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Monte Carlo Tree Search



  

Monte Carlo Tree Search
Monte Carlo Tree Search, a method so bold,
Exploring the tree, with its stories untold,
Simulating the future, with random rolls,
To find the path with the greatest goals.

It starts with a root, and expands the tree,
Each node a choice, a potential key,
To unlock the door, to the desired goal,
Monte Carlo guides, in finding the whole.

It's not always perfect, with a fixed plan,
But it adapts, to the situation at hand,
With each simulation, it learns and it grows,
To find the best move, with more and more those.

Monte Carlo Tree Search, a powerful tool,
To navigate the game, and be the cool,
So let's explore the tree, and see what we find,
And use Monte Carlo, to be one of a kind.



  

Monte Carlo Tree Search
Monte Carlo Tree Search, a method so grand,
A path to victory, with a strategic hand.

It starts with a tree, and a game to play,
Simulations to run, to find the best way.

Each node a move, and each branch a choice,
We explore them all, with a clear and steady voice.

With randomness guiding us, and statistics to aid,
We search for the path, that will surely lead the way.

Monte Carlo Tree Search, a brilliant mind,
With its power and wisdom, it will never be confined.

It's a strategy that's proven, and a method that's sound,
Monte Carlo Tree Search, will always be found.

In the game of life, and the game of chance,
Monte Carlo Tree Search, will always enhance,
Our ability to win, to be victorious,
It's a path to success, so mysterious.



  

Monte Carlo Go
• 1993 : first Monte Carlo Go program

– Gobble, Bernd Bruegmann.
– How nature would play Go ?
– Simulated annealing on two lists of moves.
– Statistics on moves.
– Only one rule : do not fill eyes.
– Result = average program for 9x9 Go.
– Advantage : much more simple than alternative 

approaches.



  

Monte Carlo Go
• 1998 : first master course on Monte Carlo Go.
• 2000 : sampling based algorithm instead of 

simulated annealing.
• 2001 : Computer Go an AI Oriented Survey.
• 2002 : Bernard Helmstetter.
• 2003 : Bernard Helmstetter, Bruno Bouzy, 

Developments on Monte Carlo Go.



  

Monte Carlo Phantom Go
• Phantom Go is Go when you cannot see the 

opponent's moves.
• A referee tells you illegal moves.
• 2005 : Monte Carlo Phantom Go program.
• Many Gold medals at computer Olympiad since 

then using flat Monte Carlo.
• 2011 : Exhibition against human players at 

European Go Congress.



  

UCT
• UCT : Exploration/Exploitation dilemma for trees

[Kocsis and Szepesvari 2006].
• Play random random games (playouts).
• Exploitation : choose the move that maximizes the 

mean of the playouts starting with the move.
• Exploration : add a regret term (UCB).



• UCT : exploration/exploitation dilemma.
• Play the move that maximizes

 

UCT



UCT



RAVE
● A big improvement for Go, Hex and other 

games is Rapid Action Value Estimation 
(RAVE) [Gelly and Silver 2007].

● RAVE combines the mean of the playouts 
that start with the move and the mean of 
the playouts that contain the move (AMAF).



RAVE
● Parameter βm for move m is :

βm←pAMAFm / (pAMAFm + pm + bias × pAMAFm× pm)

● βm starts at 1 when no playouts and decreases as 
more playouts are played.

● Selection of moves in the tree :
argmaxm((1.0 − βm) × meanm + βm × AMAFm)



GRAVE
● Generalized Rapid Action Value Estimation 

(GRAVE) is a simple modification of RAVE.
● It consists in using the first ancestor node 

with more than n playouts to compute the 
RAVE values.

● It is a big improvement over RAVE for Go, 
Atarigo, Knightthrough and Domineering 
[Cazenave 2015].



Atarigo



Knightthrough



Domineering 



Go



RAVE vs UCT

Game                                              Score

Atarigo 8x8                                     94.2 %
Domineering                                   72.6 %
Go 9x9                                            73.2 %
Knightthrough                                 56.2 %
Three Color Go 9x9                        70.8 %



GRAVE vs RAVE

Game                                              Score

Atarigo 8x8                                     88.4 %
Domineering                                   62.4 %
Go 9x9                                            54.4 %
Knightthrough                                 67.2 %
Three Color Go 9x9                        57.2 %



  

Parallelization of MCTS

• Root Parallelization.

