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Why Deep Learning Now?
● Processing power: GPU
● Improvement of architectures: activations, 

residual connections, attention layers
● Open source frameworks: Tensorflow, Keras, 

Pytorch
● More and more available data



Deep Learning
● Computer Vision
● Generative Networks
● Recurrent Neural Networks
● Natural Language Processing
● Graph Neural Networks
● Computer Games



Computer Vision
● Convolutional neural networks
● Small numbers of parameters
● Good generalization
● Bigger is better
● Vision transformers



Computer Vision

● LeNet (1990)



Computer Vision

● AlexNet (2012)



Computer Vision

● Vision Transformers (2021)



Computer Vision
● Vision Transformers have been used in many Computer Vision 

tasks with excellent results:
– Image Classification
– Object Detection
– Video Deepfake Detection
– Image segmentation
– Anomaly detection
– Image Synthesis
– Cluster analysis
– Autonomous Driving



Generative Networks
● Autoencoders
● Generative Adversarial Networks (GAN) : 

image generation
● GPT : text generation



Generative Networks
● Autoencoders



Generative Networks
● Applications of Autoencoders :

– Dimensionality Reduction
– Feature Extraction
– Image Denoising
– Image Compression
– Image Search
– Anomaly Detection
– Missing Value Imputation



Generative Networks
● Generative Adversarial Networks (GAN) : 



Generative Networks
● Applications of GAN:

– Text to Image Generation
– Image to Image Translation (colorizing,...)
– Increasing Image Resolution
– Predicting Next Video Frame 



Generative Networks
● GPT (Generative Pre-trained Transformer):



Generative Networks
● Applications of GPT:

– GPT-3, specifically the Codex model, is the basis for GitHub Copilot, a code completion 
and generation software that can be used in various code editors and IDEs.

– GPT-3 is used in certain Microsoft products to translate conventional language into formal 
computer code.

– GPT-3 has been used by Andrew Mayne for AI Writer, which allows people to correspond 
with historical figures via email.

– GPT-3 has been used by Jason Rohrer in a retro-themed chatbot project named "Project 
December", which is accessible online and allows users to converse with several Ais.

– GPT-3 was used by The Guardian to write an article about AI being harmless to human 
beings. It was fed some ideas and produced eight different essays, which were ultimately 
merged into one article.

– GPT-3 was used in AI Dungeon, which generates text-based adventure games. Later it 
was replaced by a competing model after OpenAI changed their policy regarding 
generated content.



Generative Networks
● Applications of GPT:

– MoliAIre
– MoliAIre-RIME
– Brecht
– https://www.lamsade.dauphine.fr/molierelebot



Recurrent Neural Networks
● RNN
● LSTM
● GRU



Recurrent Neural Networks
● RNN :



Recurrent Neural Networks
● LSTM (Long Short-Term Memory) :



Recurrent Neural Networks
● GRU (Gated Reccurent Unit):



Recurrent Neural Networks



Natural Language Processing
● RNN
● Transformers :

– Bert (RoBERTa, CamemBERT, FlauBERT)
– GPT (GPT-2, GPT-3, GPT-fr, GPT-4)
– Text to Text (T5)



Natural Language Processing



Graph Neural Networks
● GNN
● GCN
● Spectral



Graph Neural Networks
● GNN :



Graph Neural Networks
● GCN (Graph Convolutional Networks) :



Graph Neural Networks
● Applications of GNN:



Computer Games
● AlphaGo
● AlphaZero
● LeelaChess Zero
● AlphaStar
● Athénan



  

AlphaGo



  

AlphaGo

Lee Sedol is among the strongest and most famous 9p Go player:

AlphaGo Lee won 4-1 against Lee Sedol in march 2016.



Computer Games
● Alpha Zero:



Computer Games
● LeelaChess Zero:



Computer Games
● AlphaStar:



Computer Games
● AlphaStar:



  

Computer Games

Athénan: 11 gold medals at the 2021 Computer Olympiad!



  

Historical Background



A spectrum of machine learning tasks

● Low-dimensional data (e.g. less than 
100 dimensions)

• Lots of noise in the data 

• There is not much structure in the data, 
and what structure there is, can be 
represented by a fairly simple model.

● The main problem is distinguishing 
true structure from noise. 

● High-dimensional data (e.g. more 
than 100 dimensions)

• The noise is not sufficient to obscure 
the structure in the data if we 
process it right.

• There is a huge amount of structure 
in the data, but the structure is too 
complicated to be represented by a 
simple model.

● The main problem is figuring out a 
way to represent the complicated 
structure so that it can be learned.

Typical Statistics------------Artificial Intelligence



Historical background:
First generation neural networks

● Perceptrons (~1960) used a 
layer of hand-coded features 
and tried to recognize objects 
by learning how to weight 
these features.
– There was a neat learning 

algorithm for adjusting the 
weights.

– But perceptrons are 
fundamentally limited in 
what they can learn to do.

non-adaptive
hand-coded
features

output units  e.g. 
class labels

input units 
e.g. pixels

Sketch of a typical 
perceptron from the 1960’s

Bom
b

To
y



Second generation neural networks (~1985)

input vector

hidden 
layers

outputs

Back-propagate     
           error signal 
to get derivatives 
for learning

Compare outputs with 
correct answer to get 
error signal



Formalization of a neural network
● Each neuron computes its output y as a linear 

combinations of its inputs xi followed by an 
activation function :



Formalization of a neural network

● Linear combination :

● Activation function : 



Formalization of a neural network
● Architecture :



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



Activation Functions



  

Backpropagation



  

Backpropagation
● We are going to explain backpropagation on a 

simple example.

● We take as example a network with two inputs, 
two outputs and two hidden neurons .



  

Backpropagation



  

Backpropagation



  

Backpropagation
● The goal of backpropagation is to optimize the 

weights so that the neural network can learn how to 
correctly map arbitrary inputs to outputs.

● We are going to work with a single training set: 
given inputs 0.05 and 0.10, we want the neural 
network to output 0.01 and 0.99.



  

The Forward Pass
● We figure out the total net input to each hidden layer 

neuron. 

● Squash the total net input using an activation function 
(here we use the sigmoid function). 

● Repeat the process with the output layer neurons.



  

The Forward Pass
 

● Here’s how we calculate the total net input for h1:
neth1 = w1 * i1 + w2 * i2 + b1 * 1
neth1 = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775

● We then squash it using the sigmoid function to get the output of h1 :
outh1 = 1/(1+e^-neth1) = 1/(1+e^-0.3775) = 0.593269992

● Carrying out the same process for h2 we get : outh2 = 0.596884378



  

The Forward Pass
 

● We repeat this process for the output layer neurons, using the output from the hidden layer 
neurons as inputs.

● Here’s the output for o1: neto1 = w5 * outh1 + w6 * outh2 + b2 * 1
neto1 = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967
outo1 = 1/(1+e^-neto1) = 1/(1+e^-1.105905967) = 0.75136507

● And carrying out the same process for o2 we get: outo2 = 0.772928465



  

The Error
● We can now calculate the error for each output neuron using the squared 

error function and sum them to get the total error:
Etotal = Σ 1/2 (target – output)2

● For example, the target output for o1 is 0.01 but the neural network output 
0.75136507, therefore its error is:
Eo1 = 1/2 (targeto1 - outo1)2 = 1/2 (0.01 - 0.75136507)2 = 0.274811083

● Repeating this process for o2 we get: Eo2 = 0.023560026
● The total error for the neural network is the sum of these errors:

Etotal = Eo1 + Eo2 = 0.274811083 + 0.023560026 = 0.298371109



  

The Backwards Pass
● Our goal with backpropagation is to update 

each of the weights in the network so that they 
cause the actual output to be closer the target 
output, thereby minimizing the error for each 
output neuron and the network as a whole.



  

Output Layer
● Consider w5. 
● We want to know how much a change in w5 affects the total error:

δEtotal / δw5
● δEtotal / δw5 is read as “the partial derivative of Etotal with respect to w5“. 
● You can also say “the gradient with respect to w5“.
● By applying the chain rule we know that:

δEtotal / δw5 = δEtotal / δouto1 * δouto1 / δneto1 * δneto1 / δw5



  

Output Layer



  

Output Layer
● We need to figure out each piece in this equation.
● First, how much does the total error change with 

respect to the output?
Etotal = 1/2 (targeto1 - outo1)2 + 1/2 (targeto2 - outo2)2

δEtotal / δouto1 = -(targeto1 - outo1)
δEtotal / δouto1 = -(0.01 - 0.75136507) = 0.74136507



  

Output Layer
● Next, how much does the output of o1 change with respect to its total net 

input?
outo1 = 1/(1+e^(-neto1))
δouto1 / δneto1 = outo1(1 - outo1) = 0.75136507(1 - 0.75136507) = 0.186815602

● Finally, how much does the total net input of o1 change with respect to w5?
neto1 = w5 * outh1 + w6 * outh2 + b2 * 1
δneto1 / δw5 = outh1 = 0.593269992



  

Output Layer
● Putting it all together:

δEtotal / δw5 = δEtotal / δouto1 * δouto1 / δneto1 * δneto1 / δw5

δEtotal / δw5 = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041

● To decrease the error, we then subtract this value from the current weight (optionally 
multiplied by some learning rate, η, which we’ll set to 0.5):

w5 = w5 - η * δEtotal / δw5 = 0.4 - 0.5 * 0.082167041 = 0.35891648



  

Output Layer
● We can repeat this process to get the new weights w6, w7, and w8:

w6 = 0.408666186

w7 = 0.511301270

w8 = 0.561370121

● We perform the actual updates in the neural network after we have the new weights leading into 
the hidden layer neurons (ie, we use the original weights, not the updated weights, when we 
continue the backpropagation algorithm below).



  

Hidden Layer
● Next, we’ll continue the backwards pass by calculating 

new values for w1, w2, w3, and w4.

● Big picture, here’s what we need to figure out:

δEtotal / δw1 = δEtotal / δouth1 * δouth1 / δneth1 * δneth1 / δw1



  

Hidden Layer



  

Hidden Layer
● We’re going to use a similar process as we did for the output layer, 

but slightly different to account for the fact that the output of each 
hidden layer neuron contributes to the output (and therefore error) of 
multiple output neurons. 

● We know that outh1 affects both outo1 and outo2 therefore the δEtotal / 
δouth1 needs to take into consideration its effect on the both output 
neurons:

δEtotal / δouth1 = δEo1 / δouth1 + δEo2 / δouth1



  

Hidden Layer
● Starting with δEo1 / δouth1:

δEo1 / δouth1 = δEo1 / δneto1 * δneto1 / δouth1 

● We can calculate δEo1 / δneto1 using values we calculated earlier:
δEo1 / δneto1 = δEo1 / δouto1 * δouto1 / δneto1 = 0.74136507 * 0.186815602 = 0.138498562

● And δneto1 / δouth1 is equal to w5:
neto1 = w5 * outh1 + w6 * outh2 + b2 * 1
δneto1 / δouth1 = w5 = 0.40

● Plugging them in:
δEo1 / δouth1 = δEo1 / δneto1 * δneto1 / δouth1 = 0.138498562 * 0.40 = 0.055399425



  

Hidden Layer
● Following the same process for δEo2 / δouth1, we get:

δEo2 / δouth1 = -0.019049119

● Therefore:
δEtotal / δouth1 = δEo1 / δouth1 + δEo2 / δouth1= 0.055399425 + -0.019049119 = 0.036350306

● Now that we have δEtotal / δouth1, we need to figure out δouth1 / δneth1 and then δneth1 / δw 
for each weight:
outh1 = 1/(1+e^(-neth1))
δouth1 / δneth1  = outh1 (1 - outh1) = 0.59326999(1 - 0.59326999 ) = 0.241300709



  

Hidden Layer
● We calculate the partial derivative of the total net input to h1 with 

respect to w1 the same as we did for the output neuron:
neth1 = w1 * i1 + w2 * i2 + b1 * 1
δneth1 / δw1 = i1 = 0.05

● Putting it all together:
δEtotal / δw1 = δEtotal / δouth1 * δouth1 / δneth1 * δneth1 / δw1
δEtotal / δw1 = 0.036350306 * 0.241300709 * 0.05 = 0.000438568



  

Hidden Layer
● We can now update w1:

w1 = w1 - η * δEtotal / δw1 = 0.15 - 0.5 * 0.000438568 = 0.149780716

● Repeating this for w2, w3, and w4 :
w2 = 0.19956143
w3 = 0.24975114
w4 = 0.29950229



  

Backpropagation
● Finally, we’ve updated all of our weights! 
● When we fed forward the 0.05 and 0.1 inputs originally, the error on the 

network was 0.298371109.
●  After this first round of backpropagation, the total error is now down to 

0.291027924. 
● It might not seem like much, but after repeating this process 10,000 

times, for example, the error plummets to 0.000035085. 
● At this point, when we feed forward 0.05 and 0.1, the two outputs neurons 

generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).



  

Backpropagation
●  Network with two inputs, one output, one hidden 
layer of one neuron.

●  Sigmoid activation function. No bias.
●  Inputs are 0.1 and 0.5, desired output is 0.2.
●  Write code for the forward pass.
●  Compute the mean squared error.
●  Backpropagate the error.
●  Train the network.



  

Backpropagation
import math

w1 = 0.4
w2 = 0.6
w3 = 0.1
i1 = 0.1
i2 = 0.5
out = 0.2
eta = 0.5

def sigmoid (x):
    return 1.0  / (1.0 + math.exp (-x))



  

Backpropagation

# forward
neth = w1 * i1 + w2 * i2
outh = sigmoid (neth)
neto = w3 * outh
o = sigmoid (neto)
   



  

Backpropagation
for i in range (1000):
    neth = w1 * i1 + w2 * i2
    outh = sigmoid (neth)
    neto = w3 * outh
    o = sigmoid (neto)
    err = 0.5 * (out - o) ** 2
    print (err, o)
    dw3 = (o - out) * o * (1.0 - o) * outh
    dw2 = (o - out) * o * (1.0 - o) * w3 * outh * (1.0 - outh) * i2
    dw1 = (o - out) * o * (1.0 - o) * w3 * outh * (1.0 - outh) * i1
    w3 = w3 - eta * dw3
    w2 = w2 - eta * dw2
    w1 = w1 - eta * dw1



  

Backpropagation
Cross-entropy loss :
C = -Σn Σi yin log oin

where oin is your network's output for class i, and yin 
= 1 if example n is of class i and 0 if it has some 
other class j. 
dC / doin = -yin / oin



  

Backpropagation
Binary cross-entropy loss :

C = -Σn Σi (yin log oin  + (1 – yin) log (1 – oin))

dC / doin = -yin / oin + (1 - yin) / (1 - oin)



  

Backpropagation

Mean squared error loss :

C = Σn Σi (yin - oin)
2

dC / doin = -2 (yin - oin). 



