposable model and
encompasses as a special case the representation involving a threshold described in
Example 3.5 (in which the preference is a semiorder).

It is easy to obtain representations that guarantee simple properties of %.
For instance, % is reflexive iff it has a representation in model (L0) with
F.Œui .xi /�I Œui .xi /�/ � 0; % is complete iff it has a representation in model
(L0) with F.Œui .xi /�I Œui .yi /�/ D �F.Œui .yi /�I Œui .xi /�/. What if we impose
monotonicity conditions on F ? The natural ones in view of the decomposable
model are (1) F increasing in its first n arguments and decreasing in its last n

arguments and (2) F non-decreasing in its first n arguments and non-increasing
in its last n arguments. The following axioms are closely linked with imposing
monotonicity properties to F and, as we shall see, with properties of the marginal
traces.

Definition 3.8 (Axioms AC1, AC2, AC3, AC4) We say that % satisfies:

AC1i if .xi ; a�i / % y

and
.zi ; b�i / % w

9
=

;
)

8
<

:

.zi ; a�i / % y

or
.xi ; b�i / % w;

AC2i if y % .xi ; a�i /

and
w % .zi ; b�i /

9
=

;
)

8
<

:

y % .zi ; a�i /

or
w % .xi ; b�i /;

AC3i if .xi ; a�i / % y

and
w % .xi ; b�i /

9
=

;
)

8
<

:

.zi ; a�i / % y

or
w % .zi ; b�i /;

for all xi ; zi 2 Xi , all a�i ; b�i 2 X�i and all y; w 2 X .
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It satisfies AC4i if % satisfies AC3i and, whenever one of the conclusions of AC3i

is false, then the other one holds with � instead of %.
We say that % satisfies AC1 (resp. AC2, AC3, AC4) if it satisfies AC1i (resp.

AC2i , AC3i , AC4i ) for all i 2 N . We also use AC123i (resp.AC123) as shorthand
for AC1i , AC2i and AC3i (resp.AC1, AC2 and AC3).

The intuition behind these axioms is the following. Take axiom AC1i . It suggests
that xi and zi can be compared: either xi corresponds to a “level” on a “scale” on
Xi that is “above” zi or the other way around. Suppose indeed that xi is involved
in an alternative that is preferred to another one (.xi ; x�i /%y); suppose further that
substituting zi to xi would not allow to preserve the preference ( NotŒ .zi ; x�i /%y � ).
Then AC1i says that substituting zi by xi when zi is involved in an alternative that is
preferred to another (.zi ; z�i /%w) will always preserve the preference (i.e. we have:
.xi ; z�i /%w ). One can interpret such a situation by saying that xi is “above” zi . The
“being above” relation on Xi is what we call the left marginal trace of % and we
denote it by %C

i ; it is defined as follows:

xi %C
i zi , Œ.zi ; z�i / % w) .xi ; z�i / % w�: (3.22)

We explained above that AC1i meant that xi and zi can always be compared,
which, in terms of the left trace, interprets as: “We may not have at the same time
NotŒ xi %C

i zi � and NotŒ zi %C
i xi � ”. It is easy to see that supposing the latter would

amount to have some z�i and some w such that:

.zi ; z�i / % w and NotŒ .xi ; z�i / % w �

and at the same time, for some x�i and some y,

.xi ; x�i / % y and NotŒ .zi ; x�i / % y � ;

which is exactly the negation of AC1i . Axiom AC1i thus says that the left marginal
trace %C

i is complete; since it is transitive by definition, %C
i is a weak order.

AC1i deals with levels involved in alternatives that are preferred to other ones,
thus in the strong (lefthand side) position in the comparison of two alternatives; in
contrast, AC2i rules the behaviour of % when changing levels in alternatives in the
weak position (another alternative is preferred to them). Clearly, AC2i is concerned
with a right marginal trace %�

i that is defined as follows:

yi %�
i wi , Œx % .yi ; y�i /) x % .wi ; y�i /�: (3.23)

Through reasoning as above, one sees that AC2i is equivalent to requiring that %�
i

is a complete relation and thus a weak order (since it is transitive by definition).
At this stage, it is natural to wonder whether the left marginal trace is related to

the right one. The role of AC3i is to ensure that %C
i and %�

i are not incompatible,
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i.e. that one cannot have at the same time NotŒ xi %C
i yi � and Not Œyi %�

i xi �. If %C
i

and %�
i are complete, this means that one cannot have Œyi�C

i xi � and Œxi��
i yi �

(where �C
i and ��

i denote the asymmetric part of %C
i and %�

i , respectively) or,
in other words, that Œxi�C

i yi � implies Œxi %�
i yi � and Œxi��

i yi � implies Œxi %C
i yi �.

As a consequence of AC123i , the intersection of the (complete) relations %C
i and

%�
i is a complete relation, that is nothing else than the marginal trace %i̇ since

Definition (3.20) is equivalent to

ai %i̇ bi , ai %C
i bi and ai %�

i bi :

The links between the above axioms and the marginal traces can be directly
exploited in the construction of a monotone numerical representation of % in model
(L0). We have the following result (Bouyssou and Pirlot, 2004, Theorem 2).

Proposition 3.2 (Representation in Models L) A preference relation % on X

admits a representation in model (L0) with F non-decreasing in its first n arguments
and non-increasing in the last n arguments if and only if it is reflexive and satisfies
AC1, AC2 and AC3.

In order to make it clear to the reader, how the marginal traces intervene in the
construction of the representation, we describe how a representation can be obtained
with F monotone as indicated. Due to the fact that % satisfies AC123, we know that
the marginal traces %i̇ are weak orders. Take for ui , any numerical representation
of the weak order %i̇ , i.e., ui is any real-valued function defined on Xi , such
that

xi %i̇ zi iff ui .xi / � ui .zi /:

Define then F as follows:

F.Œui .xi /�I Œui .yi /�/ D
� C exp.

Pn
iD1 .ui .xi /� ui .yi /// if x%y;

� exp.
Pn

iD1 .ui .yi /� ui .xi /// otherwise.
(3.24)

It can easily be shown that this representation satisfies the requirements. Clearly,
the choice of the exponential function in the definition of F is arbitrary; any other
positive and non-decreasing function could have been chosen instead. Again the
choice of a representation ui of the weak orders %i̇ is highly arbitrary. We are
thus far from the uniqueness results that can be obtained for the representation of
preferences in the additive utility model (3.1). All these representations are however
equivalent from the point of view of the description of a preference.
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Table 3.3 Main models using traces on levels and their characterisation

Models Definition Conditions

(L0) x%y , F.Œui .xi /�; Œui .yi /�/ � 0 ¿
(L1) (L0) with F.Œui .xi /�; Œui .xi /�/ D 0 refl.

(L2)
(L1) with

F.Œui .xi /�I Œui .yi /�/ D �F.Œui .yi /�I Œui .xi /�/
cpl.

