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Abstract. A general model is presented which encompasses many
procedures used for aggregating preferences in multicriteria decision
making (or decision aid) methods. Are covered in particular: MAUT,
ELECTRE and several other outranking methods. The main interest
of the model is to provide a key for understanding the differences be-
tween methods. Methods are analyzed in terms of their way of dealing
with “preference differences” on each criterion/attribute. The more or
less large number of equivalence classes of preference differences that
can be distinguished in a method helps to situate it in a continuum
going from compensatory to noncompensatory procedures, from car-
dinal to ordinal methods.

Keywords. Multicriteria decision analysis, aggregation of prefer-
ences, compensation, ordinality.

1 Introduction

The classical way of modelling the preferences of a Decision Maker,
consists in assuming the existence of a value function u such that an
alternative a is at least as good as an alternative b (a > b) if and only
if u(a) > u(b). This leads to a model of preference in which > is com-
plete and transitive. Using such a preference model to establish a rec-
ommendation in a decision-aid study is straightforward and the main
task of the Analyst is to assess w. In a multicriteria/multiattribute
(we will use these terms interchangeably in this paper) context (for a
review, see Zionts 1992), each alternative a is usually seen as a vector
g(a) = (g91(a),...,gn(a)) of evaluations of a w.r.t n points of view.
Under some well-known conditions (see e.g., Krantz et al. 1978 or



Wakker 1989), u can be obtained in an additive manner, i.e. there are
functions u; such that

n

u(a) = u;(gi(a)) .

i=1

Modelling preferences therefore amounts to assess the partial value
functions wu;. Several techniques have been proposed to do so (see
Keeney and Raiffa 1976 or von Winterfeldt and Edwards 1986). It
should be noticed that the additive model implies independence of
each attribute, i.e. that the preference betwen alternatives which only
differ on an attribute does not depend on their evaluations on the
other attributes, and that individual (also called partial) preferences
>~ deduced from > through independence are complete and transitive.
In some situations, such a model might not appear to be appropriate,
for instance because:

e indifference (seen as the symmetric part of >) may not be tran-
sitive;

e » may not be a complete relation, i.e. some alternatives may be
incomparable;

e compensation effects between criteria are more complex than
with an additive model;

e criteria interact (there is no preference independence).

This calls for an extension of the additive utility framework al-
lowing to better deal with some of these cases. Such an extension is
also called for by a number of approaches developed since the early
seventies. In those methods, the overall preference of a over b is usu-
ally determined by looking at the evaluation vectors g(a) and g(b)
independently of the rest of the alternatives and treating the differ-
ence g;(a) — g;(b) in rather an ordinal way by comparing the difference
to a limited number of thresholds. This simple option usually leads
to a global preference relation that is not a complete preorder (this
being not unrelated to Arrow’s theorem). This implies that the ag-
gregation procedure results in structures from which it might not be
easy to derive a recommendation (choice of an alternative, ranking of
all alternatives). Elaborating a recommendation usually calls for the
application of specific “exploitation techniques” (see Roy 1993). The



perspective in which such methods were conceived is neither normative
(what should the Decision Maker decide in order to be rational) nor
descriptive (what are possibly the mechanisms at work in a Decision
Maker’s mind when he makes a decision); they claim to be construc-
tive in the sense that, the resulting global preference is built or learnt
through a dialog between the Decision Maker and the Analyst based
on supposedly intuitive concepts. For more information on normative
vs descriptive approaches, the reader is referred to Bell et al. 1988; for
the constructive approach, see Roy 1993.

Among the methods alluded to, are the so-called outranking meth-
ods, where > is the outranking relation; the semantic content of a
statement like “a outranks b” has been expressed by B. Roy in Roy
1985 :

“An outranking relation is a binary relation S defined in A
such that a S b if, given what is known about the decision
maker’s preferences and given the quality of the valuations
of the alternatives and the nature of the problem, there are
enough arguments to decide that « is at least as good as b,
while there is no essential reason to refute that statement.”

There has been relatively little interest in these methods outside
Europe. There are several reasons to that. Two of them might be that

e they are not well founded from a formal point of view (no ax-
iomatization);

e they may lead to preference structures from which it is not easy
to derive a recommendation.