• Tree Parallelization (virtual loss).

• Leaf Parallelization.



  

MCTS

• Great success for the game of Go since 2007.
• Much better than all previous approaches to 

computer Go.



  

AlphaGo
Lee Sedol is among the strongest and most famous 9p Go 

player :

AlphaGo has won 4-1 against Lee Sedol in March 2016
AlphaGo Master wins 3-0 against Ke Jie, 60-0 against pros.
AlphaGo Zero wins 89-11 against AlphaGo Master in 2017.



  

General Game Playing

• General Game Playing = play a new game just 
given the rules.

• Competition organized every year by Stanford.
• Ary world champion in 2009 and 2010.
• All world champions since 2007 use MCTS.



  

Other two-player games
• Hex : 2009
• Amazons : 2009
• Lines of Action : 2009



MCTS Solver
● When a subtree has been completely 

explored the exact result is known.
● MCTS can solve games.
● Score Bounded MCTS is the extension of 

pruning to solving games with multiple 
outcomes.























Breakthrough

● Write the Board and Move classes for Breakthrough 5x5.
● Write the function for the possible moves.
● Write a program to play random games at Breakthrough 5x5.



Breakthrough
● The Move class contains the color, the starting and arriving 

locations of a pawn.
class Move(object):
    def __init__(self, color, x1, y1, x2, y2):
        self.color = color
        self.x1 = x1
        self.y1 = y1
        self.x2 = x2
        self.y2 = y2



Breakthrough
● The Board class initializes the board with two rows of Black and two rows of White pawns:

Dx = 5
Dy = 5
Empty = 0
White = 1
Black = 2
class Board(object):
    def __init__(self):
        self.h = 0
        self.turn = White
        self.board = np.zeros ((Dx, Dy))
        for i in range (0, 2):
            for j in range (0, Dy):
                self.board [i] [j] = White
        for i in range (Dx - 2, Dx):
            for j in range (0, Dy):
                self.board [i] [j] = Black



Breakthrough
● Test, in the Move class, if a move is valid for a given board:

def valid (self, board):
        if self.x2 >= Dx or self.y2 >= Dy or self.x2 < 0 or self.y2 < 0:
            return False
        if self.color == White:
            if self.x2 != self.x1 + 1:
                return False
            if board.board [self.x2] [self.y2] == Black:
                if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1:
                    return True
                return False
            elif board.board [self.x2] [self.y2] == Empty:
                if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1 or self.y2 == self.y1:
                    return True
                return False
           ...



Breakthrough

        elif self.color == Black:
            if self.x2 != self.x1 - 1:
                return False
            if board.board [self.x2] [self.y2] == White:
                if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1:
                    return True
                return False
            elif board.board [self.x2] [self.y2] == Empty:
                if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1 or self.y2 == self.y1:
                    return True
                return False
        return False
       



Breakthrough
● Generate the legal moves in the Board class:

    def legalMoves(self):
        moves = []
        for i in range (0, Dx):
            for j in range (0, Dy):
                if self.board [i] [j] == self.turn:
                    for k in [-1, 0, 1]:
                        for l in [-1, 0, 1]:
                            m = Move (self.turn, i, j, i + k, j + l)
                            if m.valid (self):
                                moves.append (m)
        return moves



  

• Write, in the Board class, a score function to score a 
game (1.0 if White wins, 0.0 else) and a terminal 
function to detect the end of the game.

• Write, in the Board class, a playout function that 
plays a random game from the current state and 
returns the result of the random game.

Playouts



  

    In the Board class : 

    def score (self):
        for i in range (0, Dy):
            if (self.board [Dx - 1] [i] == White):
                return 1.0
           elif (self.board [0] [i] == Black):
                return 0.0
        l = self.legalMoves ()
        if len (l) == 0:
            if self.turn == Black:
                return 1.0
            else:
                return 0.0
        return 0.5

    def terminal (self):
        if self.score () == 0.5:
            return False
        return True
  

Playouts



  

In the Board class :

def play (self, move):
    self.board [move.x1] [move.y1] = Empty
    self.board [move.x2] [move.y2] = move.color
    if (self.turn == White):
        self.turn = Black
    else:
        self.turn = White

def playout (self):
    while (True):
        moves = self.legalMoves ()
        if self.terminal ():
            return self.score ()
        n = random.randint (0, len (moves) - 1)
        self.play (moves [n])

Playout



  

• For each move of the current state, do a fixed 
number of playouts starting with the move.