(L3) (L0) with F.%; &/

m AC123

(L4) (L0) with F.%%; &&/

(L5) (L1) with F.%; &/

m refl., AC123

(L6) (L1) with F.%%; &&/

(L7) (L2) with F.%; &/ cpl., AC123

(L8) (L2) with F.%%; &&/ cpl., AC4

% means nondecreasing, & means nonincreasing
%% means increasing, && means decreasing
refl.means reflexive, cpl.means complete

3.3.4 Models Using Marginal Traces

At this point, it might be useful to give a full picture of the models based on
marginal traces. We have identified above three variants of model (L0): those
corresponding respectively to reflexive or complete preference % or to a preference
with complete marginal traces. To each variant, one can associate particular features
of the numerical representation in model (L0). Systematising the analysis, we may
define the variants of model (L0) listed in Table 3.3. This table also shows a
characterisation of the models using the axioms introduced in the previous section.

3.3.5 Properties of Marginal Preferences in (L0) and Variants

We briefly come back to the analysis of marginal preferences in connection with the
variants of (L0) characterised above. As stated before (Proposition 3.1), we know
that for reflexive and transitive preferences, %i D %i̇ . For reflexive preferences,
xi %i̇ zi implies xi %i zi .

The incidence of axioms AC1, AC2, AC3 and AC4 on marginal preferences is
summarised in the next proposition (Bouyssou and Pirlot, 2004, Proposition 3 and
Lemma 4.3).
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Proposition 3.3 (Properties of Marginal Preferences)

1. If % is reflexive and either AC1i or AC2i holds then %i is an interval order.
2. If, in addition, % satisfies AC3i then %i is a semiorder.
3. If % is reflexive and AC4i holds then %i is a weak-order and %iD %i̇ .

The preference % in Example 3.5, page 57 has marginal preferences %i that are
semiorders, while marginal traces are the natural weak orders on R. From the latter,
applying Proposition 3.2 (in its version for sets X of arbitrary cardinality), we
deduce that % satisfies AC123. Applying the third part of Proposition 3.3, we deduce
further that % does not satisfy AC4.

3.3.5.1 Separability and Independence

AC1, AC2, AC3 and AC4 also have an impact on the separability and independence
properties of % (Bouyssou and Pirlot, 2004, Proposition 3.1 and Lemma 4.3).

Proposition 3.4 (Separability and Independence) Let % be a reflexive relation
on X . We have:

1. If % satisfies AC1i or AC2i then % is weakly separable for i 2 N .
2. If % satisfies AC4i then % is independent for fig,
The preference % in Example 3.5 (p. 57) is weakly separable for all i (since %
satisfies AC123 and in view of part 1 of proposition 3.4); although % does not satisfy
AC4, it is easy to see, applying the definition, that % is also independent for all i .

3.3.5.2 The Case of Weak Orders

The case in which % is a weak order is quite special. We have the following result
(Bouyssou and Pirlot, 2004, Lemma 5 and Lemma 4.3).

Proposition 3.5 (Case of Weakly Ordered Preferences) Let % be a weak order
on a set X . Then:

1. Œ% is weakly separable�, Œ% satisfies AC1�, Œ% satisfies AC2�, Œ% satisfies
AC3�,

2. Œ% is weakly independent�, Œ% satisfies AC4�,
3. If % is weakly separable, the marginal preference %i equals the marginal trace

%i̇ , for all i , and these relations are weak orders.

This result recalls that for analysing weakly separable weak orders, marginal traces
can be substituted by marginal preferences (as is classically done); it also shows that
weak separability masks AC123.
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Example 3.6 (Min and LexiMin) In Example 3.2, we have shown that comparing
vectors of satisfaction degrees associated with a set of constraints could be done by
comparing the lowest satisfaction degree in each vector, i.e.

x % y , min.x1; : : : ; xn/ � min.y1; : : : ; yn/;

where x and y are n-tuples of numbers in the Œ0; 1� interval. This method for
comparing vectors is known as the “Min” or “MaxMin” method. Clearly, the
preference % that this method yields is a weak order; it is not weakly independent
as was shown in Example 3.2, but it is weakly separable since %i̇ is just the natural
weak order on the interval Œ0; 1�; the relation % thus satisfies AC123 but not AC4.
By Proposition 3.5.3, %i̇ D %i , for all i.

A refinement of the “Min” or “MaxMin” method is the “LexiMin” method;
the latter discriminates between alternatives that the former leaves tied. When
comparing alternatives x and y, LexiMin ranks x before y if min xi > min yi ;
in case the minimal value of both profiles are equal, LexiMin looks at the second
minimum and decides in favour of the alternative with the highest second minimum;
if again the second minima are equal, it goes to the third and so on. Only
alternatives that cannot be distinguished when their coordinates are rearranged in
non-decreasing order will be indifferent for LexiMin.

The preference yielded by LexiMin is again an independent weak order and
%i̇ D %i , for all i .

3.3.6 Eliciting the Variants of Model (L0)

This family of models suggests an elicitation strategy similar to that for the
decomposable model but based on the marginal traces instead of the marginal
preferences. It is not likely however that such a general model could serve as a basis
for a direct practical elicitation process; we think instead that it is a framework for
conceiving more specific models associated to a method; the additive value function
model could be considered in this framework. Although it may seem unrealistic to
work in such a general framework, Greco et al. (1999) have proposed to do so and
elicit preferences using an adapted rough sets approach (indirect approach).

3.4 Following Another Path: Models Using Marginal Traces
on Differences

The generalisation of the additive value model has been pursued to its most extreme
limits since, with model (L0), we encompass all possible binary relations on a
product set. This process has relied on the marginal traces on the sets Xi . Those
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relations have been shown to be the stepping stones to lean on for eliciting this type
of model, for relations that are not transitive. For transitive (and reflexive) relations,
marginal traces reduce to the usual marginal preferences.

There is however another line of generalisation of the additive value model.
Obviously, it cannot be advocated as more general than the models based on
marginal traces; it nevertheless sheds another light on the picture since it is based on
an entirely different fundamental notion: traces on differences. Instead of comparing
profiles of performance of alternatives like in the additive value model or the
decomposable model or even, in a more implicit form, in model (L0), we can see
the preference of x over y as resulting from a balance made between advantages and
disadvantages of x w.r.t.y on all criteria. While the approach followed in the additive
value model could be described as Aggregate then Compare, the latter is more
relevant to the opposite paradigm Compare (on each dimension) then Aggregate
(Perny, 1992; Dubois et al., 2003).

3.4.1 The Additive Difference Model

In conjoint measurement as well, this paradigm is not new. It is related to the
introduction of intransitivity of the preference. Tversky (1969) was one of the first
to propose a model generalising the additive value one and able to encompass
preferences that lack transitivity. It is known as the additive difference model in
which,

x%y ,
nX

iD1

˚i .ui .xi / � ui .yi // � 0; (3.25)

where ˚i are increasing and odd functions.
Preferences that satisfy (3.25) may be intransitive but they are complete (due

to the postulated oddness of ˚i ). When attention is restricted to the comparison
of objects that only differ on one dimension, (3.25) implies that the preference
between these objects is independent from their common level on the remaining
n� 1 dimensions. This amounts saying that % is independent for all i ; the marginal
preferences %i , clearly, are complete and transitive (hence weak orders) due to the
oddness and the increasingness of the ˚i . This, in particular, excludes the possibility
of any perception threshold on dimensions, which would lead to an intransitive
indifference relation on those dimensions. Imposing that ˚i are nondecreasing
instead of being increasing allows for such a possibility. This gives rise to what
Bouyssou (1986) called the weak additive difference model.