  

Backpropagation

● For a binary classification binary cross entropy.
● For a multi-class classification softmax + cross 

entropy.
● For regression mean squared error.



  

Backpropagation

● Train the network to have 1.0 as output with the 
binary cross-entropy loss.



  

Backpropagation
# binary cross entropy
out = 1.0
for i in range (1000):
    neth = w1 * i1 + w2 * i2
    outh = sigmoid (neth)
    neto = w3 * outh
    o = sigmoid (neto)
    err = -out * math.log (o) - (1.0 - out) * math.log (1.0 - o)
    print (err, o)
    dw3 = (-out / o) * o * (1.0 - o) * outh
    dw2 = (-out / o) * o * (1.0 - o) * w3 * outh * (1.0 - outh) * i2
    dw1 = (-out / o) * o * (1.0 - o) * w3 * outh * (1.0 - outh) * i1
    w3 = w3 - eta * dw3
    w2 = w2 - eta * dw2
    w1 = w1 - eta * dw1



  

Backpropagation

● Train a modified network with two outputs to 
have 1.0 and 0.0 as outputs with the categorical 
crossentropy loss.



  

Backpropagation
# categorical cross entropy
out1 = 1.0
out2 = 0.0
w4 = 0.5
for i in range (1000):
    neth = w1 * i1 + w2 * i2
    outh = sigmoid (neth)
    neto1 = w3 * outh
    o1 = sigmoid (neto1)
    neto2 = w4 * outh
    o2 = sigmoid (neto2)
    err = -out1 * math.log (o1) - out2 * math.log (o2)
    print (err, o1, o2)



  

Backpropagation
    do2 = (-out2 / o2) * o2 * (1.0 - o2)
    do1 = (-out1 / o1) * o1 * (1.0 - o1)
    dw4 = do2 * outh
    dw3 = do1 * outh
    dw2 = (do1 * w3 + do2 * w4) * outh * (1.0 - outh) * i2
    dw1 = (do1 * w3 + do2 * w4) * outh * (1.0 - outh) * i1
    w4 = w4 - eta * dw4
    w3 = w3 - eta * dw3
    w2 = w2 - eta * dw2
    w1 = w1 - eta * dw1



  

Backpropagation

● What happens with the categorical crossentropy 
loss for this example ?

● Solutions ?



  

Backpropagation

● Try two outputs 1 and 0 with the binary cross 
entropy loss.

● Try the softmax activation at the output.



  

Backpropagation
# binary cross entropy
out1 = 1.0
out2 = 0.0
w4 = 0.5
for i in range (100000):
    neth = w1 * i1 + w2 * i2
    outh = sigmoid (neth)
    neto1 = w3 * outh
    o1 = sigmoid (neto1)
    neto2 = w4 * outh
    o2 = sigmoid (neto2)
    err = -out1 * math.log (o1) - (1.0 - out2) * math.log (1.0 - o2)
    print (err, o1, o2)



  

Backpropagation

    do2 = (1 - out2) / (1.0 - o2) * o2 * (1.0 - o2)
    do1 = (-out1 / o1) * o1 * (1.0 - o1)
    dw4 = do2 * outh
    dw3 = do1 * outh
    dw2 = (do1 * w3 + do2 * w4) * outh * (1.0 - outh) * i2
    dw1 = (do1 * w3 + do2 * w4) * outh * (1.0 - outh) * i1
    w4 = w4 - eta * dw4
    w3 = w3 - eta * dw3
    w2 = w2 - eta * dw2
    w1 = w1 - eta * dw1



  

Backpropagation
● Multi-class classification:

● Cross entropy:

● Softmax:

● Derivative of the loss and the softmax:



  

Jacobian of the Softmax



  

Jacobian of the Softmax



  

Jacobian of the Softmax



  

Jacobian of the Softmax



  

Jacobian of the Softmax



  

Backpropagation



  

Backpropagation



  

Keras



  

Keras
● Keras is a high-level neural networks API, written in Python and integrated in TensorFlow. It was 

developed with a focus on enabling fast experimentation. Being able to go from idea to result with 
the least possible delay is key to doing good research.

● Use Keras if you need a deep learning library that:

Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).

Supports both convolutional networks and recurrent networks, as well as combinations of the two.

Runs seamlessly on CPU and GPU.



  

Keras
● The core data structure of Keras is a model, a way to organize layers. The 

simplest type of model is the Sequential model, a linear stack of layers.

import tensorflow as tf
from tensorflow import keras

from tensorflow.keras import Sequential
model = Sequential()



  

Keras
● In order to define a network you have to import the 

libraries for defining the layers and the libraries for the 
training algorithms :

from tensorflow.keras.layers import Dense, Activation

from tensorflow.keras.optimizers import SGD



  

Keras
● Example

# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)

# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))



  

Keras
Stacking layers is as easy as .add():

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(units=64, input_dim=100))
model.add(Activation(‘tanh'))
model.add(Dense(units=10))
model.add(Activation('softmax'))



  

Keras
● Input and labels are represented as arrays :

import numpy as np

X = np.array([[0.,0.],[0.,1.],[1.,0.],[1.,1.]])
y = np.array([[0.],[1.],[1.],[0.]])



  

Keras
sgd = SGD(lr=0.1)
model.compile(loss='binary_crossentropy', 
optimizer=sgd)
model.fit(X, y, verbose=1, batch_size=1, 
epochs=1000)
print(model.predict(X))



  

Practical Work

• Implement a two layers XOR network (one hidden layer).

• Make it learn the XOR function with two inputs and one output.



  

XOR
import tensorflow as tf
from tensorflow import keras

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import SGD

import numpy as np
X = np.array([[0.,0.],[0.,1.],[1.,0.],[1.,1.]])
y = np.array([[0.],[1.],[1.],[0.]])



  

XOR
model = Sequential()
model.add(Dense(8, input_dim=2))
model.add(Activation('tanh'))
model.add(Dense(1))
model.add(Activation('sigmoid'))

sgd = SGD(lr=0.1)
model.compile(loss='mse', optimizer=sgd)
model.fit(X, y, verbose=1, batch_size=1, epochs=1000)
print(model.predict(X))



  



  

MNIST



  



  

MNIST
● Loading the MNIST data :

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, 
test_labels) = mnist.load_data()



  

Exercise

Train a small dense network on the MNIST data :
– Prepare the data : 

• Inputs = vectors of real numbers (between 0.0 and 1.0) of size 28*28
• Labels = vectors of real numbers of size 10 (nine 0 and a 1 at the index of the label)

– Define the network : 
• Fully connected network with 28*28 inputs and 10 outputs

– Define the loss and the optimizer
– Train the network
– Test the network
– Print an image in the test set and the predicted class



  

MNIST
import tensorflow as tf
from tensorflow import keras
import numpy as np

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()



  

MNIST
● Preparing the data :

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
from tensorflow.keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)



  

MNIST
● Defining the network :

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Activation

network = Sequential()
network.add(Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(Dense(10, activation='softmax'))



  

MNIST
● Defining the optimizer and the loss :

network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

● Training the network :

network.fit(train_images, train_labels, epochs=5, batch_size=128)

● Testing the network :

test_loss, test_acc = network.evaluate(test_images, test_labels)
print('test_acc:', test_acc)



  

MNIST
● Predicting the class of an example :

import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
plt.imshow(test_images [0])
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
img = test_images [0].reshape ((1, 28*28))
print (network.predict(img))



  

Binary Classification



  

Binary Classification

from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)



  

Binary Classification
● The argument num_words = 10000 means you’ll keep only the top 10,000 most frequently 

occurring words in the training data. Rare words will be discarded. This allows you to work 
with vector data of a manageable size.

● The variables train_data and test_data are lists of reviews; each review is a list of word 
indices (encoding a sequence of words). 

● train_labels and test_labels are lists of 0s and 1s, where 0 stands for negative and 1 
stands for positive :
train_data[0]
[1, 14, 22, 16, ... 178, 32]
train_labels[0]
1



  

Exercise : Preparing the data

• You can’t feed lists of integers into a neural network. You have to turn your lists 
into tensors :

– One-hot encode your lists to turn them into vectors of 0s and 1s. 
– This would mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional 

vector that would be all 0s except for indices 3 and 5, which would be 1s. 
– Then you could use as the first layer in your network a dense layer, capable of 

handling floating-point vector data.



  

import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras.datasets import imdb
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

def vectorize_sequences(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
    for i in range (len (sequences)):
        for j in range (len (sequences [i])):
            results [i] [sequences [i] [j]] = 1.
    return results

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

• You should also convert your labels from integer to numeric, which is straightforward:

y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

IMDB



  

View Reviews

word_index = imdb.get_word_index()

reverse_word_index = dict(
    [(value, key) for (key, value) in word_index.items()])

decoded_review = ' '.join(
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]])



  

Exercise

Train a small dense network on the IMDB data :
– Define the network
– Define the loss and the optimizer
– Define a validation set
– Train the network using a validation set



  

IMDB
● Defining the network :

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(16, activation='relu', input_shape=(10000,)))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))



  

IMDB
● Defining a validation set :

x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y_val = y_train[:10000]
partial_y_train = y_train[10000:]

● Training with a validation set :

model.compile (optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit (partial_x_train, partial_y_train,epochs=20, batch_size=512, validation_data=(x_val, y_val))



  

IMDB
● Visualize the training loss :

import matplotlib.pyplot as plt
history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()



  

IMDB



  

IMDB
● Visualize the training accuracy:

plt.clf() #Clears the figure
acc = history_dict['acc']
val_acc = history_dict['val_acc']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()



  

IMDB



  

Weight Regularization



  

Weight Regularization
● You may be familiar with the principle of Occam’s razor : given two 

explanations for something, the explanation most likely to be correct is the 
simplest one—the one that makes fewer assumptions. This idea also applies 
to the models learned by neural networks: given some training data and a 
network architecture, multiple sets of weight values (multiple models) could 
explain the data. Simpler models are less likely to overfit than complex ones.

● A simple model in this context is a model where the distribution of parameter 
values has less entropy (or a model with fewer parameters). Thus, a common 
way to mitigate overfitting is to put constraints on the complexity of a network 
by forcing its weights to take only small values, which makes the distribution of 
weight values more regular. This is called weight regularization, and it’s done 
by adding to the loss function of the network a cost associated with having 
large weights.



  

Weight Regularization
● L2 regularization : The cost added is proportional to the square of the value of the weight 

coefficients (the L2 norm of the weights). L2 regularization is also called weight decay in the 
context of neural networks. 

● In Keras, weight regularization is added by passing weight regularizer instances to layers as 
keyword arguments : 
from tensorflow.keras import regularizers
model = Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation='relu',
                                         input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

● regularizer_l2(0.001) means every coefficient in the weight matrix of the layer will add 0.001 * 
weight_coefficient_value to the total loss of the network. Note that because this penalty is only 
added at training time, the loss for this network will be much higher at training time than at test 
time.



  

Exercise

Compare for the IMDB network the effect of weight regularization on the 
evolution of training and test errors and accuracies.



  

Regularization l2 IMDB



  

Dropout



  

Dropout
● Dropout is one of the most effective and most commonly used regularization 

techniques for neural networks, developed by Geoff Hinton and his students at 
the University of Toronto. 

● Dropout, applied to a layer, consists of randomly dropping out (setting to zero) a 
number of output features of the layer during training. 

● Let’s say a given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for 
a given input sample during training. After applying dropout, this vector will have 
a few zero entries distributed at random: for example, [0, 0.5, 1.3, 0, 1.1] . 

● The dropout rate is the fraction of the features that are zeroed out; it’s usually 
set between 0.2 and 0.5.

● At test time, no units are dropped out; instead, the layer’s output values are 
scaled down by a factor equal to the dropout rate, to balance for the fact that 
more units are active than at training time.



  

Dropout
● Consider a matrix containing the output of a layer, layer_output , of shape 

(batch_size, features) . 
● At training time, we zero out at random a fraction of the values in the matrix:

layer_output *= np.random.randint(0, high=2, size=layer_output.shape)
● At test time, we scale down the output by the dropout rate. Here, we scale by 

0.5 (because we previously dropped half the units):
layer_output *= 0.5

● Note that this process can be implemented by doing both operations at training 
time and leaving the output unchanged at test time, which is often the way it’s 
implemented in practice :
layer_output *= np.random.randint(0, high=2, size=layer_output.shape)
layer_output /= 0.5



  

Tips For Using Dropout

• Generally, use a small dropout value of 20%-50% of neurons with 20% providing 
a good starting point. A probability too low has minimal effect and a value too 
high results in under-learning by the network.

• Use a larger network. You are likely to get better performance when dropout is 
used on a larger network, giving the model more of an opportunity to learn 
independent representations.



  

Dropout

• Dropout

tensorflow.keras.layers.Dropout(rate, noise_shape=None, seed=None)

• Applies Dropout to the input.

Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent overfitting.

• Arguments

rate: float between 0 and 1. Fraction of the input units to drop.

noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have 
shape (batch_size, timesteps, features) and you want the dropout mask to be the same for all timesteps, you can use noise_shape=(batch_size, 1, features).

seed: A Python integer to use as random seed.



  

Dropout



  

Dropout
● Add two dropout layers in the IMDB network to 

see how well they do at reducing overfitting.



  

Dropout
model = models.Sequential()
model.add(layers.Dense(16,activation='relu',
                                         input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))



  

Dropout



  

Avoid Overfitting
● To recap, these are the most common ways to 

prevent overfitting in neural networks:
– Get more training data.
– Reduce the capacity of the network.
– Add weight regularization.
– Add dropout.



  

Multiclass Classification



  

Multiclass Classification
● You’ll work with the Reuters dataset, a set of short newswires and 

their topics, published by Reuters in 1986. It’s a simple, widely used 
toy dataset for text classification. There are 46 different topics; some 
topics are more represented than others, but each topic has at least 
10 examples in the training set.

from tensorflow.keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = 
reuters.load_data(num_words=10000)



  

Exercise

Train a small dense network on the Reuters data :
– Encode the data
– Define the network
– Define the loss and the optimizer
– Define a validation set
– Train the network using a validation set



  

Reuters
● Encoding the data :

x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

from tensorflow.keras.utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)



  

Reuters
● Defining the network :

from tensorflow.keras import models
from tensorflow.keras import layers
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))



  

Reuters
● Defining the optimizer and the loss :

model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

● Defining a validation set :

x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

● Training with a validation set :

history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))



  

Reuters
● Visualize the training :

import matplotlib.pyplot as plt
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()



  

Reuters
● Further experiments :
● Train on less epochs.
● Try using larger or smaller layers: 32 units, 128 

units, and so on.
● The network used two hidden layers. Now try using 

a single hidden layer, or three hidden layers.