• Calculate the number of playouts won after the 
move.

• Play the move with the greatest number of playouts 
won.

Flat Monte Carlo



  

def flat (board, n):
    moves = board.legalMoves ()
    bestScore = 0
    bestMove = 0
    for m in range (len(moves)):
        sum = 0
        for i in range (n // len (moves)):
            b = copy.deepcopy (board)
            b.play (moves [m])
            r = b.playout ()
            if board.turn == Black:
                r = 1 - r
            sum = sum + r
        if sum > bestScore:
            bestScore = sum
            bestMove = m
    return moves [bestMove]

Flat Monte Carlo



  

• Keep statistics for all the moves of the current state.

• For each move of the current state, keep the number 
of playouts starting with the move and the number of 
playouts starting with the move that have been won.

• Play the most simulated move when all the playouts 
are finished.

UCB



  

Choose the first move at the root according to 
UCB before each playout:

UCB



  

def UCB (board, n):
    moves = board.legalMoves ()
    sumScores = [0.0 for x in range (len (moves))]
    nbVisits = [0 for x in range (len(moves))]
    for i in range (n):
        bestScore = 0
        bestMove = 0
        for m in range (len(moves)):
            score = 1000000
            if nbVisits [m] > 0:
                 score = sumScores [m] / nbVisits [m] + 0.4 * math.sqrt (math.log (i) / nbVisits [m])
            if score > bestScore:
                bestScore = score
                bestMove = m

UCB



  

        b = copy.deepcopy (board)
        b.play (moves [bestMove])
        r = b.playout ()
        if board.turn == Black:
            r = 1.0 - r
        sumScores [bestMove] += r
        nbVisits [bestMove] += 1
    bestNbVisits = 0
    bestMove = 0
    for m in range (len(moves)):
        if nbVisits [m] > bestNbVisits:
            bestNbVisits = nbVisits [m]
            bestMove = m
    return moves [bestMove]
 

UCB



 Transposition Table
● Each state is associated to a hash code.
● We use Zobrist hashing.
● Each piece for each cell is associated to a fixed 

random number.
● The hashcode of a state is the XOR of the random 

numbers of the pieces on the board.
● Why XOR ?
● How many random numbers for a chess board ?



 Transposition Table
● XOR is used because:
● XOR of uniformly distributed integers is an 

uniformly distributed integer.
● XOR is fast.
● (b XOR a) XOR a = b
● To add or to remove a piece, just XOR with the 

associated fixed random number: the new 
hascode after a move is rapidly calculated.



 Transposition Table
● For chess:
● pieces * cells = 12 * 64 = 768
● Castling                                4
● prise en passant                 16
● turn                                       1

● total                                  789

● Breakthrough 5x5 :         50 + 1 for the turn                       



 Transposition Table
● Fixing the random numbers for Breakthrough 5x5 from 1 to 25 for 

Black and 26 to 50 for White. 
● The random number for the turn is 51 :

● Let h1 = 0 be the hashcode of the initial board ?
● What is the hashcode h2 of the board where the leftmost White 

pawn moves forward?



 Transposition Table

                   h1 = 0
                   h2 = h1 ^ 41 ^ 36 ^ 51 = 62 



 Transposition Table

● Code to generate the fixed random number 
associated to the cells and the pawns.

● Modification of the play function so that a board 
is always associated to a Zobrist hashcode.
              