What we aim at doing in this paper is to show a sort of continuity
between the dominant “value function” model and a number of pair-
wise comparisons approaches. This is done through exhibiting a very
general model of preference aggregation and showing that a variety of
methods fits into the model. Finally we are able to situate the differ-
ent aggregation procedures as more or less compensatory, the utility
approach being compensatory whereas outranking methods tend to be
less compensatory.



2 Models

n

The models presented below are built on a product space X = H X,
where X, can be viewed as the evaluations of a set A of alterrzla%ives
with respect to criterion ¢. In this paper we only consider the case
where A is finite (the analysis may easily be extended to denumerable
sets of alternatives, see Bouyssou and Pirlot 1996). Working on the
product space X usually amounts to extend the set of alternatives since
it is implicitly considered that any combination z = (z1,...,2,) € X
of evaluations corresponds to some alternative.

Denoting by z = (z1,...,2n), ¥y = (y1,- -, Yn), elements of X, the
classical conjoint measurement model, alluded to above, reads;

(M) z =y ity ui(z) > Y uiyi),
=1 =1

where u; is a real valued function defined on X;, for alli=1,...,n.
Combining the u; functions in a non necessarily additive manner
yields the transitive decomposable model:

(My) z =y it F((ui(2:))i=1,..n) > F ((wi(yi))i=1,..n) »

with w;’s as in M; and F : R"™ — R, strictly increasing in each
argument. As shown by Krantz et al. (1978), replacing the additivity
requirement of M; by the more general decomposability requirement
used in My allows to drastically simplify the axiomatic analysis of the
model while severely weakening the unicity properties of the numerical
representation; note in particular, that the model does not imply that
the u;’s define an interval scale whereas M7 does imply it when the
structure of X is “continuous”.

Another generalization of My, the so called additive dif ference
model (Tversky 1969), is defined as

(M3) ey S (i) — i) 2 0,
=1

with u; as above and ¢;, a strictly increasing odd function R — R,
fori =1,...,n. In M3, the preference differences on each axis, u;(z;)—
u;(y;) are recoded and additively combined. An interesting feature is
that such a model encompasses nontransitive global preferences. The



need for nontransitive models for rational decision has been stressed
by several authors (see Fishburn 1991b).

A far-reaching generalization of M3 dropping at the same time
additivity and subtractivity is

(My) z =y iff F(;(ui(zi), ui(y:)),i =1,...,n) >0,

with u;’s as above, F' : R — R, a strictly increasing function and
;1 R? — R, nondecreasing in its first argument and nonincreasing
in the second, for i =1,...,n.

Model My, though very general, shows fundamental features. A
key concept emerging from M, is the quaternary relation > defined
below. Relations >~ encode the comparison of pairs of levels on each
criterion; we will refer to the comparison of pairs of them as the com-
parison of dif ferences of preference. For all ¢ = 1,...,n, the rela-
tion =7 is defined as follows: for all z;,y;, 2}, y} € X;,

(zi, yi) =i (%}, ;)
iff for all z,w € X,
(mgazr) = (?Jéa’wr) implies (z;, z;-) = (yi, w;-),

where, for instance, (z;, z;— ) denotes an element of X equal to z except
for its ith coordinate which is equal to x;. The relation (z;,y;) >}
(x%,yi) reads “the difference of preference between z; and y; is at least

as large as that between z/ and y.”.

(3

It is easy to show that in model My, >} is a complete preorder even
if > is noncomplete and/or nontransitive. The number of equivalence
classes of this relation may be considered as reflecting discrimination
power in the perception of degrees of difference of preference. This
point will be abundantly illustrated in the sequel.

Another important characteristic of model My is that it implies
that individual preference relations >; on each criterion defined by,

foralls=1,...,n, for all z;, y; € X;,
z =y it V2 € X, (24, 2-) = (yi, 2i- ),

are welll behaved. Though model My does not necessarily imply in-
dependence of each attribute, it is not difficult to prove that (as soon
as > is reflexive) the relations »-; are semiorders, i.e. complete semi-
transitive and Ferrers relations (see Luce 1956, Roubens and Vincke



1985). Such an ordered structure appears a particularly desirable gen-
eralization of the usual complete preorder for at least two reasons:

e it encompasses the idea that there is a threshold under which
differences of performance on a point of view are not perceived as
implying definite preference; it thus allows to model preferences
in which indifference is not transitive;

e it actually appears in one of the oldest and most famous family
of methods based on pairwise comparisons and majority, the
ELECTRE family (Roy 1968, Vincke 1992, Roy and Bouyssou
1993).