  

Multiclass classification
Here’s what you should take away from this example:

● If you’re trying to classify data points among N classes, your network should end with a 
dense layer of size N.

● In a single-label, multiclass classification problem, your network should end with a 
softmax activation so that it will output a probability distribution over the N output 
classes.

● Categorical crossentropy is almost always the loss function you should use for such 
problems. It minimizes the distance between the probability distributions output by the 
network and the true distribution of the targets.

● Encoding the labels via categorical encoding (also known as one-hot encoding) and 
using categorical_crossentropy as a loss function

● If you need to classify data into a large number of categories, you should avoid creating 
information bottlenecks in your network due to intermediate layers that are too small.



  

Regression



  

Regression
● The Boston Housing Price dataset
● Predict the median price of homes in a given Boston suburb in the mid-1970s, given data points 

about the suburb at the time, such as the crime rate, the local property tax rate, and so on. The 
dataset you’ll use has an interesting difference from the two previous examples. It has relatively 
few data points: only 506, split between 404 training samples and 102 test samples. And each 
feature in the input data (for example, the crime rate) has a different scale. For instance, some 
values are proportions, which take values between 0 and 1; others take values between 1 and 
12, others between 0 and 100, and so on.

from tensorflow.keras.datasets import boston_housing
(train_data, train_targets), (test_data, test_targets) = 
 boston_housing.load_data()



  

Exercise

Train a small dense network on the Boston Housing data :
– Encode the data
– Define the network
– Define the loss and the optimizer
– Define a validation set
– Train the network using a validation set



  

Regression
● Preparing the data

It would be problematic to feed into a neural network values that all take wildly different ranges. The network might 
be able to automatically adapt to such heterogeneous data, but it would definitely make learning more difficult. A 
widespread best practice to deal with such data is to do feature-wise normalization: for each feature in the input 
data (a column in the input data matrix), you subtract the mean of the feature and divide by the standard deviation, 
so that the feature is centered around 0 and has a unit standard deviation. This is easily done in Numpy.

mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std



  

Regression
● Building your network

Because so few samples are available, you’ll use a very small network with two hidden layers, each 
with 64 units. In general, the less training data you have, the worse overfitting will be, and using a 
small network is one way to mitigate overfitting.

from tensorflow.keras import models
from tensorflow.keras import layers
def build_model():
    model = models.Sequential() 
    model.add(layers.Dense(64, activation='relu',
                       input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1))
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return model



  

Regression
● In order to find the best hyperparameters (epochs, number of hidden 

layers, number of neurons,…) we will evaluate the hyperparameters 
with cross validation.

● The goal is to find hyperparameters that minimize the cross validation 
error.

● Once the hyperparameters have been chosen, the network with these 
hyperparameters is initialized and trained on the whole training set.



  

Regression
●  3-fold cross-validation :



  

Regression
num_epochs = 50
model = build_model()

num_val_samples = len(train_data) // 4

val_data = train_data[:num_val_samples]
val_targets = train_targets[:num_val_samples]
partial_train_data = train_data[num_val_samples:]
partial_train_targets = train_targets[num_val_samples:]

history = model.fit(partial_train_data, partial_train_targets,
                              validation_data=(val_data, val_targets),
                              epochs=num_epochs, batch_size=10, verbose=0)

●



  

Regression
import numpy as np
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
    print('processing fold #', i)
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
    partial_train_data = np.concatenate([train_data[:i * num_val_samples],train_data[(i + 1) * num_val_samples:]], axis=0)
    partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],
                                                                   train_targets[(i + 1) * num_val_samples:]], axis=0)
    model = build_model()
    model.fit(partial_train_data, partial_train_targets,
                   epochs=num_epochs, batch_size=1, verbose=0)
    val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
    all_scores.append(val_mae)



  

Regression
num_epochs = 50
all_mae_histories = []
for i in range(k):
    print('processing fold #', i)
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
    partial_train_data = np.concatenate ([train_data[:i * num_val_samples], 
                                                               train_data[(i + 1) * num_val_samples:]], axis=0)
    partial_train_targets = np.concatenate([train_targets[:i * num_val_samples], 
                                                                  train_targets[(i + 1) * num_val_samples:]], axis=0)
    model = build_model()
    history = model.fit(partial_train_data, partial_train_targets,
                                  validation_data=(val_data, val_targets),
                                  epochs=num_epochs, batch_size=1, verbose=0)
    mae_history = history.history['val_mae']
    all_mae_histories.append(mae_history)



  

Regression
average_mae_history = [
np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]

import matplotlib.pyplot as plt
plt.plot(range(1, len(average_mae_history) + 1),
            average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()



  

Regression
● Once you’re finished tuning other parameters of the model (in addition to the 

number of epochs, you could also adjust the size of the hidden layers), you can train 
a final production model on all of the training data, with the best parameters, and 
then look at its performance on the test data.

model = build_model()

model.fit(train_data, train_targets, 
               epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)



  

Regression
Here’s what you should take away from this example:

● Regression is done using different loss functions than classification. Mean 
squared error ( MSE ) is a loss function commonly used for regression.

● Similarly, evaluation metrics to be used for regression differ from those used for 
classification; naturally, the concept of accuracy doesn’t apply for regression. A 
common regression metric is mean absolute error ( MAE ).

● When features in the input data have values in different ranges, each feature 
should be scaled independently as a preprocessing step.

● When there is little data available, using K-fold validation is a great way to 
reliably evaluate a model.

● When little training data is available, it’s preferable to use a small network with 
few hidden layers (typically only one or two), in order to avoid severe overfitting.



  

What we have learned



  

What we have learned
● Choosing the right last-layer activation and loss 

function for your model :



  

Convolutional Neural Networks



The replicated feature approach
(currently the dominant approach for neural networks)

● Use many different copies of the same feature detector 
with different positions.
– Could also replicate across scale and orientation 

(tricky and expensive)
– Replication greatly reduces the number of free 

parameters to be learned.
● Use several different feature types, each with its own 

map of replicated detectors.
– Allows each patch of image to be represented in 

several ways.

The red connections 
all have the same 
weight.



Le Net
• Yann LeCun and his collaborators developed a really good recognizer for 

handwritten digits by using backpropagation in a feedforward net with:
– Many hidden layers
– Many maps of replicated units in each layer.
– Pooling of the outputs of nearby replicated units.
– A wide net that can cope with several characters at once even if they 

overlap.
– A clever way of training a complete system, not just a recognizer. 

• This net was used for reading ~10% of the checks in North America.
• Look the impressive demos of LENET at http://yann.lecun.com



The architecture of LeNet5



The 82 errors made by 
LeNet5

Notice that most of the 
errors are cases that people 
find quite easy.

The human error rate is 
probably 20 to 30 errors but 
nobody has had the patience 
to measure it.



The ILSVRC-2012 competition on 
ImageNet

● The dataset has 1.2 million high-
resolution training images.

● The classification task:
– Get the “correct” class in your top 

5 bets. There are 1000 classes.
● The localization task:

– For each bet, put a box around 
the object. Your box must have at 
least 50% overlap with the 
correct box.

● Some of the best existing computer 
vision methods were  tried on this 
dataset by leading computer vision 
groups from Oxford, INRIA, XRCE, 
…
– Computer vision systems use 

complicated multi-stage 
systems.

– The early stages are typically 
hand-tuned by optimizing a few 
parameters.



Examples from the test set (with the network’s guesses)



Error rates on the ILSVRC-2012 
competition

● University of Tokyo             
● Oxford University Computer Vision Group
● INRIA (French national research institute in CS) 

+ XRCE (Xerox Research Center Europe)  
● University of Amsterdam

● 26.1%            53.6%
● 26.9%            50.0%
● 27.0%

● 29.5%     

• University of Toronto (Alex Krizhevsky) ● 16.4%         34.1%
●  

classification classification
&localization



A neural network for ImageNet
● Alex Krizhevsky (NIPS 2012) 

developed a very deep convolutional 
neural net of the type pioneered by  
Yann Le Cun. Its architecture was:
– 7 hidden layers not counting 

some max pooling layers.
– The early layers were 

convolutional.
– The last two layers were globally 

connected.

● The activation functions were:
–Rectified linear units in every hidden 
layer. These train much faster and are 
more expressive than logistic units.
–Competitive normalization to 
suppress hidden activities when 
nearby units have stronger activities. 
This helps with variations in intensity. 



Tricks that significantly improve 
generalization

• Train on random 224x224 patches from 
the 256x256 images to get more data. 
Also use left-right reflections of the 
images.
• At test time, combine the opinions 

from ten different patches: The four 
224x224 corner patches plus the 
central 224x224 patch plus the 
reflections of those five patches. 

● Use “dropout” to regularize the 
weights in the globally connected 
layers (which contain most of the 
parameters). 
– Dropout means that half of the 

hidden units in a layer are 
randomly removed  for each 
training example. 

– This stops hidden units from 
relying too much on other 
hidden units.



Some more 
examples of 
how well the 
deep net 
works for 
object 
recognition.



The hardware required for Alex’s 
net

● He uses a very efficient implementation of convolutional nets on two Nvidia 
GTX 580 Graphics Processor Units (over 1000 fast little cores)
– GPUs are very good for matrix-matrix multiplies.
– GPUs have very high bandwidth to memory.
– This allows him to train the network in a week.
– It also makes it quick to combine results from 10 patches at test time.

● We can spread a network over many cores if we can communicate the 
states fast enough.

● As cores get cheaper and datasets get bigger, big neural nets will improve 
faster than old-fashioned (i.e. pre Oct 2012) computer vision systems.





  

Convolutional Networks

• Conv2D

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), 
activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, 
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

2D convolution layer (e.g. spatial convolution over images).

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If use_bias is 
True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.

When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers, does not 
include the sample axis), e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures in data_format="channels_last".



  

Convolutional Networks

• Input shape

4D tensor with shape: (samples, rows, cols, channels)

• Output shape

4D tensor with shape: (samples, new_rows, new_cols, filters)
rows and cols values might have changed due to padding.



  

Convolutional Networks

• ReLU layer :
• ReLU is the abbreviation of Rectified Linear Units. This is a layer of neurons that 

applies the non-saturating activation function f (x) = max (0, x).
• Compared to other functions the usage of ReLU is preferable, because it results in 

the neural network training several times faster, without making a significant 
difference to generalisation accuracy.

• activation = ‘relu’ in the layer parameters.



  

Convolutional Networks

• Softmax :
• Applies the Softmax function to an n-dimensional input Tensor, rescaling them so 

that the elements of the n-dimensional output Tensor lie in the range (0,1) and sum 
to 1.

• Softmax is defined as  exp(xi) / Σ exp(xj)
• activation = ‘softmax‘ in the layer parameters.



  

Convolutional Networks

• Reshape

keras.layers.Reshape(target_shape)

Reshapes an output to a certain shape.

• Arguments

    target_shape: target shape. Tuple of integers, does not include the samples dimension (batch size).

• Input shape

Arbitrary, although all dimensions in the input shaped must be fixed. Use the keyword argument input_shape (tuple of integers, does not include the samples axis) when 
using this layer as the first layer in a model.

• Output shape

(batch_size,) + target_shape



  

Convolutional Networks

• Example

# as first layer in a Sequential model
model = Sequential()
model.add(Reshape((3, 4), input_shape=(12,)))
# now: model.output_shape == (None, 3, 4)
# note: `None` is the batch dimension

# as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2)

# also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)



  

Convolutional Networks

• Flatten

keras.layers.core.Flatten()

Flattens the input. Does not affect the batch size.

• Example

model = Sequential()
model.add(Convolution2D(64, 3, 3,
            border_mode='same',
            input_shape=(3, 32, 32)))
# now: model.output_shape == (None, 64, 32, 32)

model.add(Flatten())
# now: model.output_shape == (None, 65536)



  

MNIST
from keras.datasets import mnist

from keras.layers import Dense, Flatten
from keras.layers import Conv2D

# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()



  

Practical Work

• Implement a convolutional network for MNIST.
• 3x3 filters
• 32 planes for the first layer
• 64 planes for the second layer
• Fully connected layer with 128 neurons
• 10 classes for the output layer
• ReLU
• Softmax



  

MNIST
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
input_shape = (28, 28, 1)

# normalisation of the inputs
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# convert class vectors to binary class matrices : 3 becomes [0,0,0,1,0,0,0,0,0 0]
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)



  

MNIST
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))



  

MNIST
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=’sgd’,
              metrics=['accuracy'])

model.fit(x_train, y_train,
          batch_size=512,
          epochs=10,
          verbose=1,
          validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])



  

Max Pooling



  

Max Pooling

• Max pooling is a sample-based discretization process. The objective is to down-sample an 
input representation (image, hidden-layer output matrix, etc.), reducing it's dimensionality 
and allowing for assumptions to be made about features contained in the sub-regions binned.

• This is done to in part to help over-fitting by providing an abstracted form of the 
representation. As well, it reduces the computational cost by reducing the number of 
parameters to learn and provides basic translation invariance to the internal representation.

• Max pooling is done by applying a max filter to non-overlapping sub-regions of the initial 
representation.



  

Max Pooling

• For example a 4x4 matrix representing our initial input.
• We run a 2x2 filter over our input. 
• Use a stride of 2 (meaning the (dx, dy) for stepping over our input will be (2, 2)) 

and won't overlap regions.
• For each of the regions represented by the filter, we will take the max of that 

region and create a new, output matrix where each element is the max of a region 
in the original input. 



  

Max Pooling



  

Max Pooling



  

Max Pooling

• MaxPooling2D

MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None)

Max pooling operation for spatial data.

• Arguments

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) will halve the input in both spatial dimension. If only one integer is 
specified, the same window length will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.

padding: One of "valid" or "same" (case-insensitive).

data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape 
(batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found 
in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".



  

Max Pooling

• Input shape

4D tensor with shape: (batch_size, rows, cols, channels)
    

• Output shape

4D tensor with shape: (batch_size, pooled_rows, pooled_cols, channels)



  

Dropout

• Dropout is a technique where randomly selected neurons are ignored during training. 

• Their contribution to the activation of downstream neurons is temporally removed on the forward pass and 
any weight updates are not applied to the neuron on the backward pass.