 Transposition Table

hashTable = []
for k in range (3):
    l = []
    for i in range (Dx):
        l1 = []
        for j in range (Dy):
            l1.append (random.randint (0, 2 ** 64))
        l.append (l1)
    hashTable.append (l)
hashTurn = random.randint (0, 2 ** 64)



Transposition Table

    def play (self, move):
        col = int (self.board [move.x2] [move.y2])
        if col != Empty:
            self.h = self.h ^ hashTable [col] [move.x2] [move.y2]
        self.h = self.h ^ hashTable [move.color] [move.x2] [move.y2]
        self.h = self.h ^ hashTable [move.color] [move.x1] [move.y1]
        self.h = self.h ^ hashTurn
        self.board [move.x2] [move.y2] = move.color
        self.board [move.x1] [move.y1] = Empty
        if (move.color == White):
            self.turn = Black
        else:
            self.turn = White



  

• An entry of a state in the transposition table 
contains :

• The hashcode of the stored state.
• The total number of playouts of the state.
• The number of playouts for each possible move.
• The number of wins for each possible move.

Transposition Table



  

• First Option (C++ like) :
– Write a class TranspoMonteCarlo containing the data 

associated to a state.
– Write a class TableMonteCarlo that contains a table of 

list of entries.
– Each entry is an instance of TranspoMonteCarlo. The 

size of the table is 65535. The index in the table of a 
hashcode h is h & 65535.

– The TableMonteCarlo class also contains the functions :
• look (self, board) which returns the entry of board.
• add (self, t) which adds en entry in the table. 

Transposition Table



  

• Alternative : use a Python dictionary with the hash as a 
key and lists as elements. 

• Each list contains 3 elements : 
– the total numbers of playouts, 
– the list of the number of playouts for each move, 
– the list of the number of wins for each move.

• Write a function that returns the entry of the 
transposition table if it exists or else None.

• Write a function that adds an entry in the transposition 
table.

Transposition Table



  

MaxLegalMoves = 6 * Dx
Table = {}

def add (board):
    nplayouts = [0.0 for x in range (MaxLegalMoves)]
    nwins = [0.0 for x in range (MaxLegalMoves)]
    Table [board.h] = [0, nplayouts, nwins]

def look (board):
    return Table.get (board.h, None)

Transposition Table



UCT



UCT



UCT



UCT





  

• Exercise : write the Python code for UCT.
• The available functions are:
• board.playout () that returns the result of a playout.
• board.legalMoves () that returns the list of legal moves for 

the board.
• board.play (move) that plays the move on board.
• look (board) that returns the entry of the board in the 

transposition table.
• add (board) that adds an empty entry for the board in the 

transposition table.

UCT



  

def UCT (board):
    if board.terminal ():
        return board.score ()
    t = look (board)
    if t != None:
        bestValue = 0
        best = 0
        moves = board.legalMoves ()
        for i in range (0, len (moves)):
            val = 1000000.0
            n = t [0]
            ni = t [1] [i]
            wi = t [2] [i]
            if ni > 0:
                Q = wi / ni
                if board.turn == Black:
                    Q = 1 - Q
                val = Q + 0.4 * sqrt (log (n) / ni)

UCT



  

            if val > bestValue:
                bestValue = val
                best = i
        board.play (moves [best])
        res = UCT (board)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        return res
    else:
        add (board)
        return board.playout ()

UCT



  

def BestMoveUCT (board, n):
    global Table
    Table = {}
    for i in range (n):
        b1 = copy.deepcopy (board)
        res = UCT (b1)
    t = look (board)
    moves = board.legalMoves ()
    best = moves [0]
    bestValue = t [1] [0]
    for i in range (1, len(moves)):
        if (t [1] [i] > bestValue):
            bestValue = t [1] [i]
            best = moves [i]
    return best

UCT



  

• Make UCT with 200 playouts play 100 games 
against Flat with 200 playouts.

• Winrate ? 
• Tune the UCT constant (hint 0.4).

UCT vs Flat



  

• UCT is the fundamental algorithm for MCTS.
• In order to be sure you have understood how UCT works, 

write the code for the sequential version of UCT.
• Use the pseudo code of Silver and Gelly that performs the 

four phases sequentially to write the corresponding 
Python code.

• Test it to verify it does the same thing as the recursive 
version and that it plays on par with the recursive version.

Sequential UCT



AMAF
● All Moves As First (AMAF).
● AMAF calculates for each possible move of 

a state the average of the playouts that 
contain this move.



  

• Exercise :

• Write a playout function memorizing the played moves.

• Add an integer code for moves in the Move class.

• Add AMAF statistics to the Transposition Table entries.

• Update the AMAF statistics of the Transposition Table.