3 A characterization of 1,

The axioms for model M; are well-known (see Krantz et al. 1978
or Wakker 1989). Model M has been proposed and axiomatized in
Krantz et al. (1978), Chap. 7. Axioms for model M3 may be found
in Fishburn (1992). Model M is closely related to the nontransitive
additive conjoint measurement model proposed in Bouyssou (1986),
Fishburn (1990), Fishburn (1991a) and Vind (1991) and is fully dis-
cussed in Bouyssou and Pirlot (1996).

Although very general, model M, places nontrivial restrictions on
> without imposing its completeness and/or the transitivity of > or
~. Central to many aggregation procedures is the way a “difference”
on one attribute can be compensated by a “difference” of opposite
sign on another attribute. Though the way of modelling these “dif-
ferences”may vary, in most aggregation procedures they are computed
with reference to an underlying ordering of each attribute. Model My
allows to capture in a simple way this idea of “differences” computed
on the basis of an underlying ranking via the functions v; and ;.

A few elementary properties of preference relations in model My
may easily be derived. We state a few of them, which we name “weak
cancellation”. In the sequel we denote by K (K',L,L’,...), elements
of X_; = HXj; for all z; € X;, K € X_;, we have (z;, K) € X.

J#
(W) For all z;,y;, z;,w; € X; and for all K, K', L, L' € X ;,

(zs, K) = (y,L) (zdK') = (y;, L")
and or
(ZZ',K’) t (wi,L’) ﬁzz,K) t (wi,L).



We say that > satisfies (WC) iff it satisfies (WC;) for all i =
1,...,n.
The (W C;) property is linked to the fact that > is an ordering on the
differences of preference on attribute 7, i.e. that (z;,y;) is at least as
“large” as (z;,w;) or the contrary.

A second kind of weak cancellation properties (WC’) are in con-
nection with the fact that the relations >; are semiorders. The (WC’)
cancellation property splits into three conditions for each criterion 1,

(WC’l)i, (WCIQ)Z' and (WC’3)1‘.

(W) For all z;,v;, z;,w; € X; and for all K, K', L, L' € X_;,

(zi, K) = (v, L) (A K) = (i, L)
and or
(. K') = (wi, L) ﬁxi,f(’) = (wi, I).

(WC%); For all z;,y;, z;,w; € X; and for all K, K',L, L' € X _;,

(zi, K) = (yi, L) (z{ K) = (w;,L)
and or
(zi, K') = (w;, L) hzi,K') = (yi, L').

(WC3)i For all z;,vy;, z;,w; € X; and for all K, K',L,L' € X ;,

(@i, K) = (D) |, wlK) = (yL)
and or
(zi, K') = (x5, L)) ﬁzi,K') = (w;, L.

We say that > satisfies (WC') if it satisfies (WC1):, (WC5)i,
(W(C%);) for all i = 1,...,n. Property (WC]); can be interpreted
as telling that there is an ordering on the values taken by the alter-
natives on criterion i: z;, is either “larger” than z; or the converse;
(W (%), tells a similar thing. Considering (WC1); to (WC5); suggests
that the orderings on X; may differ depending on whether the i** co-
ordinate belongs to the description of an alternative which dominates
another or is dominated by another. Taken together with (WC]); or
(W), (WCY); imply that both orderings are compatible.

The main result of this paper is a characterization of the global
preferences of model My. The interested reader is referred to Bouys-
sou and Pirlot (1996) for the proof.



Theorem

n
A reflexive preference relation = on X = HXl is representable as

=1
in model My iff = satisfies the weak cancellation properties WC' and
(weah.

This result can easily be extended to denumerable and nondenu-
merable infinite sets X. It should be noted replacing additivity by a
mere decomposability requirement allows a simple necessary and suf-
ficient axiomatization even in the finite case.