• You can imagine that if neurons are randomly dropped out of the network during training, that other 
neurons will have to step in and handle the representation required to make predictions for the missing 
neurons. This is believed to result in multiple independent internal representations being learned by the 
network.

• The effect is that the network becomes less sensitive to the specific weights of neurons. This in turn results 
in a network that is capable of better generalization and is less likely to overfit the training data.



  

Practical Work
● Add Dropout and MaxPooling to the convolutional MNIST network.
● Train a convolutional network on the CIFAR10 image dataset.
● Add Dropout to the CIFAR10 network.

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()



  

MNIST
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 
input_shape=(28,28,1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))



  

CIFAR10
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0

train_labels = tf.keras.utils.to_categorical (train_labels)
test_labels = tf.keras.utils.to_categorical (test_labels)

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))



  

CIFAR10
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

train_labels = tf.keras.utils.to_categorical (train_labels)
test_labels = tf.keras.utils.to_categorical (test_labels)

train_images, test_images = train_images / 255.0, test_images / 255.0

model = models.Sequential()
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding=’same’, input_shape=(32, 32, 3)))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding=’same’))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding=’same’))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding=’same’))
model.add(layers.Conv2D(64, (3, 3), activation='relu', padding=’same’))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(layers.Dense(10, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=512, epochs=10, verbose=1, validation_data=(test_images, test_labels))



  

The Functional API



  

The Functional API
● The Functional API is a way to create models 

that is more flexible than Sequential: 
● It can handle: 

– models with non-linear topology, 
– models with shared layers, 
– models with multiple inputs or outputs. 



  

The Functional API
● It's based on the idea that a deep learning 

model is usually a directed acyclic graph (DAG) 
of layers.

● The Functional API a set of tools for building 
graphs of layers. 



  

The Functional API
● Consider the following model:

(input: 784-dimensional vectors)
[Dense (64 units, relu activation)]
[Dense (64 units, relu activation)]
[Dense (10 units, softmax activation)]
(output: probability distribution over 10 classes)

● It is a simple graph of 3 layers.



  

The Functional API
● To build this model with the functional API, you would start by creating an input node:

from tensorflow import keras
inputs = keras.Input(shape=(784,))

● Here we just specify the shape of our data: 784-dimensional vectors. 
● Note that the batch size is always omitted, we only specify the shape of each sample. 
● For an input meant for images of shape (32, 32, 3), we would have used:

img_inputs = keras.Input(shape=(32, 32, 3))

● What gets returned, inputs, contains information about the shape and dtype of the input data that you expect to feed 
to your model:
inputs.shape = TensorShape([None, 784])
inputs.dtype = tf.float32



  

The Functional API
● You create a new node in the graph of layers by calling a layer on this inputs 

object:

from tensorflow.keras import layers

dense = layers.Dense(64, activation='relu')
x = dense(inputs)

● The "layer call" action is like drawing an arrow from "inputs" to this layer we 
created. 

● We're "passing" the inputs to the dense layer, and out we get x.



  

The Functional API
● Let's add a few more layers to our graph of layers:

x = layers.Dense(64, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax')(x)

● At this point, we can create a Model by specifying its inputs and 
outputs in the graph of layers:

model = keras.Model(inputs=inputs, outputs=outputs)



  

The Functional API
● To recap, here is our full model definition process:

inputs = keras.Input(shape=(784,), name='img')
x = layers.Dense(64, activation='relu')(inputs)
x = layers.Dense(64, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax')(x)

model = keras.Model(inputs=inputs, outputs=outputs, 
name='mnist_model')



  

The Functional API
● We can also plot the model as a graph:

keras.utils.plot_model(model, 'my_first_model.png')

                                                    
  
 
 
 
 



  

The Functional API
● And optionally display the input and output shapes of each layer in the plotted graph:

keras.utils.plot_model(model, 'my_first_model_with_shape_info.png', show_shapes=True)

                                                    
  
 
 
 
 



  

The Functional API
● Training, evaluation, and inference work exactly in the same way for models built using the Functional API as for Sequential models.
● Here is a quick demonstration.
● Here we load MNIST image data, reshape it into vectors, fit the model on the data (while monitoring performance on a validation split), and finally we 

evaluate our model on the test data:

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255

model.compile(loss='sparse_categorical_crossentropy',
              optimizer=keras.optimizers.RMSprop(),
              metrics=['accuracy'])
history = model.fit(x_train, y_train,
                    batch_size=64,
                    epochs=5,
                    validation_split=0.2)
test_scores = model.evaluate(x_test, y_test, verbose=2)
print('Test loss:', test_scores[0])
print('Test accuracy:', test_scores[1])



  

The Functional API
● Saving and serialization work exactly in the same way for models built using the Functional API as for 

Sequential models.

● The standard way to save a Functional model is to call model.save() to save the whole model into a single file.

● You can later recreate the same model from this file, even if you no longer have access to the code that created 
the model.

● This file includes: - The model's architecture - The model's weight values (which were learned during training) - 
The model's training config (what you passed to compile), if any - The optimizer and its state, if any (this enables 
you to restart training where you left off)

model.save('path_to_my_model.h5')
# Recreate the exact same model purely from the file:
model = keras.models.load_model('path_to_my_model.h5')



  

Exercise
● Train a MNIST network defined with the 

functional API.



  

MNIST
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras import layers
from tensorflow.keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

inputs = keras.Input(shape=(784,), name='img')
x = layers.Dense(64, activation='relu')(inputs)
x = layers.Dense(64, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax')(x)

model = keras.Model(inputs=inputs, outputs=outputs, name='mnist_model')
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=128)



  

Autoencoder



  

Autoencoder
● We will train an Autoencoder on FashionMNIST.



  

GlobalMaxPooling2D



  

Conv2DTranspose



  

UpSampling2D

● Nearest-Neighbor: Copies the value from the nearest pixel.
● Bilinear: Uses all nearby pixels to calculate the pixel's value, using linear interpolations.



  

Autoencoder
● In the functional API, models are created by specifying their inputs and outputs in a graph of layers. That means that a single 

graph of layers can be used to generate multiple models.

● In the example below, we use the same stack of layers to instantiate two models: an encoder model that turns image inputs 
into 16-dimensional vectors, and an end-to-end autoencoder model for training.

encoder_input = keras.Input(shape=(28, 28, 1), name='img')
x = layers.Conv2D(16, 3, activation='relu')(encoder_input)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.Conv2D(16, 3, activation='relu')(x)
encoder_output = layers.GlobalMaxPooling2D()(x)

encoder = keras.Model(encoder_input, encoder_output, name='encoder')
encoder.summary()



  

Autoencoder
x = layers.Reshape((4, 4, 1))(encoder_output)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
x = layers.Conv2DTranspose(32, 3, activation='relu')(x)
x = layers.UpSampling2D(3)(x)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
decoder_output = layers.Conv2DTranspose(1, 3, activation='relu')(x)

autoencoder = keras.Model(encoder_input, decoder_output, name='autoencoder')
autoencoder.summary()

● Note that we make the decoding architecture strictly symmetrical to the encoding architecture, so that we get an output shape 
that is the same as the input shape (28, 28, 1).

● The reverse of a Conv2D layer is a Conv2DTranspose layer, and the reverse of a MaxPooling2D layer is an UpSampling2D 
layer.



  

Autoencoder
● You can treat any model as if it were a layer, by calling it on an Input or on the output of another layer. 
● Note that by calling a model you aren't just reusing the architecture of the model, you're also reusing its weights.
● Let's see this in action. Here's a different take on the autoencoder example that creates an encoder model, a decoder model, 

and chain them in two calls to obtain the autoencoder model:

encoder_input = keras.Input(shape=(28, 28, 1), name='original_img')
x = layers.Conv2D(16, 3, activation='relu')(encoder_input)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.Conv2D(16, 3, activation='relu')(x)
encoder_output = layers.GlobalMaxPooling2D()(x)

encoder = keras.Model(encoder_input, encoder_output, name='encoder')
encoder.summary()



  

Autoencoder
decoder_input = keras.Input(shape=(16,), name='encoded_img')
x = layers.Reshape((4, 4, 1))(decoder_input)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
x = layers.Conv2DTranspose(32, 3, activation='relu')(x)
x = layers.UpSampling2D(3)(x)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
decoder_output = layers.Conv2DTranspose(1, 3, activation='relu')(x)

decoder = keras.Model(decoder_input, decoder_output, name='decoder')
decoder.summary()

autoencoder_input = keras.Input(shape=(28, 28, 1), name='img')
encoded_img = encoder(autoencoder_input)
decoded_img = decoder(encoded_img)
autoencoder = keras.Model(autoencoder_input, decoded_img, name='autoencoder')
autoencoder.summary()



  

Exercise
● Train a an autoencoder for fashion_mnist with 

the functional API.



  

Autoencoder
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.datasets import fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
from tensorflow.keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)



  

Encoder
encoder_input = tf.keras.Input(shape=(28, 28, 1), name='original_img')
x = layers.Conv2D(16, 3, activation='relu')(encoder_input)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.MaxPooling2D(3)(x)
x = layers.Conv2D(32, 3, activation='relu')(x)
x = layers.Conv2D(16, 3, activation='relu')(x)
encoder_output = layers.GlobalMaxPooling2D()(x)

encoder = tf.keras.Model(encoder_input, encoder_output, name='encoder')
encoder.summary()



  

Decoder
decoder_input = tf.keras.Input(shape=(16,), name='encoded_img')
x = layers.Reshape((4, 4, 1))(decoder_input)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
x = layers.Conv2DTranspose(32, 3, activation='relu')(x)
x = layers.UpSampling2D(3)(x)
x = layers.Conv2DTranspose(16, 3, activation='relu')(x)
decoder_output = layers.Conv2DTranspose(1, 3, activation='relu')(x)

decoder = tf.keras.Model(decoder_input, decoder_output, name='decoder')
decoder.summary()



  

Autoencoder
autoencoder_input = tf.keras.Input(shape=(28, 28, 1), name='img')
encoded_img = encoder(autoencoder_input)
decoded_img = decoder(encoded_img)
autoencoder = tf.keras.Model(autoencoder_input, decoded_img, 
name='autoencoder')
autoencoder.summary()

autoencoder.compile(optimizer='adam', loss='mse')

autoencoder.fit(train_images, train_images, epochs=5, batch_size=128, 
shuffle=True, validation_data=(test_images, test_images))



  

Autoencoder

import matplotlib.pyplot as plt

print("and the actual image looks like")
img_out = autoencoder.predict(test_images[0].reshape(1,28,28,1))
f, axarr = plt.subplots(1,2)
axarr[0].imshow(test_images[0].reshape(28,28), cmap='Greys')
axarr[1].imshow(img_out.reshape(28,28), cmap='Greys')
plt.show()



  

Exercise
● Try to add noise to the test images and see if 

the autoencoder can denoise them.
● Train an auto encoder to denoise images.



  

Autoencoder
● Denoising the test set :

import numpy as np
n = test_images.shape [0]
n_rows = test_images.shape [1]
n_cols = test_images.shape [2]
mean = 0.1
stddev = 0.05
noise = np.random.normal(mean, stddev, (n, n_rows, n_cols))
test_images_noisy = test_images + noise
img_out = autoencoder.predict(test_images_noisy [0].reshape(1,28,28,1))
f, axarr = plt.subplots(1,2)
axarr[0].imshow(test_images[0].reshape(28,28), cmap='Greys')
axarr[1].imshow(img_out.reshape(28,28), cmap='Greys')
plt.show()



  

Autoencoder
● Training to denoise :

import numpy as np
n = train_images.shape [0]
n_rows = train_images.shape [1]
n_cols = train_images.shape [2]
mean = 0.1
stddev = 0.05
noise = np.random.normal(mean, stddev, (n, n_rows, n_cols))
train_images_noisy = train_images + noise

autoencoder_input = tf.keras.Input(shape=(28, 28, 1), name='img')
encoded_img = encoder(autoencoder_input)
decoded_img = decoder(encoded_img)
autoencoder = tf.keras.Model(autoencoder_input, decoded_img, name='autoencoder')
autoencoder.summary()

autoencoder.compile(optimizer='adam', loss='mse')

autoencoder.fit(train_images_noisy, train_images, epochs=5, batch_size=128, shuffle=True, validation_data=(test_images, test_images))



  

Autoencoder
● Generating images :

mean = 0.5
stddev = 0.3
noise1 = np.random.normal(mean, stddev, (16,))
noise2 = np.random.normal(mean, stddev, (16,))
img_out1 = decoder.predict(noise1.reshape(1,16))
img_out2 = decoder.predict(noise2.reshape(1,16))
f, axarr = plt.subplots(1,2)
axarr[0].imshow(img_out1.reshape(28,28), cmap='Greys')
axarr[1].imshow(img_out2.reshape(28,28), cmap='Greys')
plt.show()



  

Variational Autoencoders



  

Variational Autoencoders

● Classical autoencoders do not have nicely structured 
latent spaces. 

● VAEs augment autoencoders with statistical 
constraints that force them to learn continuous, highly 
structured latent spaces. 

● They have turned out to be a powerful tool for image 
generation.



  

Variational Autoencoders

● A VAE, instead of compressing its input image into a fixed code 
in the latent space, turns the image into the parameters of a 
statistical distribution: a mean and a variance. 

● The VAE uses the mean and variance parameters to randomly 
sample one element of the distribution, and decodes that 
element. 

● More robustness.
● Forces the latent space to encode meaningful representations.



  

Variational Autoencoders



  

Variational Autoencoders

● An encoder encodes the input imput_img into two parameters in 
a latent space of representations, z_mean and z_log_variance.

● A point z is randomly sampled from the latent normal 
distribution :  
z = z_mean + exp(z_log_variance) * epsilon
where epsilon is a random tensor of small values.

● A decoder decodes this point to the original input image.