AMAF



  

def playoutAMAF (board, played):
    while (True):
        moves = board.legalMoves ()
        if len (moves) == 0 or board.terminal ():
            return board.score ()
        n = random.randint (0, len (moves) - 1)
        played.append (moves [n].code (board))
        board.play (moves [n])

AMAF



  

In the Move class:

    def code (self, board):
        direction = 0
        if self.y2 > self.y1:
            if board.board [self.x2] [self.y2] == Empty:
                direction = 1
            else: 
                direction = 2
        if self.y2 < self.y1:
             if board.board [self.x2] [self.y2] == Empty:
                direction = 3
             else:
                 direction = 4
        if self.color == White:
            return 5 * (Dy * self.x1 + self.y1) + direction
        else:
            return 5 * Dx * Dy + 5 * (Dy * self.x1 + self.y1) + direction

AMAF



  

MaxCodeLegalMoves = 2 * Dx * Dy * 5

def addAMAF (board):
    nplayouts = [0.0 for x in range (MaxLegalMoves)]
    nwins = [0.0 for x in range (MaxLegalMoves)]
    nplayoutsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
    nwinsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
    Table [board.h] = [0, nplayouts, nwins, nplayoutsAMAF, nwinsAMAF]

AMAF



  

AMAF
def updateAMAF (t, played, res):
    for i in range (len (played)):
        if played [:i].count (played [i]) == 0:
            t [3] [played [i]] += 1
            t [4] [played [i]] += res



  

• Exercise : 
• Write the Flat AMAF player that computes AMAF 

statistics for the Flat Monte Carlo algorithm.
• The Flat AMAF player plays the move that has the 

best AMAF statistics instead of the move that has 
the best statistics.

• Make Flat AMAF play against Flat Monte Carlo 
with 30 playouts for both algorithms.

AMAF



RAVE



RAVE



RAVE



RAVE



RAVE



RAVE



RAVE



  

• Exercise :

• Compute the AMAF statistics for each node.

• Modify the UCT code to implement RAVE.

RAVE



  

def RAVE (board, played):
    if (board.terminal ()):
        return board.score ()
    t = look (board)
    if t != None:
        bestValue = 0
        best = 0
        moves = board.legalMoves ()
        bestcode = moves [0].code (board)
        for i in range (0, len (moves)):
            val = 1000000.0
            code = moves [i].code (board)
            if t [3] [code] > 0:
                beta = t [3] [code] / (t [1] [i] + t [3] [code] + 1e-5 * t [1] [i] * t [3] [code])
                Q = 1
                if t [1] [i] > 0:
                    Q = t [2] [i] / t [1] [i]
                    if board.turn == Black:
                        Q = 1 - Q

RAVE



  

                AMAF = t [4] [code] / t [3] [code]
                if board.turn == Black:
                    AMAF = 1 - AMAF
                val = (1.0 - beta) * Q + beta * AMAF
            if val > bestValue:
                bestValue = val
                best = i
                bestcode = code
        board.play (moves [best])
        played.append (bestcode)
        res = RAVE (board, played)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        updateAMAF (t, played, res)
        return res
    else:
        addAMAF (board)
        return playoutAMAF (board, played)

RAVE



  

def BestMoveRAVE (board, n):
    global Table
    Table = {}
    for i in range (n):
        b1 = copy.deepcopy (board)
        res = RAVE (b1, [])
    t = look (board)
    moves = board.legalMoves ()
    best = moves [0]
    bestValue = t [1] [0]
    for i in range (1, len(moves)):
        if (t [1] [i] > bestValue):
            bestValue = t [1] [i]
            best = moves [i]
    return best

RAVE



  

• State of the art in General Game Playing (GGP)
• Best AI of the Ludii system (https://ludii.games/)
• Simple modification of RAVE
• Uses statistics both for Black and White at all nodes
• “In principle it is also possible to incorporate the 

AMAF values, from ancestor subtrees.  However, in 
our experiments, combining ancestor AMAF values 
did not appear to confer any advantage.”

GRAVE



  

• Use the AMAF statistics of the last ancestor with 
more than n playouts instead of the AMAF statistics 
of the current node.

• More accurate when few playouts.
• Published at IJCAI 2015.
• GRAVE is a generalization of RAVE since GRAVE 

with n=0 is RAVE.