4 Methods

In order to illustrate how the framework of model M, helps to contrast
aggregation procedures,

e we recall the aggregation mechanisms used in a few popular
MCDA methods (for more detail, the reader is referred to Vincke
(1992));

e we show how they fit into My;

e we interpret their differences in terms of the structure of equiv-
alence classes of >7.

4.1 Conjoint measurement (model M;)

We have F(1; (ui(zi),ui(yi)),i=1,...,n) = Z (ui(zi) —uiyq)).

4.2 ELECTRE I (Roy 1968)

x = y if and only if (z,y) belongs to the concordance relation, i.e.
there is a majority of viewpoints on which z is at least as good as v,
and there is no veto against declaring x at least as good as y. More
precisely,

e veto against x > y occurs if for at least one 4, u;(y;) — ui(z;) is
too large, i.e. is at least equal to some veto threshold Q;; then
one may not have z > y;



e (z,y) belongs to the concordance relation if

Z wizsa

n
Sw;  hmirys
=1

1

where w; denotes a nonnegative weight associated to criterion i,
s 18 the so-called concordance threshold (% <s<1)andz; =; y;
if ui(x;) —wi(y;) > —qi, gi, a non-negative threshold (¢; << Q).

From the definition of >=;, by means of a numerical representation u;
with constant threshold ¢;, it is clear that >=; is a semi-order.

The procedure just described is covered by model My ; with M
denoting an arbitrarily large positive number, take

(L=s)w; if wi(zi) —ui(y:) > —ai,
Yi(@i,ys) = —sw; if —Q <wi(ws) —uiys) < —qi,
-M it wi(z;) —ui(y) < —Qi

and for F', the summation operator.

4.3 TACTIC (Vansnick 1986)

We present here a variant of TACTIC, itself a variant of ELECTRE
I. Using the formalism of ELECTRE I, we have x > y according to
TACTIC if there is no veto against this assertion (as in ELECTRE)
and (z,y) belongs to the TACTIC concordance relation defined by

1
> wi 2 Y wj,

VT > Ys j:yj>j:L‘j

with s > 1, the concordance threshold. Of course, one has z; >; y; if
not (y; = x;), i.e. iff u;(z;) — u;(y;) > qi; =i is the asymmetric part
of a semiorder.

The TACTIC method enters into M, formalism if one considers F'
as the summation operator and

w; if uz(xl) — uz(yl) > qi,
N B it Jui(ws) — wiyi)| < @iy
Vil w) = —(1/s)w; it —Qi <wui(zi) —ui(yi) < —aqi,

-M i wi(ws) — ui(ys) < —Q;.



4.4 Valued global preferences

An interesting extension of the M, model consists in considering the
global preference as a valued relation; in the valued My model, the
global preference attached to any pair (z,y) € X? is computed as

p(xay) = F(Qpl(uz(mz)aul(lyz))az = 1’ Tt an)a

with F' and ¢ as in My. An example of a method of that type is
PROMETHEE (Brans and Vincke 1985); we have, for all 2,y € X,

n
p(z,y) =D wigi(ui(zi) — ui(ys))
=1
where ¢; can take the forms shown in Figure 1.

Obviously, (i, yi) = ¢i(ui(z;) —u;(y;)) and F can be interpreted
as a weighted sum operator.

5 Compensation versus non-compensation

Since in all examples above, F' is the summation operator, the proce-
dures formally differ only in the manner they code “preference dif-
ferences”, i.e. through the 1; functions. In all considered exam-
ples v;(z;,y;) is a function of the difference wu;(x;) — u;(y;) which is
graphed in Figure 2 (and in Figure 1 for the valued preference rela-
tion of PROMETHEE). Each particular coding 1); induces a complete
preorder on the pairs (z;,y;); in Figure 3, the hierarchy of equivalence
classes of pairs (z;,y;) is shown on the same three examples.

ELECTRE 1 is characterized by a very rough structure on pref-
erence differences; in the absence of veto threshold (Q; = +0o0), only
two classes can be distinguished. TACTIC relies on essentially the
same perception but explicitly distinguishes strict preference from in-
difference in its aggregation procedure. TACTIC (without veto) is the
prototype of noncompensatory aggregation procedures. Intuitively, a
method is compensatory when a difference on some attribute may be
compensated by a “sufficiently large” difference in the opposite direc-
tion on another attribute.