  

Variational Autoencoders

z_mean, z_log_variance = encoder(input_img)
z = z_mean + exp(z_log_variance) * epsilon
reconstructed_img = decoder(z)
model = Model(input_img, reconstructed_img)



  

Variational Autoencoders

● Exercise :
Train a variational autoencoder for fashion_mnist



  

Variational Autoencoders
Encoder:

from tensorflow import keras
from tensorflow.keras import layers
latent_dim = 2
encoder_inputs = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, 3, activation="relu", strides=2, padding="same")(encoder_inputs)
x = layers.Conv2D(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Flatten()(x)
x = layers.Dense(16, activation="relu")(x)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var], name="encoder")



  

Variational Autoencoders

Latent space sampling layer:

import tensorflow as tf
class Sampler(layers.Layer):
    def call(self, z_mean, z_log_var):
        batch_size = tf.shape(z_mean)[0]
        z_size = tf.shape(z_mean)[1]
        epsilon = tf.random.normal(shape=(batch_size, z_size))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon



  

Variational Autoencoders

Decoder:

latent_inputs = keras.Input(shape=(latent_dim,))
x = layers.Dense(7 * 7 * 64, activation="relu")(latent_inputs)
x = layers.Reshape((7, 7, 64))(x)
x = layers.Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = layers.Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
decoder_outputs = layers.Conv2D(1, 3, activation="sigmoid", padding="same")(x)
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")



  

Variational Autoencoders

VAE model with custom train_step():

class VAE(keras.Model):
    def __init__(self, encoder, decoder, **kwargs):
        super().__init__(**kwargs)
        self.encoder = encoder
        self.decoder = decoder
        self.sampler = Sampler()
        self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
        self.reconstruction_loss_tracker = keras.metrics.Mean(name="reconstruction_loss")
        self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss")



  

Variational Autoencoders
    @property
    def metrics(self):
        return [self.total_loss_tracker, self.reconstruction_loss_tracker, self.kl_loss_tracker]

    def train_step(self, data):
        with tf.GradientTape() as tape:
            z_mean, z_log_var = self.encoder(data)
            z = self.sampler(z_mean, z_log_var)
            reconstruction = decoder(z)
            reconstruction_loss = tf.reduce_mean(
                                               tf.reduce_sum(keras.losses.binary_crossentropy(data, reconstruction),axis=(1, 2)))
            kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)) # Regularization: Kullback-Leibler divergence
            total_loss = reconstruction_loss + tf.reduce_mean(kl_loss)
            grads = tape.gradient(total_loss, self.trainable_weights)
            self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
            self.total_loss_tracker.update_state(total_loss)
            self.reconstruction_loss_tracker.update_state(reconstruction_loss)
            self.kl_loss_tracker.update_state(kl_loss)
            return {"total_loss": self.total_loss_tracker.result(),"reconstruction_loss": self.reconstruction_loss_tracker.result(),"kl_loss": self.kl_loss_tracker.result(),}



  

Variational Autoencoders

Training the VAE:

import numpy as np
(x_train, _), (x_test, _) = keras.datasets.fashion_mnist.load_data()
X = np.concatenate([x_train, x_test], axis=0)
X = np.expand_dims(X, -1).astype("float32") / 255
vae = VAE(encoder, decoder)
vae.compile(optimizer=keras.optimizers.Adam(), run_eagerly=True)
vae.fit(X, epochs=30, batch_size=128)



  

Variational Autoencoders
Sampling a grid of images from the 2D latent space:

import matplotlib.pyplot as plt
n = 30
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
grid_x = np.linspace(-1, 1, n)
grid_y = np.linspace(-1, 1, n)[::-1]
for i, yi in enumerate(grid_y):
    for j, xi in enumerate(grid_x):
        z_sample = np.array([[xi, yi]])
        x_decoded = vae.decoder.predict(z_sample)
        digit = x_decoded[0].reshape(digit_size, digit_size)
        figure[i * digit_size : (i + 1) * digit_size, j * digit_size : (j + 1) * digit_size,] = digit
plt.figure(figsize=(15, 15))
start_range = digit_size // 2
end_range = n * digit_size + start_range
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.axis("off")
plt.imshow(figure, cmap="Greys_r")



  

Ensemble
● As you can see, model can be nested: a model can contain submodels (since a model is just like a layer).

● A common use case for model nesting is ensembling. As an example, here's how to ensemble a set of models into a single model that averages their predictions:

def get_model():
  inputs = keras.Input(shape=(128,))
  outputs = layers.Dense(1, activation='sigmoid')(inputs)
  return keras.Model(inputs, outputs)

model1 = get_model()
model2 = get_model()
model3 = get_model()

inputs = keras.Input(shape=(128,))
y1 = model1(inputs)
y2 = model2(inputs)
y3 = model3(inputs)
outputs = layers.average([y1, y2, y3])
ensemble_model = keras.Model(inputs=inputs, outputs=outputs)



  

Multiple Inputs and Outputs
● Models with multiple inputs and outputs
● The functional API makes it easy to manipulate multiple inputs and outputs. This cannot be handled with the Sequential API.
● Let's say you're building a system for ranking custom issue tickets by priority and routing them to the right department.

● Your model will have 3 inputs:

Title of the ticket (text input)
Text body of the ticket (text input)
Any tags added by the user (categorical input)

● It will have two outputs:

Priority score between 0 and 1 (scalar sigmoid output)
The department that should handle the ticket (softmax output over the set of departments)



  

Multiple Inputs and Outputs
● Let's built this model in a few lines with the Functional API.

num_tags = 12  # Number of unique issue tags
num_words = 10000  # Size of vocabulary obtained when preprocessing text data
num_departments = 4  # Number of departments for predictions

title_input = keras.Input(shape=(None,), name='title')  # Variable-length sequence of ints
body_input = keras.Input(shape=(None,), name='body')  # Variable-length sequence of ints
tags_input = keras.Input(shape=(num_tags,), name='tags')  # Binary vectors of size `num_tags`

# Embed each word in the title into a 64-dimensional vector
title_features = layers.Embedding(num_words, 64)(title_input)
# Embed each word in the text into a 64-dimensional vector
body_features = layers.Embedding(num_words, 64)(body_input)



  

Multiple Inputs and Outputs
# Reduce sequence of embedded words in the title into a single 128-dimensional vector
title_features = layers.LSTM(128)(title_features)
# Reduce sequence of embedded words in the body into a single 32-dimensional vector
body_features = layers.LSTM(32)(body_features)

# Merge all available features into a single large vector via concatenation
x = layers.concatenate([title_features, body_features, tags_input])

# Stick a logistic regression for priority prediction on top of the features
priority_pred = layers.Dense(1, activation='sigmoid', name='priority')(x)
# Stick a department classifier on top of the features
department_pred = layers.Dense(num_departments, activation='softmax', name='department')(x)

# Instantiate an end-to-end model predicting both priority and department
model = keras.Model(inputs=[title_input, body_input, tags_input],
                    outputs=[priority_pred, department_pred])



  

Multiple Inputs and Outputs

keras.utils.plot_model(model, 'multi_input_and_output_model.png', show_shapes=True)

                                             



  

Multiple Inputs and Outputs

● When compiling this model, we can assign different losses to each 
output. 

● You can even assign different weights to each loss, to modulate 
their contribution to the total training loss.

model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
              loss=['binary_crossentropy', 'categorical_crossentropy'],
              loss_weights=[1., 0.2])



  

Multiple Inputs and Outputs

● Since we gave names to our output layers, we could also 
specify the loss like this:

model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
              loss={'priority': 'binary_crossentropy',
                    'department': 'categorical_crossentropy'},
              loss_weights=[1., 0.2])



  

Multiple Inputs and Outputs
● We can train the model by passing lists of Numpy arrays of inputs and targets:

import numpy as np

# Dummy input data
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tags_data = np.random.randint(2, size=(1280, num_tags)).astype('float32')
# Dummy target data
priority_targets = np.random.random(size=(1280, 1))
dept_targets = np.random.randint(2, size=(1280, num_departments))

model.fit({'title': title_data, 'body': body_data, 'tags': tags_data},
          {'priority': priority_targets, 'department': dept_targets},
          epochs=2,
          batch_size=32)



  

Multiple Inputs and Outputs

● When calling fit with a Dataset object, it should yield 
either a tuple of lists like :
 ([title_data, body_data, tags_data], [priority_targets, 
dept_targets]) 

● or a tuple of dictionaries like :
 ({'title': title_data, 'body': body_data, 'tags': tags_data}, 
{'priority': priority_targets, 'department': dept_targets}).



  

Exercise

● Write a convolutional model that takes 31 19x19 
planes as input and that outputs a vector of 361 with 
a softmax (the policy) and an output of 1 (the value).

● Train it on randomly generated data with different 
losses for the policy (categorical cross entropy) and 
the value (mse).



  

Exercise
Generating random data :

N = 10000
planes = 31
moves = 361

input_data = np.random.randint(2, size=(N, 19, 19, planes))
input_data = input_data.astype ('float32')
    
policy = np.random.randint(moves, size=(N,))
policy = keras.utils.to_categorical (policy)
  
value = np.random.randint(2, size=(N,))
value = value.astype ('float32')



  

Exercise
Building the model :

input = keras.Input(shape=(19, 19, planes), name='board')
x = layers.Conv2D(32, 3, activation='relu', padding='same')(input)
x = layers.Conv2D(32, 3, activation='relu', padding='same')(x)
x = layers.Conv2D(32, 3, activation='relu', padding='same')(x)
x = layers.Conv2D(32, 3, activation='relu', padding='same')(x)
x = layers.Conv2D(32, 3, activation='relu', padding='same')(x)
x = layers.Conv2D(32, 3, activation='relu', padding='same')(x)
policy_head = layers.Conv2D(1, 3, activation='relu', padding='same')(x)
policy_head = layers.Flatten()(policy_head)
policy_head = layers.Dense(moves, activation='softmax', name='policy')(policy_head)
value_head = layers.Flatten()(x)
value_head = layers.Dense(1, activation='sigmoid', name='value')(value_head)

model = keras.Model(inputs=input, outputs=[policy_head, value_head])

model.summary ()



  

Exercise
Training and saving the model :

model.compile(optimizer=keras.optimizers.SGD(lr=0.001),
                        loss={'value': 'mse', 'policy': 'categorical_crossentropy'})

model.fit(input_data, {'policy': policy, 'value': value},
              epochs=20, batch_size=128, validation_split=0.1)

model.save ('test.h5')



  

The Deep Learning Project



  

The Deep Learning Project
● https://www.lamsade.dauphine.fr/~cazenave/DeepLearningProject.html
● The goal is to train a network for playing the game of Go.
● In order to be fair about training ressources the number of parameters for the networks you submit 

must be lower than 100 000.
● The maximum number of students per team is two.
● The data used for training comes from the Katago Go program self played games. 
● There are 1 000 000 different games in total in the training set. 
● The input data is composed of 31 19x19 planes (color to play, ladders, current state on two planes, 

two previous states on multiple planes). 
● The output targets are the policy (a vector of size 361 with 1.0 for the move played, 0.0 for the other 

moves), and the value (a value between 0.0 and 1.0 given by the Monte-Carlo Tree Search 
representing the probability for White to win). 



  

The Deep Learning Project
● The project has been written and runs on Ubuntu 22.04. 
● It uses Tensorflow 2.9 and Keras for the network. 
● An example of a convolutional network with two heads is given in file 

golois.py and saved in file test.h5. 
● The networks you design and train should also have the same policy and 

value heads and be saved in h5 format.
● An example network and training episode is given in file golois.py. 
● If you want to compile the golois library you should install Pybind11 and 

call compile.sh.



  

The Deep Learning Project
● Tournaments :
● Each two weeks or so I will organize a tournament between the networks you 

upload. 
● Each network name is the names of the students who designed and trained the 

network. 
● The model should be saved in keras h5 format. 
● A round robin tournament will be organized and the results will be sent by email. 
● Each network will be used by a PUCT engine that takes 2 seconds of CPU time 

at each move to play in the tournament. 



  

Project
planes = 31

moves = 361

N = 10000

epochs = 20

batch = 128

filters = 32

input_data = np.random.randint(2, size=(N, 19, 19, planes))

input_data = input_data.astype ('float32')

policy = np.random.randint(moves, size=(N,))

policy = keras.utils.to_categorical (policy)

value = np.random.randint(2, size=(N,))

value = value.astype ('float32')

end = np.random.randint(2, size=(N, 19, 19, 2))

end = end.astype ('float32')

groups = np.zeros((N, 19, 19, 1))

groups = groups.astype ('float32')



  

Project
input = keras.Input(shape=(19, 19, planes), name='board')

x = layers.Conv2D(filters, 1, activation='relu', padding='same')(input)

for i in range (5):

    x = layers.Conv2D(filters, 3, activation='relu', padding='same')(x)

policy_head = layers.Conv2D(1, 1, activation='relu', padding='same', use_bias = False, kernel_regularizer=regularizers.l2(0.0001))(x)

policy_head = layers.Flatten()(policy_head)

policy_head = layers.Activation('softmax', name='policy')(policy_head)

value_head = layers.Conv2D(1, 1, activation='relu', padding='same', use_bias = False, kernel_regularizer=regularizers.l2(0.0001))(x)

value_head = layers.Flatten()(value_head)

value_head = layers.Dense(50, activation='relu', kernel_regularizer=regularizers.l2(0.0001))(value_head)

value_head = layers.Dense(1, activation='sigmoid', name='value', kernel_regularizer=regularizers.l2(0.0001))(value_head)

model = keras.Model(inputs=input, outputs=[policy_head, value_head])



  

Project
model.compile(optimizer=keras.optimizers.SGD(learning_rate=0.0005, momentum=0.9),

              loss={'policy': 'categorical_crossentropy', 'value': 'binary_crossentropy'},

              loss_weights={'policy' : 1.0, 'value' : 1.0},

              metrics={'policy': 'categorical_accuracy', 'value': 'mse'})

for i in range (1, epochs + 1):

    print ('epoch ' + str (i))

    golois.getBatch (input_data, policy, value, end, groups, i * N)

    history = model.fit(input_data,

                        {'policy': policy, 'value': value}, 

                        epochs=1, batch_size=batch)

    if (i % 5 == 0):

        gc.collect ()

    if (i % 20 == 0):

        golois.getValidation (input_data, policy, value, end)

        val = model.evaluate (input_data,

                              [policy, value], verbose = 0, batch_size=batch)

        print ("val =", val)

        model.save ('test.h5')



  

Project

● Train a network to play Go
● Submit trained networks by saturday evening
● Tournament of networks every sunday
● Upload a network by the end of the session



  

Residual Networks



  

Residual Networks

● In addition to models with multiple inputs and outputs, the 
Functional API makes it easy to manipulate non-linear connectivity 
topologies : models where layers are not connected sequentially. 

● This also cannot be handled with the Sequential API (as the name 
indicates).

● A common use case for this is residual connections.



  
            David Silver                          Aja Huang



  

AlphaGo
Fan Hui is the european Go champion and a 2p
 professional Go player :

AlphaGo Fan won 5-0 
against Fan Hui in 
November 2015.

Nature, January 2016.



  

AlphaGo

Lee Sedol is among the strongest and most famous 9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march 2016.