GRAVE





  

• Exercise :

• Modify the RAVE code to implement GRAVE.

GRAVE



  

def GRAVE (board, played, tref):
    if (board.terminal ()):
        return board.score ()
    t = look (board)
    if t != None:
        tr = tref
        if t [0] > 50:
            tr = t
        bestValue = 0
        best = 0
        moves = board.legalMoves ()
        bestcode = moves [0].code (board)
        for i in range (0, len (moves)):
            val = 1000000.0
            code = moves [i].code (board)
            if tr [3] [code] > 0:
                beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
                Q = 1
                if t [1] [i] > 0:
                    Q = t [2] [i] / t [1] [i]
                    if board.turn == Black:
                        Q = 1 - Q

GRAVE



  

                AMAF = tr [4] [code] / tr [3] [code]
                if board.turn == Black:
                    AMAF = 1 - AMAF
                val = (1.0 - beta) * Q + beta * AMAF
            if val > bestValue:
                bestValue = val
                best = i
                bestcode = code
        board.play (moves [best])
        played.append (bestcode)
        res = GRAVE (board, played, tr)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        updateAMAF (t, played, res)
        return res
    else:
        addAMAF (board)
        return playoutAMAF (board, played)

GRAVE



  

def BestMoveGRAVE (board, n):
    global Table
    Table = {}
    addAMAF (board)
    for i in range (n):
        root = look (board)
        b1 = copy.deepcopy (board)
        res = GRAVE (b1, [], root)
    root = look (board)
    moves = board.legalMoves ()
    best = moves [0]
    bestValue = root [1] [0]
    for i in range (1, len(moves)):
        if (root [1] [i] > bestValue):
            bestValue = root [1] [i]
            best = moves [i]
    return best

GRAVE



  

• Infinite number of moves
• Progressive Widening
• Action Decomposition (AD)
• Constraints-based Selective Policy (CSP)
• cRAVE and cGRAVE
• Application : Biology

Continuous MCTS



  



  

• A new child state is sampled from state s every time the 
visitation count of s (n(s)) to the power of pw is greater than or 
equal to its number of children :
n(s)pw ≥ s.children∣ ∣

• pw is a problem dependent parameter that controls the number 
of actions allowed in s. 

• While UCT ensures that the tree grows deeper in the 
promising regions of the search space by balancing exploration 
and exploitation, the PW strategy guarantees that it grows 
wider in those regions.

Progressive Widening



  

cRAVE



  

cGRAVE



  

Action Decomposition



  

Hybrid Gene Regulatory Networks



  

cGRAVE



  

cGRAVE



  

cGRAVE



  

Mujoco : Humanoid



  

• Open the Humanoid notebook on the course page
• Test UCT with 10 randomly chosen actions as the 

possible moves
• Progressive widening for UCT
• Action Decomposition (AD)
• cGRAVE

Continuous MCTS



PUCT



  

PUCT

● MCTS used in AlphaGo and AlphaZero.
● A neural network gives a policy and a value.
● No playouts, evaluation with the value at the leaves.
● P(s,a) = probability for move a of being the best.
● Bandit for the tree descent:





  

• Exercise :
Modify the UCT code into PUCT.
Suppose a random policy and a random value.

PUCT



  

def PUCT (board):
    if board.terminal ():
        return board.score ()
    t = look (board)
    if t != None:
        bestValue = -1000000.0
        best = 0
        moves = board.legalMoves ()
        for i in range (0, len (moves)):
            # t [4] = value from the neural network
            Q = t [4] 
            if t [1] [i] > 0:
                Q = t [2] [i] / t [1] [i]
            if board.turn == Black:
                Q = 1 - Q
            # t [3] = policy from the neural network
            val = Q + 0.4 * t [3] [i] * sqrt (t [0]) / (1 + t [1] [i])
            if val > bestValue:
                bestValue = val
                best = i

PUCT



  

        board.play (moves [best])
        res = PUCT (board)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        return res
    else:
        t = add (board)
        return t [4]

PUCT



Zero Learning



  

Zero Learning

• AlphaGo
• Golois
• AlphaGo Zero
• Alpha Zero
• Mu Zero
• Polygames
• Athénan



  
            David Silver                          Aja Huang



  

AlphaGo
Fan Hui is the european Go champion and a 2p
 professional Go player :

AlphaGo Fan won 5-0 
against Fan Hui in 
November 2015.