Model (3.25) adds up the differences of preference represented by the functions
˚i .ui .xi /�ui .yi //; these differences are themselves obtained by recoding, through
the functions ˚i , the algebraic difference of partial value functions ui . Due to the
presence of two algebraic operations—the sum of the ˚i and the difference of the
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ui—one should be confronted with the same difficulties as for the additive value
function model when axiomatising (3.25). In case X is infinite, as in Sect. 3.2.6,
characterisations are obtained by combining necessary cancellation conditions with
unnecessary structural assumptions on the set X (Krantz et al., 1971, ch. 9).

Dropping the subtractivity requirement in (3.25) (as suggested in Bouyssou,
1986; Fishburn, 1990a,b, 1991b; Vind, 1991) is a partial answer to the limitations
of the additive difference model. This leads to nontransitive additive conjoint
measurement models in which:

x % y ,
nX

iD1

pi .xi ; yi / � 0; (3.26)

where the pi ’s are real-valued functions on X2
i and may have several additional

properties (e.g.pi.xi ; xi / D 0, for all i 2 f1; 2; : : : ; ng and all xi 2 Xi ).
This model is an obvious generalisation of the (weak) additive difference model.

It allows for intransitive and incomplete preference relations % as well as for
intransitive and incomplete marginal preferences. An interesting specialisation
of (3.26) obtains when pi are required to be skew symmetric i.e. such that
pi .xi ; yi / D �pi .yi ; xi /. This skew symmetric nontransitive additive conjoint
measurement model implies the completeness and the independence of %. In view
of the addition operation involved in the model, the difficulties for obtaining a
satisfactory axiomatisation of the model remain essentially as in model (3.25).
Fishburn (1990a, 1991b) axiomatises the skew symmetric version of (3.26) both
in the finite and the infinite case; Vind (1991) provides axioms for (3.26) with
pi .xi ; xi / D 0 when n � 4; Bouyssou (1986) gives necessary and sufficient
conditions for (3.26) with and without skew symmetry in the denumerable case,
when n D 2.

3.4.2 Comparison of Preference Differences

With the nontransitive additive model (3.26), the notion of preference “difference”
becomes more abstract than it looks like in Tversky’s model (3.25); we still refer
to pi as to a representation of preference differences on i even though there is no
algebraic difference operation involved.

This prompts the following question: is there any intrinsic way of defining the
notion of “difference of preference” by referring only to the preference relation
%? The answer is pretty much in the spirit of what we discovered in the previous
section: comparing difference of preferences can be done in term of traces, here, of
traces on “differences”. We define a relation %�

i , that we shall call marginal trace
on differences comparing any two pairs of levels .xi ; yi / and .zi ; wi / 2 X2

i in the
following way.
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Definition 3.9 (Marginal Trace on Differences %�
i ) The marginal trace on differ-

ences %�
i is the relation on the pairs of levels X2

i defined by:

.xi ; yi / %�
i .zi ; wi / iff

�
for all a�i ; b�i 2 X�i ;

.zi ; a�i / % .wi ; b�i /) .xi ; a�i / % .yi ; b�i /:
(3.27)

Intuitively, if .xi ; yi / %�
i .zi ; wi /, it seems reasonable to conclude that the

preference difference between xi and yi is not smaller that the preference difference
between zi and wi . Notice that, by construction, %�

i is reflexive and transitive.
Contrary to our intuition concerning preference differences, the definition of %�

i

does not imply that there is any link between two “opposite” differences .xi ; yi / and
.yi ; xi /. Henceforth we introduce the binary relation %��

i on X2
i .

Definition 3.10 (Marginal Trace on Differences %��
i ) The marginal trace on

differences %��
i is the relation on the pairs of levels X2

i defined by:

.xi ; yi / %��
i .zi ; wi / iff Œ.xi ; yi / %�

i .zi ; wi / and .wi ; zi / %�
i .yi ; xi /�: (3.28)

It is easy to see that %��
i is transitive and reversible, i.e.

.xi ; yi / %��
i .zi ; wi /, .wi ; zi / %��

i .yi ; xi /: (3.29)

The relations %�
i and %��

i both appear to capture the idea of comparison of
preference differences between elements of Xi induced by the relation %. Hence,
they are good candidates to serve as the basis of the definition of the functions
pi . They will not serve well this purpose however unless they are complete as we
shall see.

3.4.3 A General Family of Models Using Traces on Differences

In the same spirit as we generalised the decomposable model to the models based
on marginal traces, we envisage here a very general model based on preference
differences. It formalises the idea of measuring “preference differences” separately
on each dimension and then combining these (positive or negative) differences in
order to know whether the aggregation of these differences leads to an advantage
for x over y. More formally, this suggests a model in which:

x%y , G.p1.x1; y1/; p2.x2; y2/; : : : ; pn.xn; yn// � 0 (D0)

where pi are real-valued functions on X2
i and G is a real-valued function onQn

iD1 pi .X
2
i /.
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As already noted by Goldstein (1991), all binary relations satisfy model (D0)
when X is finite or countably infinite. Necessary and sufficient conditions for the
non-denumerable case are well-known (Bouyssou and Pirlot, 2002b).

As for the variants of model (L0), it is easy to impose conditions on G that will
result in simple properties of %. Assume % has a representation in model (D0);
then

• % is reflexive iff G.Œpi .xi ; xi /�/ � 0; for all xi I
• % is independent iff pi .xi ; xi / D 0 for all xi ; in addition, % is reflexive iff

G.0/ � 0 and % is irreflexive iff G.0/ < 0.
• % is complete iff pi is skew-symmetric and G is odd, i.e. pi .xi ; yi / D
�pi .yi ; xi / for all xi ; yi and G.�p/ D �G.p/ for all p D .p1; : : : ; pn/:

Again, as for the models based on marginal traces, the monotonicity of G is related
to the properties of traces on differences (3.27) and (3.28). The axioms needed to
guarantee the monotonicity of G are very much looking like AC1, AC2 or AC3

because traces are involved.

Definition 3.11 We say that relation % on X satisfies:
RC1i if

.xi ; a�i / % .yi ; b�i /

and
.zi ; c�i / % .wi ; d�i /

9
=

;
)

8
<

:

.xi ; c�i / % .yi ; d�i /

or
.zi ; a�i / % .wi ; b�i /;

RC2i if

.xi ; a�i / % .yi ; b�i /

and
.yi ; c�i / % .xi ; d�i /

9
=

;
)

8
<

:

.zi ; a�i / % .wi ; b�i /

or
.wi ; c�i / % .zi ; d�i /;

for all xi ; yi ; zi ; wi 2 Xi and all a�i ; b�i ; c�i ; d�i 2 X�i .
RC3i if % satisfies RC2i and when one of the conclusions of RC2i is false then

the other holds with � instead of %.
We say that % satisfies RC1 (resp. RC2) if it satisfies RC1i (resp. RC2i ) for all

i 2 N . We also use RC12 as shorthand for RC1 and RC2.