  

AlphaGo
Ke Jie is the world champion of Go according to 
Elo ratings :

AlphaGo Master
won 3-0 against 
Ke Jie in 
may 2017.



  

MCTS and Deep RL
Monte Carlo Tree Search and Deep Reinforcement Learning to 
discover new fast matrix multiplication algorithms :



  

Golois
• In 2016 I replicated the AlphaGo experiments with the policy and value 

networks.

• Golois policy network scores 58.54% on the test set (57.0% for AlphaGo).

• Policy alone (instant play) is ranked 4d on kgs instead of 3d for AlphaGo.

• The improvement is the use of a residual network for the policy.



  

Residual Networks



  

Residual Networks

• “Deep Residual Learning for Image Recognition” [He et al. 2015].
• The error gradient information propagates noiselessly through a deep 

network.
• The input and the output of a block should have the same shape.
• Use padding=’same’ to have the same dimensions.
• To modify the shape use a 1x1 convolution with no activation.
• Very deep networks without having to worry about vanishing 

gradients.



  

Evolution of the error



  

Evolution of the accuracy



  

AlphaGo

AlphaGo Zero learns to play Go from scratch playing against itself.

After 40 days of self play it surpasses AlphaGo Master.

Nature, 18 october 2017.



  

AlphaGo Zero
   



  

Residual Networks
Defining a residual model with layers :

import tensorflow as tf
from tensorflow.keras import layers
input = layers.Input(shape=(32, 32, 3))
x = layers.Conv2D(32, 1, activation='relu', padding='same')(input)
ident = x
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.add([ident,x])
x = layers.Flatten()(x)
x = layers.Dense(10, activation='softmax')(x)
model = tf.keras.models.Model(inputs=input, outputs=x)



  

Residual Networks
Train a standard convolutional network on the 
CIFAR10 image dataset.

Compare it to a deep residual network.



  

Residual Networks
import tensorflow as tf
from tensorflow.keras import layers
input = layers.Input(shape=(32, 32, 3))
x = layers.Conv2D(64, 1, activation='relu', padding='same')(input)
for i in range (5):
    ident = x
    x = layers.Conv2D(64, 3, activation='relu', padding='same')(x)
    x = layers.Conv2D(64, 3, activation='relu', padding='same')(x)
    x = layers.add([ident,x])
flatten = layers.Flatten()(x)
dense = layers.Dense(10, activation="softmax")(flatten)
model = tf.keras.models.Model(inputs=input, outputs=dense)



  

Residual Networks
Let's train it:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

model.compile(optimizer=tf.keras.optimizers.RMSprop(1e-3),
              loss='categorical_crossentropy',
              metrics=['acc'])
model.fit(x_train, y_train,
          batch_size=64,
          epochs=1,
          validation_split=0.2)



  

Reusing Layers



  

Shared Layers
● Another good use for the functional API are models that use shared layers. Shared 

layers are layer instances that get reused multiple times in a same model: they 
learn features that correspond to multiple paths in the graph-of-layers.

● Shared layers are often used to encode inputs that come from similar spaces (say, 
two different pieces of text that feature similar vocabulary), since they enable 
sharing of information across these different inputs, and they make it possible to 
train such a model on less data.

● If a given word is seen in one of the inputs, that will benefit the processing of all 
inputs that go through the shared layer.



  

Shared Layers
● To share a layer in the Functional API, just call the same layer instance multiple times.
● For instance, here's an Embedding layer shared across two different text inputs:

# Embedding for 1000 unique words mapped to 128-dimensional vectors
shared_embedding = layers.Embedding(1000, 128)

# Variable-length sequence of integers
text_input_a = keras.Input(shape=(None,), dtype='int32')

# Variable-length sequence of integers
text_input_b = keras.Input(shape=(None,), dtype='int32')

# We reuse the same layer to encode both inputs
encoded_input_a = shared_embedding(text_input_a)
encoded_input_b = shared_embedding(text_input_b)



  

Transfer Learning

● Because the graph of layers you are manipulating in the Functional API is 
a static datastructure, it can be accessed and inspected. 

● This means that we can access the activations of intermediate layers 
("nodes" in the graph) and reuse them elsewhere.

● This is extremely useful for feature extraction.
● This is a VGG16 model with weights pre-trained on ImageNet:

from tensorflow.keras.applications import VGG16
vgg16 = VGG16()



  

Transfer Learning
● And these are the intermediate activations of the model, obtained by querying the graph 

datastructure:

features_list = [layer.output for layer in vgg16.layers]

● We can use these features to create a new feature-extraction model, that returns the 
values of the intermediate layer activations -- and we can do all of this in 3 lines.

feat_extraction_model = keras.Model(inputs=vgg16.input, outputs=features_list)
img = np.random.random((1, 224, 224, 3)).astype('float32')
extracted_features = feat_extraction_model(img)



  

Transfer Learning
VGG16 :



  

Exercise

● Reuse the first layers of VGG16 to train a model with a 
different head on CIFAR10.

from tensorflow.keras.applications.vgg16 import VGG16

model = VGG16(include_top=False, 
                           input_shape=(32,32,3))



  

Transfer Learning
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
model = tf.keras.applications.vgg16.VGG16(include_top=False, 
                                                                       input_shape = (32,32,3))
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
X_train = tf.keras.applications.vgg16.preprocess_input(X_train)
X_test = tf.keras.applications.vgg16.preprocess_input(X_test)
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)



  

Transfer Learning
model.trainable = False
input_layer = model.input
x = model(input_layer)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(256, activation = 'relu')(x)
x = tf.keras.layers.Dense(10, activation = 'softmax')(x)

new_model = tf.keras.models.Model(inputs = input_layer, outputs = x)
new_model.summary()



  

Transfer Learning
new_model.compile(loss ='categorical_crossentropy', 
optimizer = 'adam', metrics = ['acc'])

history = new_model.fit(X_train, y_train, 
validation_split = 0.1, epochs = 5)

new_model.evaluate(X_test, y_test)



  

Lambda Layers

● Lambda layers enable to define layers without trainable weights.
● They are defined with Python code and can be used as a new layer inside a 

network.
● Lambda layers are best suited for simple operations or quick 

experimentation. 
● For more advanced use cases, subclassing keras.layers.Layer is preferred. 
● One reason for this is that when saving a Model, Lambda layers are saved 

by serializing the Python bytecode, whereas subclassed Layers are saved 
via overriding their get_config method and are thus more portable.



  

Lambda Layers

# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2))



  

Lambda Layers
# add a layer that returns the concatenation
# of the positive part of the input and
# the opposite of the negative part
def antirectifier(x):
    x -= K.mean(x, axis=1, keepdims=True)
    x = K.l2_normalize(x, axis=1)
    pos = K.relu(x)
    neg = K.relu(-x)
    return K.concatenate([pos, neg], axis=1)

model.add(Lambda(antirectifier))



  

Exercise

● Write a lambda layer that flips a board from left 
to right.



  

Lambda Layers

def flip(x):
    x = tf.reverse (x, [-1])
    return x

model.add(Lambda(flip))



  

Mobile Networks



  

Mobile Networks

● Convolution: 
● All input planes are connected to all output planes.

● Depthwise convolution: 
● Each input plane is connected to one output plane.



  

Mobile Networks

Depthwise convolution:



  

Mobile Networks

● Depthwise convolution:
 

● Smaller model (fewer trainable weight parameters).
● Leaner model (fewer floating-point operations), not yet efficient on GPU.
● Better accuracy.
● More memory if many planes.



  

Mobile Networks

● Residual block:
● Two convolutional layers per block.

● Inverted residual block:
● 1x1 convolutions tranform n planes of the trunk in 6*n planes of the block.
● Depthwise convolution.
● 1x1 convolutions tranform 6*n planes of the block in n planes of the trunk.



  

Mobile Networks



  

Mobile Networks



  

Mobile Networks



  

Mobile Networks



  

Mobile Networks

● A MobileNet v2 is composed of inverted residual blocks:

● 1×1 Convolution with 1->6 filters followed by Batch Normalization and ReLU 
● 3×3 DepthWise Convolution followed by Batch Normalization and ReLU
● 1×1 Convolution with 6->1 filters followed by Batch Normalization

● The tensor of the output of the block and the shortcut connection are then added.

● Exercise :
Define an inverted residual block.
Define a MobileNet v2 network with a tower of inverted residual blocks.
Train the network on CIFAR 10.



  

Mobile Networks
def bottleneck_block(x, expand=96, squeeze=16):
    m = layers.Conv2D(expand, (1,1), kernel_regularizer=regularizers.l2(0.0001), use_bias = False)(x)
    m = layers.BatchNormalization()(m)
    m = layers.Activation('relu')(m)
    m = layers.DepthwiseConv2D((3,3), padding='same', kernel_regularizer=regularizers.l2(0.0001), use_bias = False)(m)
    m = layers.BatchNormalization()(m)
    m = layers.Activation('relu')(m)
    m = layers.Conv2D(squeeze, (1,1), kernel_regularizer=regularizers.l2(0.0001), use_bias = False)(m)
    m = layers.BatchNormalization()(m)
    
    return layers.Add()([m, x])



  

Mobile Networks
import tensorflow as tf
from tensorflow.keras import layers
input = layers.Input(shape=(32, 32, 3))
x = layers.Conv2D(16, 1, activation='relu', padding='same')(input)
for i in range (5):
    x = bottleneck_block(x) 
flatten = layers.Flatten()(x)
dense = layers.Dense(10, activation="softmax")(flatten)
model = tf.keras.models.Model(inputs=input, outputs=dense)



  

Mobile Networks
Let's train it:

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

model.compile(optimizer=tf.keras.optimizers.RMSprop(1e-3),
              loss='categorical_crossentropy',
              metrics=['acc'])
model.fit(x_train, y_train,
          batch_size=64,
          epochs=1,
          validation_split=0.2)



  

Convnext



  

Convnext



  

Convnext



  

Convnext



  

Convnext v1

    for i in range (blocks):
        x1 = tf.keras.layers.DepthwiseConv2D((7,7), padding='same', use_bias = False)(x)

    x1 = layers.LayerNormalization()(x1)
    x1 = layers.Conv2D(4 * filters, 1, padding='same', activation='gelu')(x1)

        x1 = layers.Conv2D(filters, 1, padding='same')(x1)
        x = layers.add([x1,x])                        
    x = tf.keras.layers.BatchNormalization()(x)



  

Shufflenet



  

Mobile Networks / Shufflenet



  

Shufflenet

● The main branch of the block consists of:

● 1×1 Group Convolution with 1/6 filters followed by Batch Normalization and ReLU 
● Channel Shuffle
● 3×3 DepthWise Convolution followed by Batch Normalization
● 1×1 Group Convolution followed by Batch Normalization

● The tensors of the main branch and the shortcut connection are then 
concatenated and a ReLU activation is applied to the output.



  

Shufflenet

● Channel Shuffle shuffles the channels of the tensor:
1. reshape the input tensor
– from width x height x channels 
– to width x height x groups x (channels/groups)

2. permute the last two dimensions
3. reshape the tensor to the original shape



  

Shufflenet

● Import the necessary layers
● Write a function for the overall architecture
● Write a function for the Shufflenet block
● Write a function for the Group Convolution
● Write a function for the Channel Shuffle
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from tensorflow.keras.layers import Input, Conv2D, DepthwiseConv2D, Dense, Concatenate, Add, ReLU, BatchNormalization, 
                                                        AvgPool2D, MaxPool2D, GlobalAveragePooling2D, Reshape, Permute, Lambda, Flatten, Activation

def getModel ():
    input = keras.Input(shape=(19, 19, planes), name='board')
    x = Conv2D(trunk, 1, padding='same', kernel_regularizer=regularizers.l2(0.0001))(input)
    x = BatchNormalization()(x)
    x = ReLU()(x)
    for i in range (blocks):
        x = bottleneck_block (x, filters, trunk)
    policy_head = Conv2D(1, 1, activation='relu', padding='same', use_bias = False, kernel_regularizer=regularizers.l2(0.0001))(x)
    policy_head = Flatten()(policy_head)
    policy_head = Activation('softmax', name='policy')(policy_head)
    value_head = GlobalAveragePooling2D()(x)
    value_head = Dense(50, activation='relu', kernel_regularizer=regularizers.l2(0.0001))(value_head)
    value_head = Dense(1, activation='sigmoid', name='value', kernel_regularizer=regularizers.l2(0.0001))(value_head)
        
    model = keras.Model(inputs=input, outputs=[policy_head, value_head])
    return model



  

Shufflenet
def bottleneck_block(tensor, expand=96, squeeze=16):
    x = gconv(tensor, channels=expand, groups=4)
    x = BatchNormalization()(x)
    x = ReLU()(x)

    x = channel_shuffle(x, groups=4)
    x = DepthwiseConv2D(kernel_size=3, padding='same')(x)
    x = BatchNormalization()(x)

    x = gconv(x, channels=squeeze, groups=4)
    x = BatchNormalization()(x)

    x = Add()([tensor, x])
    output = ReLU()(x)
    return output



  

Shufflenet
def gconv(tensor, channels, groups):
    input_ch = tensor.get_shape().as_list()[-1]
    group_ch = input_ch // groups
    output_ch = channels // groups
    groups_list = []

    for i in range(groups):
        group_tensor = tensor[:, :, :, i * group_ch: (i+1) * group_ch]
        group_tensor = Conv2D(output_ch, 1)(group_tensor)
        groups_list.append(group_tensor)

    output = Concatenate()(groups_list)
    return output
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def channel_shuffle(x, groups):  
    _, width, height, channels = x.get_shape().as_list()
    group_ch = channels // groups

    x = Reshape([width, height, group_ch, groups])(x)
    x = Permute([1, 2, 4, 3])(x)
    x = Reshape([width, height, channels])(x)
    return x
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Defining New Layers

● The Layer class
● Layers encapsulate a state (weights) and some 

computation
● The main data structure you'll work with is the Layer. 

A layer encapsulates both a state (the layer's 
"weights") and a transformation from inputs to 
outputs (a "call", the layer's forward pass).