Nature, January 2016.



  

AlphaGo
Lee Sedol is among the strongest and most famous
9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march
2016.



  

AlphaGo

Ke Jie is the world champion of Go according to 
Elo ratings :

AlphaGo Master
won 3-0 against 
Ke Jie in 
may 2017.



  

AlphaGo
• AlphaGo combines MCTS and Deep Learning.
• There are four phases to the development of 

AlphaGo :
• Learn strong players moves => policy network.
• Play against itself and improve the policy network 

=> reinforcement learning.
• Learn a value network to evaluate states from 

millions of games played against itself.
• Combine MCTS, policy and value network.



  

AlphaGo



  

AlphaGo



  

AlphaGo
• The policy network is a 13 layers network.
• It uses either 128 or 256 feature planes.
• It is fully convolutional.
• It learns to predict moves from hundreds of 

thousands of strong players games.
• Once it has learned, it finds the strong player 

move 57.0 % of the time.
• It takes 3 ms to run.



  

AlphaGo
• The value network is also a deep convolutional 

neural network.
• AlphaGo played a lot of games and kept for each 

game a state and the corresponding terminal state.
• It learns to evaluate states with the result of the 

terminal state.
• The value network has learned an evaluation 

function that gives the probability of winning.



  

AlphaGo



  

AlphaGo



  

AlphaGo
• The policy network is used as a prior to consider 

good moves at first.
• Playouts are used to evaluate moves
• The value network is combined with the statistics 

of the moves coming from the playouts.
• PUCT :



  

AlphaGo



  

AlphaGo
• AlphaGo has been parallelized using a distributed 

version.
• 40 search threads, 1,202 CPUs and 176 GPU.



  

AlphaGo



  

AlphaGo



  

AlphaGo



  

AlphaGo



  

AlphaGo



Golois



  

Golois
• I replicated the AlphaGo experiments with the policy 

and value networks.

• Golois policy network scores 58.54% on the test set 
(57.0% for AlphaGo).

• Golois plays on the kgs internet Go server.

• It has a strong 4d ranking just with the learned policy 
network (AlphaGo policy network is 3d).



Data
● Learning set = games played on the KGS Go server 

by players being 6d or more between 2000 and 2014.
● No handicap games. 
● Each position is rotated to eight possible symmetric 

positions. 
● 160 000 000 positions in the learning set. 
● Test set = games played in 2015. 
● 100 000 different positions not mirrored.



  

Residual Nets

• Residual Nets :



  

Evolution of the error



  

Evolution of the accuracy



  

Golois Policy Network

• Using residual network enables to train deeper network.

• It enables better accuracy than AlphaGo policy 
network.

• It has a 4 dan level on kgs, playing moves instantly.



AlphaGo Zero



  

AlphaGo Zero

 AlphaGo Zero learns to play Go from scratch playing against itself.

After 40 days of self play it surpasses AlphaGo Master.

Nature, 18 october 2017.

It uses the raw representation of the board as input, even liberties are 
not used.

It has 15 input planes, 7 for the previous Black stones, 7 for the 
previous White Stones and 1 plane for the color to play.



  

AlphaGo Zero
● It plays against itself using PUCT and 1,600 tree 

descents per move.

● It uses a residual neural network with two heads.

● One head is the policy, the other head is the value.



  

AlphaGo Zero

   



  

AlphaGo Zero
● After 4.9 million games against itself a 20 residual 

blocks neural network reaches the level of AlphaGo 
Lee (100-0).

● 3 days of self play on the machines of DeepMind.
● Comparison : Golois searches 1,600 nodes in 10 

seconds on a 4 GPU machine.
● It would take Golois 466 years to play 4.9 million such 

games. 



  

AlphaGo Zero

   



  

AlphaGo Zero

   



  

AlphaGo Zero

● They used a longer experiment with a deeper network.
● 40 residual blocks.
● 40 days of self play on the machines of DeepMind.
● In the end it beats Master 89-11.