Condition RC1i implies that any two ordered pairs .xi ; yi / and .zi ; wi / of elements
of Xi are comparable in terms of the relation %�

i . Indeed, it is easy to see that
supposing NotŒ .xi ; yi / %�

i .zi ; wi / � and NotŒ .zi ; wi / %�
i .xi ; yi / � is the negation

of RC1i . Similarly, RC2i implies that the two opposite differences .xi ; yi / and
.yi ; xi / are linked. In terms of the relation %�

i , it says that if the preference
difference between xi and yi is not at least as large as the preference difference
between zi and wi then the preference difference between yi and xi should be at
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least as large as the preference difference between wi and zi (Bouyssou and Pirlot,
2002b, Lemma 1).

Proposition 3.6 (Completeness of the Traces on Differences) We have:

1. Œ%�
i is a weak order�, RC1i ,

2. Œ%��
i is a weak order�, ŒRC1i and RC2i �.

Here again (like for the models based on marginal traces, see Sect. 3.3.3) the links
between RC1, RC2 and properties of %�

i and %��
i play a fundamental role in the

construction of a representation of a preference in model (D0) with a monotone G

function. Axiom RC2 introduces a mirror effect on preference differences: under
RC2i , the difference of preference .yi ; xi / is the mirror image of .xi ; yi / (Bouyssou
and Pirlot, 2002b, Theorem 1).

Proposition 3.7 (Representation in Model D) A preference relation % on X

admits a representation in model (D0) with G nondecreasing in all its n arguments
iff % satisfies RC1. It admits such a representation with, in addition, pi .xi ; yi / D
�pi .yi ; xi / iff % satisfies RC1 and RC2.

The construction of a representation under the hypotheses of the theorem helps to
make the theorem more intuitive. We outline this construction below.

Suppose that % satisfies RC1. We know, by Proposition 3.6.1 that %�
i is a weak

order on the set of pairs of levels X2
i for all i . Select, for all i , a real-valued function

pi that represents the weak order %�
i , i.e. that satisfies:

pi .xi ; yi / � pi .zi ; wi / iff .xi ; yi /%�
i .zi ; wi /;

for all xi ; yi ; zi ; wi 2 Xi . Then define G as follows:

G.Œpi .xi ; yi /�/ D
�

exp
Pn

iD1pi .xi ; yi / if x%y

� expŒ�Pn
iD1pi .xi ; yi /� otherwise.

(3.30)

It can easily be shown that G is well-defined. The choice of the exponential function
and the sum operator is purely arbitrary; any other increasing function defined on
the real numbers and taking positive values would do as well. The role of such a
function is to ensure that in each of the two sub-domains x%y and “otherwise”, the
function G is increasing in the pi ’s; since the relation % is itself non-decreasing with
respect to the relations %�

i for all i , raising the value of a pi (which represents %�
i )

may only result in remaining in the same sub-domain or passing from the domain
“otherwise” to the domain “x%y”; the value of G is negative in the former sub-
domain and positive in the latter and in each sub-domain, G is increasing. This
proves that G is increasing in all its arguments pi .
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The second case, in which % satisfies RC1 and RC2 is dealt with similarly. Since
in this case %��

i is a weak order, we use functions pi that represent %��
i instead of

%�
i . We may moreover exploit the reversibility property (3.29) of %��

i to ensure that
we may choose a skew-symmetric function pi to represent %��

i . Then we define
G as in (3.30). In the same case, we may also get a representation in which G is
increasing (instead of non-decreasing) by defining G as follows:

G.Œpi .xi ; yi /�/ D
8
<

:

exp
Pn

iD1 pi .xi ; yi / if x � y

0 if x � y

� exp Œ�Pn
iD1 pi .xi ; yi /� otherwise.

(3.31)

Combining the various additional properties that can be imposed on %, we are lead
to consider a number of variants of the basic (D0) model. These models can be fully
characterised using the axioms RC1, RC2 and RC3. The definition of the models as
well as their characterisation are displayed in Table 3.4.

Table 3.4 Main models
using traces on differences
and their characterisation

Models Definition Conditions

(D0) x%y , G.Œpi .xi ; yi /�/ � 0 ¿
(D1) (D0) with pi .xi ; xi / D 0

m ind.

(D2) (D0) with pi skew symmetric

(D3) (D0) with pi skew symmetric and cpl., ind.

G odd

(D4) (D0) with G.%/

m RC1

(D8) (D0) with G.%%/

(D5) (D1) with G.%/

m RC1, ind.

(D9) (D1) with G.%%/

(D6) (D2) with G.%/

m RC12

(D10) (D2) with G.%%/

(D7) (D3) with G.%/ cpl., RC12

(D11) (D3) with G.%%/ cpl., RC3

% means nondecreasing, %% means increasing
cpl.means completeness, ind.means independence
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3.4.4 Eliciting Models Using Traces on Differences

We suppose that % is reflexive and satisfies RC1, i.e., we place ourselves in model
(D5) [equivalent to (D9)]. In that model %�

i is a weak order on the “differences
of preference” .xi ; yi / 2 X2

i , for all i , and the functions pi may be chosen to
be numerical representations of %�

i . To each pair of alternatives x; y 2 X is
henceforth associated a profile p D .p1; : : : ; pn/ of differences of preferences
(pi D pi .xi ; yi /, for i D 1; : : : ; n). The function G may be conceived of as a
rule that assigns a value to each profile; in model (D5), G is just supposed to be
nonincreasing [not necessarily increasing if we choose to represent % into model
(D5) instead of the equivalent model (D9)] and therefore we may choose a very
simple form of G that codes profiles in the following way:

G.p/ D
8
<

:

C1 if p corresponds to x � yI
0 if p corresponds to x � yI
�1 if p corresponds to NotŒ x%y � :

(3.32)

The strategy for eliciting such a model (in a direct manner) may thus be as
follows:

1. for all i , elicit the weak order %�
i that ranks the differences of preference; choose

a representation pi of %�
i

2. elicit the rule (function) G that assigns a category (coded C1, 0 or �1) to each
profile p.

The initial step however is more complex than with the decomposable model,
because we have to rank-order the set X2

i instead of Xi . In case it may be assumed
that the difference of preference is reversible [see (3.29)] almost half of the work can
be saved since only the “positive” (or only the “negative”) differences must be rank-
ordered.4 The difficulty, that remains even in the reversible case, may motivate the
consideration of another family of models that rely both on marginal traces and on
traces on differences (see Bouyssou et al., 2006, Sect. 6.4). In some of these models,
%�

i is reacting positively (or non-negatively) to marginal traces and therefore, the
elicitation of pi may benefit of its monotonicity w.r.t.marginal traces.

Models (D4), (D5), (D6) and (D7), in which G is a nondecreasing function, can
be elicited in a similar fashion. The situation is different when a representation with
G increasing is sought, in particular for model (D11). For such representations, the
definition of G by (3.32) is no longer appropriate and defining G requires more care
and effort. We do not enter into this point.

4 In case of a tie, i.e. whenever .xi ; yi /��

i .zi ; wi /, one has however to look explicitly at the relation
between the reverse differences .yi ; xi / and .wi ; zi / since all cases (%�

i , ��

i or -�

i ) can possibly
show up.
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3.4.5 Examples of Models that Distinguish No More Than
Three Classes of Differences

We show in this section that simple majority (or Condorcet method), weighted
majority, qualified majority and lexicographic method can be represented in some
of the models (D1) to (D11). We consider in addition, a variant of the ELECTRE
I procedure in which the profile of preferences on each dimension are not weak
orders but semiorders. In each of these cases, the relation that orders the differences
of preference on each criterion is revealed by the global preference relation.