  

Defining New Layers
from tensorflow.keras import layers

class Linear(layers.Layer):
  def __init__(self, units=32, input_dim=32):
    super(Linear, self).__init__()
    w_init = tf.random_normal_initializer()
    self.w = tf.Variable(initial_value=w_init(shape=(input_dim, units), dtype='float32'), trainable=True)
    b_init = tf.zeros_initializer()
    self.b = tf.Variable(initial_value=b_init(shape=(units,), dtype='float32'), trainable=True)

  def call(self, inputs):
    return tf.matmul(inputs, self.w) + self.b

x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)

tf.Tensor(
[[-0.03533589 -0.02663077 -0.0507721  -0.02178559]
 [-0.03533589 -0.02663077 -0.0507721  -0.02178559]], shape=(2, 4), dtype=float32)



  

Defining New Layers
Note you also have access to a quicker shortcut for adding weight to a layer: the add_weight method:

class Linear(layers.Layer):

  def __init__(self, units=32, input_dim=32):
    super(Linear, self).__init__()
    self.w = self.add_weight(shape=(input_dim, units), initializer='random_normal', trainable=True)
    self.b = self.add_weight(shape=(units,), initializer='zeros', trainable=True)

  def call(self, inputs):
    return tf.matmul(inputs, self.w) + self.b

x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)

tf.Tensor(
[[-0.03276853 -0.02655794  0.10825785  0.00806852]
 [-0.03276853 -0.02655794  0.10825785  0.00806852]], shape=(2, 4), dtype=float32)
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Layers can have non-trainable weights

Besides trainable weights, you can add non-trainable weights to a layer as well. Such weights are meant not to be taken into account during backpropagation, when you are training the layer.

Here's how to add and use a non-trainable weight:

class ComputeSum(layers.Layer):

  def __init__(self, input_dim):
    super(ComputeSum, self).__init__()
    self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False)

  def call(self, inputs):
    self.total.assign_add(tf.reduce_sum(inputs, axis=0))
    return self.total

x = tf.ones((2, 2))
my_sum = ComputeSum(2)
y = my_sum(x)
print(y.numpy())
y = my_sum(x)
print(y.numpy())

[2. 2.]
[4. 4.]



  

Defining New Layers
Best practice: deferring weight creation until the shape of the inputs is known
In the logistic regression example above, our Linear layer took an input_dim argument that was used to 
compute the shape of the weights w and b in __init__:

class Linear(layers.Layer):

  def __init__(self, units=32, input_dim=32):
      super(Linear, self).__init__()
      self.w = self.add_weight(shape=(input_dim, units),
                               initializer='random_normal',
                               trainable=True)
      self.b = self.add_weight(shape=(units,),
                               initializer='zeros',
                               trainable=True)



  

Defining New Layers
In many cases, you may not know in advance the size of your inputs, and you would like to lazily create weights when that value becomes known, some time after instantiating 
the layer.

It is better to create layer weights in the build(inputs_shape) method of your layer. Like this:

class Linear(layers.Layer):

  def __init__(self, units=32):
    super(Linear, self).__init__()
    self.units = units

  def build(self, input_shape):
    self.w = self.add_weight(shape=(input_shape[-1], self.units), initializer='random_normal', trainable=True)
    self.b = self.add_weight(shape=(self.units,), initializer='random_normal', trainable=True)

  def call(self, inputs):
    return tf.matmul(inputs, self.w) + self.b

The __call__ method of your layer will automatically run build the first time it is called. You now have a layer that's lazy and easy to use:

linear_layer = Linear(32)  # At instantiation, we don't know on what inputs this is going to get called
y = linear_layer(x)  # The layer's weights are created dynamically the first time the layer is called



  

Defining New Layers

● Layers are recursively composable
● If you assign a Layer instance as attribute of another 

Layer, the outer layer will start tracking the weights of the 
inner layer.

● We recommend creating such sublayers in the __init__ 
method (since the sublayers will typically have a build 
method, they will be built when the outer layer gets built).



  

Defining New Layers
# Let's assume we are reusing the Linear class
# with a `build` method that we defined above.

class MLPBlock(layers.Layer):

  def __init__(self):
    super(MLPBlock, self).__init__()
    self.linear_1 = Linear(32)
    self.linear_2 = Linear(32)
    self.linear_3 = Linear(1)

  def call(self, inputs):
    x = self.linear_1(inputs)
    x = tf.nn.relu(x)
    x = self.linear_2(x)
    x = tf.nn.relu(x)
    return self.linear_3(x)

mlp = MLPBlock()
y = mlp(tf.ones(shape=(3, 64)))  # The first call to the `mlp` will create the weights
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The Model class
In general, you will use the Layer class to define inner computation blocks, and will 
use the Model class to define the outer model -- the object you will train.

For instance, in a ResNet50 model, you would have several ResNet blocks 
subclassing Layer, and a single Model encompassing the entire ResNet50 network.

The Model class has the same API as Layer, with the following differences:
It exposes built-in training, evaluation, and prediction loops (model.fit(), model.evaluate(), 
model.predict()).
It exposes the list of its inner layers, via the model.layers property.
It exposes saving and serialization APIs.



  

Defining New Layers
Effectively, the "Layer" class corresponds to what we refer to in the 
literature as a "layer" (as in "convolution layer" or "recurrent layer") or as 
a "block" (as in "ResNet block" or "Inception block").

Meanwhile, the "Model" class corresponds to what is referred to in the 
literature as a "model" (as in "deep learning model") or as a "network" 
(as in "deep neural network").

For instance, we could take our mini-resnet example above, and use it 
to build a Model that we could train with fit(), and that we could save 
with save_weights.



  

Defining New Layers
class ResNet(tf.keras.Model):

    def __init__(self):
        super(ResNet, self).__init__()
        self.block_1 = ResNetBlock()
        self.block_2 = ResNetBlock()
        self.global_pool = layers.GlobalAveragePooling2D()
        self.classifier = Dense(num_classes)

    def call(self, inputs):
        x = self.block_1(inputs)
        x = self.block_2(x)
        x = self.global_pool(x)
        return self.classifier(x)

resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save_weights(filepath)



  

Exercise

● Write a class for a Resnet model and test it on 
CIFAR10.



  

Defining New Layers
class ResNetBlock(tf.keras.layers.Layer):
  def __init__(self, kernel_size=3):
    super(ResNetBlock, self).__init__()
    self.kernel_size = (kernel_size, kernel_size)
    
  def build(self, input_shape):
    #print(input_shape)
    self.convol_1 = tf.keras.layers.Conv2D(filters = input_shape[-1], kernel_size = self.kernel_size,
                                           padding='same', activation='relu',
                                           input_shape=input_shape)
    self.convol_2 = tf.keras.layers.Conv2D(filters = input_shape[-1], kernel_size = self.kernel_size,
                                           padding='same', activation='relu',
                                           input_shape=input_shape)
  def call(self, inputs):
    x = self.convol_1(inputs)
    x = self.convol_2(x)
    x = tf.keras.layers.add([x, inputs])
    return x



  

Defining New Layers
class ResNet(tf.keras.Model):
  def __init__(self, num_classes, f):
    super(ResNet, self).__init__()
    self.num_classes = num_classes
    self.f = f

  def build(self, input_shape):
    self.conv = tf.keras.layers.Conv2D(filters = self.f, kernel_size= (3,3), input_shape=input_shape)
    self.block_1 = ResNetBlock()
    self.block_2 = ResNetBlock()
    self.classifier = tf.keras.layers.Dense(self.num_classes, activation='softmax')

  def call(self, inputs):
    x = self.conv(inputs)
    x = self.block_1(x)
    x = self.block_2(x)
    x = tf.keras.layers.Flatten()(x)
    return self.classifier(x)



  

Defining New Layers
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)

model = ResNet(10, 64)

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])

history = model.fit(X_train, y_train, epochs = 10, validation_split = 0.1, batch_size = 256)



  

Defining New Layers
Putting it all together: an end-to-end example
Here's what you've learned so far:
– A Layer encapsulate a state (created in __init__ or build) and some 

computation (in call).
– Layers can be recursively nested to create new, bigger computation 

blocks.
– Layers can create and track losses (typically regularization losses).

● The outer container, the thing you want to train, is a Model. 
● A Model is just like a Layer, but with added training and 

serialization utilities.
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Transformers

● Ashish Vaswani et al., “Attention is all you need” (2017) 
– https://arxiv.org/abs/1706.03762

● Neural attention for sequence models:
– Self attention
– Multi-head attention
– Transformer encoder
– Positional embedding
– Application: Text classification

● Sequence to sequence learning:
– Application: Machine translation



  

Transformers
● Self attention:

– Importance of features
– Higher scores for important features



  

Transformers
● The context is important to evaluate of features.
● Example: The meaning of pronouns like “he,” “it,” “in,” etc., is 

entirely sentence-specific.
● The purpose of self-attention is to modulate the representation of a 

token by using the representations of related tokens in the 
sequence.

● Consider an example sentence: “The train left the station on time.” 
● Let’s see how self-attention deals with the ‘station’ word.
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● Use the dot product between two word vectors as a measure of the strength of their relationship:

def self_attention(input_sequence):
    output = np.zeros(shape=input_sequence.shape)
    for i, pivot_vector in enumerate(input_sequence):
        scores = np.zeros(shape=(len(input_sequence),))
        for j, vector in enumerate(input_sequence):
            scores[j] = np.dot(pivot_vector, vector.T)
        scores /= np.sqrt(input_sequence.shape[1])
        scores = softmax(scores)
        new_pivot_representation = np.zeros(shape=pivot_vector.shape)
        for j, vector in enumerate(input_sequence):
            new_pivot_representation += vector * scores[j]
        output[i] = new_pivot_representation
    return output
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● MultiHeadAttention:



  

Transformers

● Mobile Networks: 
– Each channel is learned independently.

● Grouped convolutions:
– Separation into independent groups. 

● Multi-head attention:
– Each attention head is independent.

●
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● With Keras:

num_heads = 4
embed_dim = 256
mha_layer = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
outputs = mha_layer(inputs, inputs, inputs)



  

Transformers
● The Transformer Encoder:



  

Transformers
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

class TransformerEncoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention = layers.MultiHeadAttention (num_heads=num_heads, key_dim=embed_dim)
        self.dense_proj = keras.Sequential([layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),])
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
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    def call(self, inputs, mask=None):
        if mask is not None:
            mask = mask[:, tf.newaxis, :]
        attention_output = self.attention(inputs, inputs, attention_mask=mask)
        proj_input = self.layernorm_1(inputs + attention_output)
        proj_output = self.dense_proj(proj_input)
        return self.layernorm_2(proj_input + proj_output)

    def get_config(self):
        config = super().get_config()
        config.update({"embed_dim": self.embed_dim,
                                "num_heads": self.num_heads, 
                                "dense_dim": self.dense_dim,})
        return config



  

Transformers
● Preparing the IMDB dataset:

!curl -O https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz
!rm -r aclImdb/train/unsup

import os, pathlib, shutil, random

base_dir = pathlib.Path("aclImdb")
val_dir = base_dir / "val"
train_dir = base_dir / "train"
for category in ("neg", "pos"):
    os.makedirs(val_dir / category)
    files = os.listdir(train_dir / category)
    random.Random(1337).shuffle(files)
    num_val_samples = int(0.2 * len(files))
    val_files = files[-num_val_samples:]
    for fname in val_files:
        shutil.move(train_dir / category / fname, val_dir / category / fname)

from tensorflow import keras
batch_size = 32
train_ds = keras.utils.text_dataset_from_directory("aclImdb/train", batch_size=batch_size)
val_ds = keras.utils.text_dataset_from_directory("aclImdb/val", batch_size=batch_size)
test_ds = keras.utils.text_dataset_from_directory("aclImdb/test", batch_size=batch_size)
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● Preparing the IMDB dataset:

text_vectorization = layers.TextVectorization(max_tokens=20000,output_mode="multi_hot",)
text_only_train_ds = train_ds.map(lambda x, y: x)
text_vectorization.adapt(text_only_train_ds)

from tensorflow.keras import layers

max_length = 600
max_tokens = 20000
text_vectorization = layers.TextVectorization(max_tokens=max_tokens, output_mode="int", output_sequence_length=max_length,)
text_vectorization.adapt(text_only_train_ds)

int_train_ds = train_ds.map(lambda x, y: (text_vectorization(x), y), num_parallel_calls=4)
int_val_ds = val_ds.map(lambda x, y: (text_vectorization(x), y), num_parallel_calls=4)
int_test_ds = test_ds.map(lambda x, y: (text_vectorization(x), y), num_parallel_calls=4)
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● Using the Transformer encoder for text classification:

vocab_size = 20000
embed_dim = 256
num_heads = 2
dense_dim = 32
inputs = keras.Input(shape=(None,), dtype="int64")
x = layers.Embedding(vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)

model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])
callbacks = [keras.callbacks.ModelCheckpoint("transformer_encoder.keras", save_best_only=True)]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=20, callbacks=callbacks)
model = keras.models.load_model("transformer_encoder.keras", custom_objects={"TransformerEncoder": TransformerEncoder})
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")



  

Positional Embedding
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● Positional encoding:
– Add a position vector to the embedding.
– Positional Embedding = embedding of the position.
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● Positional embedding:

class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, input_dim, output_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(input_dim=input_dim, output_dim=output_dim)
        self.position_embeddings = layers.Embedding(input_dim=sequence_length, output_dim=output_dim)
        self.sequence_length = sequence_length
        self.input_dim = input_dim
        self.output_dim = output_dim

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)

    def get_config(self):
        config = super().get_config()
        config.update({"output_dim": self.output_dim,"sequence_length": self.sequence_length, "input_dim": self.input_dim,})
        return config
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● Combining the Transformer encoder with positional embedding:

vocab_size = 20000
sequence_length = 600
embed_dim = 256
num_heads = 2
dense_dim = 32

inputs = keras.Input(shape=(None,), dtype="int64")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(inputs)
x = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])

callbacks = [keras.callbacks.ModelCheckpoint("full_transformer_encoder.keras", save_best_only=True)]
model.fit(int_train_ds, validation_data=int_val_ds, epochs=20, callbacks=callbacks)
model = keras.models.load_model("full_transformer_encoder.keras", custom_objects={"TransformerEncoder": TransformerEncoder,
                                                                                                                                             "PositionalEmbedding": PositionalEmbedding})
print(f"Test acc: {model.evaluate(int_test_ds)[1]:.3f}")



  

Sequence to Sequence Learning
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● Sequence to sequence learning:
– Machine translation
– Text summarization
– Question answering
– Chatbots
– Text generation
– Etc.
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● English to Spanish dataset:

!wget http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip
!unzip -q spa-eng.zip
text_file = "spa-eng/spa.txt"
with open(text_file) as f:
    lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
    english, spanish = line.split("\t")
    spanish = "[start] " + spanish + " [end]"
    text_pairs.append((english, spanish))
import random
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples:num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples:]
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● Vectorizing the English and Spanish text pairs:

import tensorflow as tf
import string
import re
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")

def custom_standardization(input_string):
    lowercase = tf.strings.lower(input_string)
    return tf.strings.regex_replace(lowercase, f"[{re.escape(strip_chars)}]", "")

vocab_size = 15000
sequence_length = 20

source_vectorization = layers.TextVectorization(max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length,)
target_vectorization = layers.TextVectorization(max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length + 1,standardize=custom_standardization,)
train_english_texts = [pair[0] for pair in train_pairs]
train_spanish_texts = [pair[1] for pair in train_pairs]
source_vectorization.adapt(train_english_texts)
target_vectorization.adapt(train_spanish_texts)
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● Preparing datasets for the translation task:

batch_size = 64
def format_dataset(eng, spa):
    eng = source_vectorization(eng)
    spa = target_vectorization(spa)
    return ({"english": eng, "spanish": spa[:, :-1],}, spa[:, 1:])

def make_dataset(pairs):
    eng_texts, spa_texts = zip(*pairs)
    eng_texts = list(eng_texts)
    spa_texts = list(spa_texts)
    dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))
    dataset = dataset.batch(batch_size)
    dataset = dataset.map(format_dataset, num_parallel_calls=4)
    return dataset.shuffle(2048).prefetch(16).cache()

train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
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● The Transformer Decoder:

class TransformerDecoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
        self.attention_2 = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
        self.dense_proj = keras.Sequential([layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),])
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True
    def get_config(self):
        config = super().get_config()
        config.update({"embed_dim": self.embed_dim, "num_heads": self.num_heads, "dense_dim": self.dense_dim,})
        return config



  

Transformers
● Causal padding is absolutely critical to successfully training a sequence-to-

sequence Transformer. 
● The TransformerDecoder is order-agnostic: it looks at the entire target 

sequence at once. 
● If it were allowed to use its entire input, it would simply learn to copy input 

step N+1 to location N in the output.
● The model would achieve perfect training accuracy.
● Mask the upper half of the pairwise attention matrix to prevent the model 

from paying any attention to information from the future
● get_causal_attention_mask(self, inputs) method 



  

Transformers
● The Transformer Decoder:

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat([tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], axis=0)
        return tf.tile(mask, mult)



  

Transformers
● The Transformer Decoder:

    def call(self, inputs, encoder_outputs, mask=None):
        causal_mask = self.get_causal_attention_mask(inputs)
        if mask is not None:
            padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
            padding_mask = tf.minimum(padding_mask, causal_mask)
        attention_output_1 = self.attention_1(query=inputs, value=inputs, key=inputs, attention_mask=causal_mask)
        attention_output_1 = self.layernorm_1(inputs + attention_output_1)
        attention_output_2 = self.attention_2(query=attention_output_1, value=encoder_outputs, key=encoder_outputs, 
                                                                   attention_mask=padding_mask,)
        attention_output_2 = self.layernorm_2(attention_output_1 + attention_output_2)
        proj_output = self.dense_proj(attention_output_2)
        return self.layernorm_3(attention_output_2 + proj_output)



  

Transformers
● End to end Transformer:

embed_dim = 256
dense_dim = 2048
num_heads = 8

encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="english")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, dense_dim, num_heads)(x)

decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="spanish")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, dense_dim, num_heads)(x, encoder_outputs)
x = layers.Dropout(0.5)(x)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
transformer = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs)

transformer.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
transformer.fit(train_ds, epochs=30, validation_data=val_ds)



  

Transformers
● Translating new sentences:

import numpy as np
spa_vocab = target_vectorization.get_vocabulary()
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20

def decode_sequence(input_sentence):
    tokenized_input_sentence = source_vectorization([input_sentence])
    decoded_sentence = "[start]"
    for i in range(max_decoded_sentence_length):
        tokenized_target_sentence = target_vectorization([decoded_sentence])[:, :-1]
        predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = spa_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token
        if sampled_token == "[end]":
            break
    return decoded_sentence

test_eng_texts = [pair[0] for pair in test_pairs]
for _ in range(20):
    input_sentence = random.choice(test_eng_texts)
    print("-")
    print(input_sentence)
    print(decode_sequence(input_sentence))



  

LSTM



  

LSTM

• Recurrent neural networks enable to memorize information about past events.
• They have loops that allow information to persist.



  

LSTM

• A recurrent neural network can be thought of as multiple copies of the same 
network, each passing a message to a successor :



  

LSTM

• RNNs have been successfully applied to a variety of problems: 
• Speech recognition, 
• Language modeling, 
• Translation, 
• Image captioning,
• ...



  

LSTM

• LSTM is a very special kind of recurrent neural network.

• It works much better than the standard version.

• Many exciting results based on recurrent neural networks are achieved with them.

• There are more recent well performing layers such as GRU layers.



  

LSTM

• Prediction of the next word based on the previous ones: “the clouds are in the ?” 
• Relevant words are nearby, RNN work.



  

LSTM

• As the gap grows, RNNs become unable to learn to connect the information:



  

LSTM

• Long Short Term Memory networks (LSTMs) are a special kind of RNN, capable 
of learning long-term dependencies.

• They were introduced by Hochreiter & Schmidhuber (1997), and were refined and 
popularized by many people in following work.



  

LSTM

• In standard RNNs, the repeating module has a very simple structure, such as a 
single tanh layer.



  

LSTM

• LSTMs also have this chain like structure, but the repeating module has a different 
structure. 

• Instead of having a single neural network layer, there are four, interacting in a 
very special way.



  

LSTM



  

LSTM

• The key to LSTMs is the cell state, the horizontal line running through the top of 
the diagram.

• The cell state runs straight down the entire chain, with only some minor linear 
interactions.

• It’s very easy for information to just flow along it unchanged



  

LSTM

• Cell state :



  

LSTM

• LSTM remove or add information to the cell state using gates = sigmoid and 
multiplication:



  

LSTM

• The forget gate layer looks at ht−1 and xt.
• It outputs a number between 0 and 1 for each number in the cell state Ct−1.
• 1 represents “completely keep this” 
• 0 represents “completely get rid of this.”



  

LSTM



  

LSTM

• The next step is to decide what new information to store in the cell state. 
• A sigmoid layer called the “input gate layer” decides which values to update. 
• A tanh layer creates a vector of new candidate values C~t that could be added to 

the state.



  

LSTM



  

LSTM

• We now update the old cell state, Ct−1, into the new cell state Ct.
• We multiply the old state by ft, forgetting the things we decided to forget earlier. 
• Then we add it C̃ t. This is the new candidate values, scaled by how much we ∗

decided to update each state value.



  

LSTM



  

LSTM

• Finally, we need to decide what we’re going to output. 
• This output will be based on our cell state, but will be a filtered version. 
• First, we run a sigmoid layer which decides what parts of the cell state we’re 

going to output. 
• Then, we put the cell state through tanh (to push the values to be between −1 and 

1) and multiply it by the output of the sigmoid gate, so that we only output the 
parts we decided to.



  

LSTM



  

Time Series

• We will start first with a simple sinus time series.

• www.lamsade.dauphine.fr/~cazenave/sinwave.csv

• We want the LSTM to learn the sin wave from a set window size of data.



  

Time Series

• LSTM layers take a numpy array of 3 dimensions (N, W, F)
• N is the number of training sequences,
• W is the sequence length,
• F is the number of features of each sequence.



  

Time Series

• Use sequences of length 50 :



  

Time Series

   Load the data from the csv file to a numpy array. 
(www.lamsade.dauphine.fr/~cazenave/sinwave.csv) 

   f = open(filename, 'rb').read()
   data = f.decode().split('\n')

    Make an array of arrays of size 50.
    Shuffle the data.
    Separate training and test sets.



  

Sinwave
import numpy as np

# lecture des donnees et découpage en sequence de seq_len elements
def load_data(filename, seq_len):
    f = open(filename, 'rb').read()
    data = np.array(f.decode().split('\n'), dtype = np.float32)

    sequence_length = seq_len + 1
    result = []
    for index in range(len(data) - sequence_length):
        result.append(data[index: index + sequence_length])

    result = np.array(result)



  

Sinwave
    np.random.shuffle(result)
    row = round(0.9 * result.shape[0])
    train = result[:int(row), :] # 90 % des exemples pour l’apprentissage
    x_train = train[:, :-1] # On prend les séquences jusqu’à l’avant dernier élément
    y_train = train[:, -1] # On prend le dernier élément comme sortie à apprendre
    x_test = result[int(row):, :-1]
    y_test = result[int(row):, -1]

    # on transforme en un tenseur de dimension 3 avec une seule feature
    x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
    x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))

    return x_train, y_train, x_test, y_test

load_data ('sinwave.csv', 50)



  

Keras LSTM

layers.LSTM (units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, 
kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', 
unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, 
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, 
recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0)

units: Positive integer, dimensionality of the output space.
activation: Activation function to use (see activations). If you pass None, no activation is applied 
(ie. "linear" activation: a(x) = x).
return_sequences: Boolean. Whether to return the last output in the output sequence, or the full 
sequence.



  

Keras LSTM

input_dim: dimensionality of the input (integer). This argument (or alternatively, the keyword argument input_shape) is required when using this layer 
as the first layer in a model.

input_length: Length of input sequences, to be specified when it is constant. This argument is required if you are going to connect Flatten then Dense 
layers upstream (without it, the shape of the dense outputs cannot be computed). Note that if the recurrent layer is not the first layer in your model, 
you would need to specify the input length at the level of the first layer (e.g. via the input_shape argument)

• Input shapes

3D tensor with shape (batch_size, timesteps, input_dim), (Optional) 2D tensors with shape (batch_size, output_dim).

• Output shape

    if return_state: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape (batch_size, units).
    if return_sequences: 3D tensor with shape (batch_size, timesteps, units).
    else, 2D tensor with shape (batch_size, units).



  

Time Series

• Build the network with 1 input layer (consisting of a sequence of size 50) which 
feeds into an LSTM layer with 50 neurons, that in turn feeds into another LSTM 
layer with 100 neurons which then feeds into a fully connected normal layer of 1 
neuron with a linear activation function which will be used to give the prediction 
of the next time step.



  

Time Series

Train the network.

Use the trained model to predict the sequence.

Plot the true data versus the prediction.



  

Sinwave
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense,LSTM,Dropout

model = Sequential()
model.add(LSTM(50, input_shape=(50, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(100, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss="mse", optimizer="rmsprop", metrics = ['mae'])
X_train, y_train, X_test, y_test = load_data('sinwave.csv', 50)
model.fit(X_train, y_train, batch_size=512, epochs=1, validation_split=0.05)
predict = model.predict (X_test)



  

Time Series

Train the network on the sp500 data from 2000 to 2016 :
(www.lamsade.dauphine.fr/~cazenave/sp500.csv)

Normalize the window.
Take each n-sized window of training/testing data and normalize each one to reflect 

percentage changes from the start of that window (so the data at point i=0 will 
always be 0).



  

Time Series

n = normalised list [window] of price changes
p = raw list [window] of adjusted daily return prices
Normalisation:

De-Normalisation:



  

Time Series

Train the network.

Use the trained model to predict the sequence.

Plot the true data versus the prediction.



  

SP500
def normalise_windows(window_data):
  normalised_data = []
  for window in window_data:
      normalised_window = [((float(p) / 
                 float(window[0])) - 1) for p in window]
    normalised_data.append(normalised_window)
  return normalised_data



  

LSTM

• Generating texts.
import keras
import numpy as np
path = keras.utils.get_file('nietzsche.txt', origin='https://s3.amazonaws.com/text-
datasets/nietzsche.txt')
text = open(path).read().lower()
print('Corpus length:', len(text))



  

LSTM

• Next, you’ll extract partially overlapping sequences of length maxlen , one-hot 
encode them, and pack them in a 3D Numpy array x of shape (sequences, maxlen, 
unique_characters) .

• Simultaneously, you’ll prepare an array y containing the corresponding targets: 
the one-hot-encoded characters that come after each extracted sequence.



  

LSTM
maxlen = 60
step = 3
sentences = []
next_chars = []
for i in range(0, len(text) - maxlen, step):
    sentences.append(text[i: i + maxlen])
    next_chars.append(text[i + maxlen])
print('Number of sequences:', len(sentences))
chars = sorted(list(set(text)))
print('Unique characters:', len(chars))
char_indices = dict((char, chars.index(char)) for char in chars)
print('Vectorization…')
x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool)
y = np.zeros((len(sentences), len(chars)), dtype=np.bool)
for i, sentence in enumerate(sentences):
    for t, char in enumerate(sentence):
        x[i, t, char_indices[char]] = 1
    y[i, char_indices[next_chars[i]]] = 1



  

LSTM

• Building the network
• This network is a single LSTM layer followed by a Dense classifier and softmax 

over all possible characters.
• But note that recurrent neural networks aren’t the only way to do sequence data 

generation; 
• 1D convnets also have proven extremely successful at this task in recent times.



  

LSTM

from keras import layers
model = keras.models.Sequential()
model.add(layers.LSTM(128, input_shape=(maxlen, len(chars))))
model.add(layers.Dense(len(chars), activation='softmax'))

optimizer = keras.optimizers.RMSprop(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=optimizer)



  

LSTM

Training the langage model and sampling from it
• Given a trained model and a seed text snippet, you can generate new text by doing 

the following repeatedly:
1 Draw from the model a probability distribution for the next character, given the 

generated text available so far.
2 Reweight the distribution to a certain temperature.
3 Sample the next character at random according to the reweighted distribution.
4 Add the new character at the end of the available text.



  

LSTM

def sample(preds, temperature=1.0):
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)



  

LSTM

• Finally, a loop repeatedly trains and generates text.
• You begin generating text using a range of different temperatures after every 

epoch.
• This allows you to see how the generated text evolves as the model begins to 

converge, as well as the impact of temperature in the sampling strategy.



  

LSTM
import random
import sys
for epoch in range(1, 60):
    model.fit(x, y, batch_size=128, epochs=1)
    print('epoch', epoch)
    start_index = random.randint(0, len(text) - maxlen - 1)
    generated_text = text[start_index: start_index + maxlen]
    for temperature in [0.2, 0.5, 1.0, 1.2]:
        sys.stdout.write(generated_text)
        print('\n\n------ temperature:', temperature)
        for i in range(400):
            sampled = np.zeros((1, maxlen, len(chars)))
            for t, char in enumerate(generated_text):
                sampled[0, t, char_indices[char]] = 1.
            preds = model.predict(sampled, verbose=0)[0]
            next_index = sample(preds, temperature)
            next_char = chars[next_index]
            generated_text += next_char
            generated_text = generated_text[1:]
            sys.stdout.write(next_char)