In other terms, in a noncompensatory procedure, the only things
that matter in the comparison of z and y are the lists of criteria P(z,y)
(resp. P(y,z)) on which x (resp. y) is better than y (resp. z). The
notion of noncompensation, introduced and studied in Fishburn (1976)



Type I Type II

A ] \
1 1 ——
-q; g
> = >
u(x5) -u4(y5) ui(x;) -u;(y;)
-1 — -1
Type III Type IV
A
1 —
1 —_—
2
BTG N
[ 7
u;(x;) -uy(y;)
—_— 1
2
— -1
Type VI
A
1

u(x;) —u;(yy)

-1 |

Fig. 1: The six types of recoding of the difference of evaluations used
in PROMETHEE
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‘fii e SN
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: 1.
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Fig. 2: The function v; in conjoint measurement (a), ELECTRE I (b)
and TACTIC without veto (c)



ELECTRE I
wi(z;) —ui(y;) > —ai

—Qi < ui(w;) —ui(ys) < —qi

ui(7i) — ui(yi) < —Q;
TACTIC

wi(zi) —ui(yi) > qi

—q; < i) —ui(yi) < g

—Qi < ui(wi) —ui(yi) < —gi

ui(wi) — wi(yi) < —Qi
Conjoint measurement
wi(xi) — uiy:) = q}

ui(zi) — uiyi) = ¢?

L] wi(wi) — ui(yi) = "

Fig. 3: Equivalence classes of pairs (z;,7;) in ELECTRE I, TACTIC
and Conjoint measurement




was generalized by Bouyssou and Vansnick (Bouyssou and Vansnick
1986; see also Bouyssou 1986) for taking vetoes into account.

The precise definition reads as follows. A preference relation is non
compensatory if for all z,y,z,w € X,

=y iff 2 =
Ply,s) = Pu,2), } = lrzyiff 2 2w,

with P(z,y) = {i : x; = y;}.

Formally very similar is the following consequence of the weak can-
cellation axiom WC: for all z,y,z,w € X,

Vi, (25, y:) ~ (z,wi)] = (v =y iff 2 = w).

The latter condition can be interpreted as a generalization of the
former: if on each criterion, the difference of preference between = and
y belongs to the same class as the difference of preference between z
and w, then the two pairs (z,y) and (z,w) must compare in the same
manner in the global preference . In case there are only three classes,
strict preference, indifference and the opposite of strict preference (as
in TACTIC without veto), the noncompensatory property is satisfied.
So, the more or less compensatory character of a method can be viewed
as the possibility of actually taking into account a larger or a smaller
number of differences of preference classes on each criterion in the
aggregation procedure.

Note that in our model, preference differences do not need neces-
sarily to be reversible. We may have (z;, y;) ~ (2, w;) without having
(yi, ;) ~F (wj, z;); this is in contrast with Fishburn’s noncompensation
axiom in which “differences” appear to be reversible.

6 Conclusion

With the My model, we have a flexible aggregation scheme that ad-
mits a simple axiomatic foundation and encompasses many aggrega-
tion models; moreover, we believe that the comparison of preference
differences is a key concept for analysing the similarities and dissimi-
larities of aggregation models (the importance of the concept of pref-
erence differences in conjoint measurement has been clearly stressed
in Wakker (1989)). A particularly appealing feature of our scheme
is that it shows the “continuity” between full compensation and non-
compensation.



The present paper emphasizes an interpretation of the technical
results obtained in Bouyssou and Pirlot (1996). It opens some re-
search perspectives both on axiomatic and experimental grounds. In
the latter, particular models and conditions compatible with observed
intuitive preferences could be searched for. On the theoretical side, it
would be of interest

e to characterize special models where, e.g., F' is additive, the 1);’s
are differences,. .. ;

e to characterize, in a more precise manner, well-known aggrega-
tion procedures within our general framework;

e to examine in depth the interconnections of the complete pre-
order structures on preference differences and the semiorder struc-
ture >; modelling individual preferences on each criterion. Note
that the semiordinal character of individual preferences was al-
ready stressed as an essential feature of ELECTRE methods in
Pirlot (1996);

e to further investigate valued preference relations in the frame-
work of the valued M, model.
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