We say that a relation % defined on a product set X D Qn
iD1 Xi is the result

of the application of a majority or a lexicographic rule if there is a relation Si on
each Xi such that % can be obtained by aggregating the n relations Si using that
rule. Those Si ’s will usually be weak orders but we shall also consider more general
structures like semiorders. In the sequel, we refer to Si as to the a priori preference
relation on Xi .

Take the example of the simple majority rule. We say that % is a simple
majority preference relation if there are relations Si that are weak orders on the
corresponding Xi such that:

x%y iff

8
<

:

the number of criteria on which xi Si yi

is at least as large as
the number of criteria such that yi Si xi :

(3.33)

In the rest of this section, P i will denote the asymmetric part of a relation Si

defined on Xi and its symmetric part will be denoted by I i . In the first five examples,
the Si ’s are supposed to be weak orders.

3.4.5.1 Simple Majority or Condorcet Method

A relation % on X is a simple majority relation if there is a weak order Si on each
Xi such that

x%y iff jfi 2 N W xi Si yi gj � jfi 2 N W yi Si xi gj: (3.34)

In other terms, x%y if the “coalition” of criteria on which x is at least as good as
y is at least as large as the “opposite coalition”, i.e. the set of criteria on which y is
at least as good as x. The term “coalition” is used here for “set”, in reference with
social choice. We do not, apparently, distinguish between the case in which xi is
better than yi (xiP i yi ) and that in which they are indifferent (xi I i yi ). Note that
the criteria for which xi is indifferent with yi appear in both coalitions and hence
cancel. We could thus define a simple majority relation in an equivalent fashion by
x%y iff jfi 2 N W xi P i yi gj � jfi 2 N W yi P i xi gj.



3 Modelling Preferences 73

Such a relation can be represented in model (D11) by defining

pi.xi ; yi / D
8
<

:

1 if xi P i yi

0 if xi I i yi

�1 if yi P i xi

(3.35)

and

G.Œpi �/ D
X

i2N

pi : (3.36)

We have indeed that x%y iff G.Œpi .xi ; yi /�/ D jfi 2 N W xi P i yi gj � jfi 2 N W
yi P ixi gj � 0, which is clearly equivalent to Definition (3.34).

This representation of a simple majority relation can furthermore be called
regular in the sense that the functions pi are numerical representations of the weak
orders %��

i ; the latter has exactly three equivalence classes, namely, the set of pairs
.xi ; yi / such that xi P i yi , the set of pairs for which xi I i yi and the set of those
such that yi P i xi . Observe that the relation %�

i distinguishes the same three classes;
hence %�

i D %��
i .

3.4.5.2 Weighted Simple Majority or Weighted Condorcet Method

A relation % on X is a weighted simple majority relation if there is a vector of
normalised weights Œwi � (with wi � 0 and

P
i2N wi D 1) and a weak order Si on

each Xi such that

x%y iff
X

i2N Wxi Si yi

wi �
X

j 2N Wyj Sj xj

wj : (3.37)

In this model, the coalitions of criteria are weighted: they are assigned a value
that is the sum of those assigned to the criteria belonging to the coalition. The
preference of x over y results from the comparison of the coalitions like in the
simple majority rule: x%y if the coalition of criteria on which x is at least as good
as y does not weigh less than the opposite coalition. Like for simple majority,
we could have defined the relation using strict a priori preference, saying that
x%y iff

P
i2N Wxi P i yi

wi �P
j 2N Wyj P j xj

wj .
A representation of a weighted majority relation in model (D11) is readily

obtained letting:

pi .xi ; yi / D
8
<

:

wi if xi P i yi

0 if xi I i yi

�wi if yi P i xi

(3.38)
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and

G.Œpi �/ D
X

i2N

pi : (3.39)

We have that x%y iff G.Œpi .xi ; yi /�/ DP
i2N Wxi P i yi

wi �P
j 2N Wyj P j xj

wj � 0.
This representation is regular since pi is a numerical representation of %��

i and
%��

i has only three equivalence classes as in the case of simple majority.

3.4.5.3 Weighted Qualified Majority

A relation % on X is a weighted qualified majority relation if there is a vector of
normalised weights Œwi � (i.e. with wi non-negative and summing up to 1), a weak
order Si on each Xi and a threshold ı between 1

2
and 1 such that

x%y iff
X

i2N Wxi Si yi

wi � ı: (3.40)

In contrast with the previous models, the preference does not result here from a
comparison of coalitions but from stating that the coalition in favour of an alternative
is strong enough, i.e. that the measure of its strength reaches a certain threshold ı

(typically above one half). Even when ı is set to 0.5, this method is not equivalent to
weighted simple majority, with the same weighting vector Œwi �, due to the inclusion
of the criteria on which x and y are indifferent in both the coalition in favour of
x against y and that in favour of y against x. Take for example two alternatives
x, y compared on five points of view; suppose that the criteria all have the same
weight, i.e.wi D 1=5, for i D 1; : : : ; 5. Assume that x is preferred to y on the first
criterion (x1P 1y1), x is indifferent to y on the second and third criteria (x2I 2y2;
x3I 3y3) and y is preferred to x on the last two criteria (y4P 4x4; y5P 5x5). Using
the weighted majority rule [Eq. (3.37)], we get y � x since the coalition in favour of
x against y is composed of criteria 1, 2, 3 (weighting 0.6) and the opposite coalition
contains criteria 2, 3, 4, 5 (weighting 0.8). Using the weighted qualified majority
with threshold ı up to 0.6, we get that x � y since both coalitions weigh at least 0.6.

Note that when the criteria have equal weights (wi D 1=n), weighted qualified
majority could be simply called qualified majority; the latter has the same rela-
tionship with weighted qualified majority as weighted simple majority with simple
majority.

Qualified weighted majority relations constitute a basic component of the
ELECTRE I and ELECTRE II methods (Roy, 1971) as long as there are no vetoes.
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Any weighted qualified majority relation admits a representation in model (D8).
Let:

pi .xi ; yi / D
8
<

:

wi � ı
n

if xi Si yi

� ı
n

if NotŒ xi S i yi �

(3.41)

and

G.Œpi �/ D
X

i2N

pi : (3.42)

We have that

x%y iff G.Œpi .xi ; yi /�/ D
X

i2N Wxi Si yi

.wi � ı

n
/ �

X

j 2N W NotŒ xj Sj yj �

ı

n

D
X

i2N Wxi Si yi

wi � ı

� 0:

(3.43)

In this representation, pi is a numerical representation of %�
i but not of %��

i . The
former has two equivalence classes: the pairs .xi ; yi / that are in Si form the upper
class of the weak order; those that are not in Si form the lower class. Note that there
are no further distinctions between pairs; all pairs in the upper class contribute the
same amount wi� ı

n
to the value of the coalition while the pairs of the lower class all

contribute the same amount � ı
n

. The comparison of preference differences in this
model is thus rather poor (as is the case of course with the two previous models).

The relation %��
i is also a weak order; it has three equivalence classes. It makes a

distinction between xi P iyi and xi I i yi (a distinction that is not made by %�
i /: both

cases play the same role when comparing .xi ; yi / to other pairs (since what counts
in formula (3.40) is whether or not .xi ; yi / belongs to Si ); it is no longer the case
when comparing .yi ; xi / to other pairs since, then, xi I i yi counts in the coalition in
favour of y against x while xi P i yi does not.

3.4.5.4 Lexicographic Preference Relations

A preference relation is lexicographic if the criteria are linearly ordered and if they
are considered in that order when comparing alternatives: the first criterion, in that
order, that favours one alternative with respect to another determines the global
preference. Denoting by >l a linear order on the set of criteria, we rank-order the
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criteria according to it: 1l >l 2l >l : : : >l nl . We thus have the following definition.
A relation % on X is a lexicographic preference relation if there is a linear order >l

on the set of criteria and a weak order (or a semiorder) Si on each Xi such that:

x � y if

8
ˆ̂
<

ˆ̂
:

x1l P1l y1l or
x1l I1l y1l and x2l P2l y2l or
xil I1l yi l8i D 1; : : : ; k � 1 and xkl Pkl ykl ;

for some k such that 2 	 k 	 n:

(3.44)

and x � y if xil Ii l yi l , for all i 2 N . In words, x � y if xi is a priori indifferent to
yi , for all i ; x � y if, for the first index kl for which xil is not a priori indifferent to
yil , one has xkl a priori preferred to yil .

Such a relation can be viewed (as long as there are only finitely many criteria)
as a special case of a weighted majority relation. Choose a vector of weights wi in
the following manner: for all i 2 N , let wi l be larger than the sum of all remaining
weights (in the order >l ), i.e.:

w1l > w2l C w3l C : : :C wnl

w2l > w3l C : : :C wnl

: : :

w.n�1/l > wnl

(3.45)

Using these weights in (3.38) and (3.39) which define a representation for
weighted majority relations, one gets a representation for lexicographic relations in
model (D11).

3.4.5.5 Other Forms of Weighted Qualified Majority

Instead of imposing—in an absolute manner—a threshold above 0:5 for defining a
weighted qualified majority, as is done in Sect. 3.4.5.3, we may alternatively impose
a relative majority threshold, in an additive or a multiplicative form. A preference
relation % on X is a weighted majority relation with additive threshold if there is
vector of normalised weights Œwi � (with wi � 0 and

P
i2N wi D 1), a weak order or

semiorder Si on each Xi and a non-negative threshold � such that

x%y iff
X

i2N Wxi Si yi

wi �
X

j 2N Wyj Sj xj

wj � �: (3.46)
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Table 3.5 Models distinguishing no more than three classes of differences of preferences

Aggregation rule General model Special models

Weighted simple majority (D11) (D11) C additive

(see Sect. 3.4.5.2)

Weighted qualified majority (D10) (D8) C additive

(see Sect. 3.4.5.3)

Lexicographic (see Sect. 3.4.5.4) (D11) (D11) C additive

Weighted majority with (D7) (D10) C additive

add. threshold (see Sect. 3.4.5.5 ) (with constant: Eq. (3.46))

Weighted majority with (D7) (D6) C linear

mult. threshold (see Sect. 3.4.5.5)

A relation % is a weighted majority relation with multiplicative threshold � � 1 if

x%y iff
X

i2N Wxi Si yi

wi � 1

�

X

j 2N Wyj Sj xj

wj ; (3.47)

with Œwi � and Si as in the case of an additive threshold.
Constructing preference relations using these rules resembles what is known

as the TACTIC method; it was proposed and studied in Vansnick (1986) with the
possible adjunction of vetoes. In the original version of TACTIC, the preference is
defined as an asymmetric relation �; the symmetric version that we consider here
obtains from the original one just by saying that x%y if and only if we have not
y � x.

It is easy to provide a representation of a weighted majority relation with additive
threshold in model (D10) or (D7), but a representation in model (D11) is in general
not possible (Bouyssou et al., 2006). Turning to weighted majority relations with
multiplicative threshold, one observes that % is complete and can be represented in
model (D6) or (D7) but % does not fit in model (D11) since, in general, indifference
is not “narrow” (Bouyssou et al., 2006).

Table 3.5 provides a summary of the main models applicable to preferences
that distinguish no more than three classes of differences of preference on each
dimension.

3.4.6 Examples of Models Using Vetoes

Vetoes could be introduced in all the examples dealt with in the previous section
(Sect. 3.4.5). We shall only consider the cases of qualified weighted majority
relations (see Sect. 3.4.5.3) with vetoes (the relations that are the basic ingredients
in the ELECTRE I and II methods).
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The intuition one can have about a veto is the following. Consider an alternative
x and a criterion i on which the level of the performance xi of x is much worse
than the level yi of another alternative y. A veto of y on x on criterion i consists
in rejecting the possibility that x be globally preferred to y irrespective of the
performances of x and y on the criteria other than i . In other words, a veto on
criterion i forbids to declare that x%y if .xi ; yi / is a “negative” difference that is
“large enough in absolute value”, with respect to relation %�

i or %��
i (in the latter

case, this is equivalent to saying that .yi ; xi / is a large enough “positive” difference).
Of course, in case the difference .xi ; yi / leads to a veto on declaring x preferred to
y, it is certainly because we do not have xi Si yi , but, instead, yi P i xi , and “even
more”. We thus define the veto relation Vi as a subset of relation Pi consisting of all
pairs .yi I xi / such that the presence of the reverse pair .xi ; yi / in two alternatives x

and y prohibits x%y; Vi is an asymmetric relation.
Suppose that, for all i , Xi is a subset of the real numbers (X can be seen,

in a sense, as a performance table) and that Si is a semiorder determined by the
following condition:

xi Si yi , xi � yi � �i;1 (3.48)

where �i;1 is a non-negative threshold. This is similar to the situation described in
Sect. 3.4.5.3 with the example of the cost (except that the cost is to be minimised;
here we prefer the larger values): the values xi and yi are indifferent (xi I i yi ) if
they differ by less than the threshold �i;1; xi is strictly preferred to yi (xi P i yi ) if it
passes yi by at least the value of the threshold. In such a case, a convenient way of
defining the veto relation Vi , a subset of P i , is by means of another threshold �i;2

that is larger than �i;1. We say that the pair .yi ; xi / belongs to the veto relation Vi if
the following condition is satisfied:

yi Vixi , yi > xi C �i;2: (3.49)

Clearly, the veto relation defined above is included in P i . Assume indeed that
yi Vi xi ; since �i;2 is larger than �i;1, we have yi > xi C �i;2 > xi C �i;1, yielding
yi P ixi . We call �i;2, a veto threshold; the relation Vi defined by (3.49) is a strict
semiorder, i.e. the asymmetric part of a semiorder; it is contained in P i that is
also a strict semiorder, namely, the asymmetric part of the semiorder Si . In such a
situation, when comparing an arbitrary level xi to a fixed level yi , we can distinguish
four relative positions of xi with respect to yi that are of interest. These four zones
are shown on Fig. 3.9; they correspond to relations described above, namely:

If xi belongs to: Then:

Zone I xi Pi yi

Zone II xi Ii yi

Zone III yi Pi xi and NotŒ yi Vi xi �

Zone IV yi Pi xi and yi Vi xi
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xiyi + i,1yiyi − i,1yi − i,2

I
II

IIIIV

Fig. 3.9 Relative positions of an arbitrary level xi with respect to a fixed level yi

3.4.6.1 Weighted Qualified Majority with Veto

Starting with both an a priori preference relation Si (a semiorder) and an a priori
veto relation Vi (a strict semiorder included in Pi ) on each set Xi , we can define a
global preference relation of the ELECTRE I type as follows:

x%y iff

8
<

:

P
i2N Wxi Si yi

wi � ı

and
there is no dimension i on which yi Vixi ;

(3.50)

where .w1; : : : ; wn/ denotes a vector of normalised weights and ı, a threshold
between 1=2 and 1. The global preference of the ELECTRE I type is thus a weighted
qualified majority relation (in which the a priori preferences may be semiorders
instead of weak orders) that is “broken” as soon as there is a veto on any single
criterion, i.e. as soon as the performance of an alternative on some dimension is
sufficiently low as compared to the other. It is not difficult to provide a representation
of such a preference relation % in model (D8) letting:

pi .xi ; yi / D
8
<

:

wi if xi Siyi

0 if yi Pi xi but NotŒ yi Vi xi �

�M if yi Vixi ;

(3.51)

where M is a large positive constant and

G.Œpi �/ D
X

i2N

pi � ı: (3.52)

If no veto occurs in comparing x and y, then G.Œpi .xi ; yi /�/ D P
i Wxi Si yi

wi � ı,
which is the same representation as for the weighted qualified majority without
veto (Sect. 3.4.5.3). Otherwise, if, on at least one criterion j , one has yj Vj xj , then
G.Œpi .xi ; yi /�/ < 0, regardless of x�j and y�j . The effect of the constant M in the
definition of pi is to make it impossible for G to pass or reach 0 whenever any of
the terms pi is equal to �M .
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The above numerical representation of an ELECTRE I type of preference relation
in model (D8) is regular since pi , as defined by (3.51), is a numerical representation
of the weak order %�

i on the differences of preference. This order distinguishes
three equivalence classes of differences of preference, namely those corresponding
respectively to the cases where xi Siyi , yi P i xi but NotŒ yi Vixi � and yi Vi xi .

The representation above is probably the most natural and intuitive one. Since
the set of relations that can be described by (3.50) contains the weighted qualified
majority relations, it is clear from Sect. 3.4.5.3 that one cannot expect that weighted
qualified majority relations with veto admit a representation in model (D7) or
(D11). They however admit a representation in model (D6) and in its strictly
increasing yet equivalent version (D10). For a representation in model (D6), we
may choose for pi a numerical representation of the weak order %��

i that determines
five equivalence classes of differences of preference, namely:

pi.xi ; yi / D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

M if xi Vi yi

wi if xi Pi yi and NotŒ xi Vi yi �

0 if xi Ii yi

�wi if yi Pi xi and NotŒ yi Vixi �

�M if yi Vi xi ;

(3.53)

where M is a positive constant larger than wi . The function G can be defined by

G.Œpi .xi ; yi /�/ D
( P

i Wxi Si yi
min.pi .xi ; yi /; wi /� ı if, for all j 2 N; NotŒ yj Vj xj �

�1 if, for some j 2 N; yj Vj xj :
(3.54)

A strictly increasing representation [in model (D10)] obtains by the usual construc-
tion (with an exponential function).

Remark 3.1 The relations defined by means of vetoes that are described in this
section constitute a very particular subclass of relations for which five classes of
differences of preference can be distinguished. There are of course many other ways
of defining models of preference that distinguish five classes of differences.

3.4.7 Examples of Preferences that Distinguish a Large Variety
of Differences

Contrary to the examples discussed so far in which the relations %�
i or %��

i

distinguish a small number of classes of preference differences (typically three or
five classes for %��

i in the above examples), there are very common cases where
there is a large number of distinct classes, possibly an infinite number of them.
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The most common model, the additive value model, usually belongs to the
class of models in which %��

i makes subtle distinctions between differences of
preferences; indeed its definition, Eq. (3.1), p.37, can be rewritten in the following
manner:

x%y iff
nX

iD1

.ui .xi /� ui .yi // � 0: (3.55)

The difference ui .xi /�ui .yi / can often be interpreted as a representation pi .xi ; yi /

of %��
i ; the preference then satisfies model (D11). Let us take a simple example;

assume that Xi D R, that the number of dimensions n is equal to 2 and that ui .xi / D
xi for i D 1; 2. The preference is defined by:

x%y iff x1 C x2 � y1 C y2

iff .x1 � y1/C .x2 � y2/ � 0:
(3.56)

In such a case, p1.x1; y1/ D x1�y1 is a numerical representation of the relation %��
1

on the differences of preference on the first dimension X1 (and similarly for x2� y2

on X2). The pair .x1; y1/ corresponds to an at least as large difference of preference
as .z1; w1/ iff x1 � y1 � z1 � w1; indeed, if .z1; a2/%.w1; b2/ for some “levels”
a2; b2 in X2, then substituting .z1; w1/ by .x1; y1/ results in .x1; a2/%.y1; b2/ and,
conversely, if .y1; c2/%.x1; d2/ for some c2; d2 in X2, then .w1; c2/%.z1; d2/ [by
definition of %��

1 , see (3.28) and (3.27)]. We have furthermore that both preferences
obtained after these substitutions are strict as soon as .x1; y1/���

1 .z1; w1/, i.e. as
soon as x1 � y1 > z1 �w1. This strict responsiveness property of % is characteristic
of model (D11), in which indifference is “narrow” as was already mentioned at the
end of Sect. 3.4.5.3. Indeed if .z1; a2/%.w1; b2/, we must have:

.z1 � w1/C .a2 � b2/ D 0

and substituting .z1; w1/ by .x1; y1/ results in .x1 � y1/C .a2 � b2/ > 0 as soon as
x1 � y1 > z1 � w1.

Thus, any increase or decrease of pi .xi ; yi / breaks indifference. This is also
the case with the additive difference model (3.25) (with pi.xi ; yi / D ˚i .ui .xi / �
ui .yi /// and the nontransitive additive model (3.26).

Remark 3.2 (From Ordinal to Cardinal) The framework based on marginal traces
on differences that we studied in the present Sect. 3.4 is general enough to encom-
pass both “non-compensatory” and “compensatory” preferences, for instance,
preferences based on a majority or a lexicographic rule (three classes of differences
of preference) and those represented in an additive manner (that can potentially
distinguish an unbounded number of differences). A weighted qualified majority
rule, for instance, can be said to be ordinal or purely non-compensatory; from the
representation of the procedure [Eqs. (3.41), (3.42)], one can see that the full weight
wi associated to a dimension is credited to an alternative x, as compared to an
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alternative y, as soon as the preference difference pi .xi ; yi / is in favour of x on
that dimension. In this model, the preference difference pi .xi ; yi / is positive as
soon as xi is preferred to yi , w.r.t.some a priori preference relation Si on Xi , hence
the denomination of “ordinal”.

On the opposite, in the additive value model [Eq. (3.55)], a large difference of
preference on one dimension can be compensated by small differences of opposite
sign on other dimensions: the procedure is compensatory and it uses the full power
of the numbers pi in arithmetic operations like sums and differences; we call it
“cardinal”.

Between those two extremes, the other procedures can be sorted in increasing
order of the number of classes of differences of preference they permit to distin-
guish. This can be seen as a picture of a transition from “ordinal” to “cardinal” or,
alternatively, from non-compensatory to compensatory procedures. Of course, the
type of model is determined by the richness of the preferential information available.

3.5 Models with Weakly Differentiated Preference
Differences

In Sect. 3.4.5, we have investigated a variety of models in which the number of
classes of differences of preference is reduced to at most three. Can one provide a
unified framework for discussing and understanding all those variants of a majority
rule? It is our aim in this section to briefly describe such a framework. All the
preferences described in the above-mentioned sections have some right to be called
concordance relations. The term “concordance” was introduced by Roy (1968,
1971) in the framework of the ELECTRE methods [see also Roy (1996), Roy and
Bouyssou (1993, sections 5.2 and 5.3) and Roy (1991); Roy and Vanderpooten
(1996)]. It specifies an index (the so-called concordance index) that measures the
strength of the coalition of criteria saying that an alternative x is at least as good as
an alternative y. Here we use this term in the same spirit for qualifying a preference
relation that results from the comparison of the strengths of coalitions of criteria:
we have in mind all preference relations studied in Sect. 3.4.5.5

An earlier investigation of preference relations of this type in a conjoint
measurement framework is due to Fishburn (1976) through its definition of non-
compensatory preferences [see also Bouyssou and Vansnick (1986)]. Recently,
Bouyssou and Pirlot (2002a), Bouyssou and Pirlot (2005) proposed a precise
definition of concordance relations and showed that they can be described within
the family of models that rely on traces on differences (Sect. 3.4.3). It is the goal
of this section to outline those results. Similar ideas have been developed by Greco
et al. (2001).

5 The lexicographic preference described in Sect. 3.4.5.4 enters into this framework but can be seen
as a limit case.
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3.5.1 Concordance Relations

In a conjoint measurement context, a concordance relation is characterised by the
following features.

Definition 3.12 A reflexive relation % on X is a concordance relation if there are:

• a complete binary relation Si on each Xi ,
• a binary relation D between subsets of N having N for union that is monotonic

with respect to inclusion, i.e.such that for all A; B; C; D � N ,

ŒA D B; C 
 A; B 
 D; C [D D N �) C D D; (3.57)

such that, for all x; y 2 X ,

x%y , S.x; y/ D S.y; x/; (3.58)

where S.x; y/ D fi 2 N W xi Si yi g.
In this definition, we interpret Si as the a priori preferences on the scale co-domain
Xi of each dimension; in cases of practical interest, Si will usually be a weak order
or a semiorder (but we do not assume this for the start) and the global preference
of x over y results from the comparison of the coalitions of criteria S.x; y/ and
S.y; x/. The former can be seen as the list of reasons for saying that x is at least as
good as y, while the latter is a list of reasons supporting that y is at least as good
as x. In order to compare coalitions of criteria, we assume that there is a relation D
on the power set of the set N that allows us to decide whether a subset of criteria
constitutes a stronger argument than another subset of criteria; the interpretation
of such a relation is straightforward when the compared subsets are the lists of
dimensions S.x; y/ and S.y; x/ involved in the comparison of two alternatives x

and y. Note that D enables us only to compare “complete” coalitions of criteria, i.e.
those having N for their union.

The weighted majority relation (Sect. 3.4.5.2), typically, fulfills the requirements
for a concordance relation as defined above. In this example, the strength of a subset
of criteria can be represented by the sum of their weights and comparing S.x; y/ to
S.y; x/ amounts to comparing two numbers, namely the sums of the weights of the
dimensions that belong respectively to S.x; y/ and S.y; x/. In such a case, D can
be extended to a weak order on the power set of N and this weak order admits a
numerical representation that is additive with respect to individual dimensions:

S.x; y/ D S.y; x/ iff
X

i2S.x;y/

wi �
X

i2S.y;x/

wi : (3.59)

In our general definition however, we neither postulate that D is a weak order nor
that it can be additively represented on the basis of “weights” of individual criteria.
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On the relation D, we only impose a quite natural property (3.57), namely that it is
monotonic with respect to the inclusion of subsets of criteria.

The interesting feature of concordance relations is that they can easily be
characterised within the family of models (Dk) that rely on preference differences.
The main result, obtained in Bouyssou and Pirlot (2005, Theorem 1), establishes
that concordance relations are exactly those preferences for which the traces on
differences %��

i are weak orders with no more than three equivalence classes. This
result will be part 1 of Theorem 3.4 stated below on p. 85. Concordance relations
consequently form a subclass of the relations belonging to model (D6).

3.5.1.1 The Relation D

As a consequence of this result, all preferences described in Sect. 3.4.5 admit a
representation as a concordance relation and can be described by (3.58), i.e.:

x%y , S.x; y/ D S.y; x/;

for some D and some Si satisfying the requirements of Definition 3.12. We empha-
sise that this is true not only for simple weighted majorities (Sect. 3.4.5.2) but also
for qualified majorities (Sect. 3.4.5.3) or lexicographic preferences (Sect. 3.4.5.4)
that are not primarily defined through comparing coalitions (qualified majority is
defined through comparing the “pros” in favour of x against y to a threshold;
lexicographic relations arise from considering the most important criterion and only
looking at the others when alternatives are tied on the most important one). Part 1
of Theorem 3.4 says that all these relation can also be represented according with
Eq. (3.58) using an appropriate definition of D and Si . Of course, we cannot ensure
that D can be represented in general according with Eq. (3.59), i.e. in an additive
manner.

3.5.1.2 The Relations S i

The link between Si and % is given by:

xi Si yi , .xi ; yi /%�
i .xi ; xi /: (3.60)

The interpretation of this definition is clear (at least for reflexive and independent
preferences % with which all “null differences” .xi ; xi /, for xi 2 Xi , are indifferent
with respect to relation %�

i /: xi Si yi means that the difference of preference .xi ; yi /

is “non negative”, in the sense that it is at least as large as the “null difference”
.xi ; xi / or any other null difference .zi ; zi /.

For a general concordance relation %, it can be shown that Si is complete but not
necessarily transitive; the marginal traces %C

i and %�
i are included in Si , which in

turn is contained in the marginal preference %i .



3 Modelling Preferences 85

We summarise the above results in the following theorem that is based on
Bouyssou and Pirlot (2005, theorems 2 and 4). Note that the latter paper provides
conditions, expressed in terms of the relation %, that are equivalent to requiring that
the traces on differences %��

i have at most three equivalence classes.

Theorem 3.4 (Concordance Relation)

1. A relation % on X is a concordance relation iff it is reflexive, satisfies RC12 and
its traces on differences %��

i have at most three equivalence classes.
2. The relations Si that intervene in the definition of concordance relations are

semiorders iff % satisfies, in addition, AC123.
3. These relations are weak orders as soon as % satisfies AC4.

3.5.1.3 Concordance-Discordance Relations

Concordance-discordance relations are similar to concordance relations but, in addi-
tion, their representation also involves a veto. They can be studied and characterized
in the same spirit as concordance relations (Bouyssou and Pirlot, 2009).
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