  

AlphaGo Zero

   



  

AlphaGo Zero



  

AlphaGo Zero

● AlphaGo Zero uses 40 residual blocks instead of 20 
blocks for AlphaGo Master.

● With 20 blocks learning stalls after 3 days.
● Master with 40 blocks better than AlphaGo Zero?



Alpha Zero



  

Alpha Zero
● Arxiv, 5 december 2017. 

● Deep reinforcement learning similar to AlphaGo Zero.

● Same algorithm applied to two other games :
Chess and Shogi.

● Learning from scratch without prior knowledge.



  

Alpha Zero
● Alpha Zero surpasse Stockfish at Chess after 4 hours of 

self-play.

● Alpha Zero surpasses Elmo at shogi after 2 hours of self 
play.



  

Alpha Zero
● 5 000 first generation TPU for training.

●4 TPU for playing.



Mu Zero



  

Mu Zero
● Arxiv, december 2019. 

● Similar to Alpha Zero without knowing the rules of the 
games.

● Atari, Go, Chess and Shogi.

● Learning from scratch without prior knowledge.



Polygames



  

Polygames
● Alpha Zero approach for many games.

● A common interface to all the games.

● Fully convolutional network, average pooling…

● Pytorch and C++.

● Open source !



Mathematics



  

• The state space is an AND/OR tree as in games.
• Algorithms for solving games can be used to prove 

theorems.
• MCTS has been used in some theorem provers.
• Holophrasm [Daniel Whalen 2016].
• Tactictoe [Gauthier et al. 2021].

Automated Theorem Proving



  

Automated Theorem Proving



Code Generation



MCTS and Deep RL
Monte Carlo Tree Search and Deep Reinforcement 
Learning to discover new fast matrix multiplication 
algorithms:



MCTS and Deep RL
AlphaDev improves sorting algorithms:



Athénan and the Computer 
Olympiad



  

Athénan

● 48 gold medals at the Computer Olympiads!
● Amazons, Arimaa, Ataxx, Breakthrough, Canadian Draughts, Chinese Chess, 

Clobber, Havannah (8×8), Havannah (10×10), Hex (11×11), Hex (13×13), 
Hex (19×19), Lines of Action, Othello (10×10), Santorini, Surakarta.



  

Unbounded Minimax

● Principle = Extend the most promising leaf.

● Asymmetric growing of the search tree.



  

Descent

● Only uses a value network.

● Self play without prior knowledge.

● Learns the scores inside the trees developed by the 
Unbounded MiniMax.

● Minimax Strikes Back [Cohen-Solal & Cazenave 2023].



  

Descent



  

Athénan



  

Athénan



  

Athénan



  

Athénan



  

Athénan



  

Athénan



  

Athénan



  

Conclusion
● AlphaGo : supervised learning and self play.
● Golois : residual networks and Spatial Batch 

Normalization improve learning.
● AlphaGo Zero : reinforcement learning from self play 

with MCTS. Raw inputs. Residual networks and 
combined policy and value network. Better than Master.

● AlphaZero : Go, Chess and Shogi.
● MuZero : Atari, Go, Chess and Shogi. 
● Polygames : many games.
● Athénan: Minimax Strikes Back.



Alpha Zero Project



Alpha Zero
● Define a network that takes as input the 

Breakthrough board and gives as output the policy 
and the value for the board.

● Bias the MCTS with policy and value using PUCT.
● Make the network play games and record the results 

of the Monte Carlo and the result of the games.
● Train the network on the results of the games.
● Iterate.



Alpha Zero
● The network takes 41 inputs with values 0 or 1, 20 inputs 

for black pawns, 20 inputs for white pawns and one input 
for the color to play.

● Option: also use previous boards as inputs.
● The network has 60 outputs for the policy head (3 possible 

moves for each cell), and 1 output for the value head.
● The architecture of the network can be completely 

connected as a starting point.
● Option : convolutional network, residual network.



Alpha Zero
1) Define the network
2) Implement the PUCT algorithm using the network. 
Use the same network for black and white, rotate the 
board for white so that moves are always forward.
3) Make the algorithm play against itself.
4) Record the Monte Carlo distributions and the 
result of self played games.
5) Train the network on the recorded data.



Monte Carlo Search with 
Imperfect Information



  

• The moves of the other players are not known
• Application : Auctions

Simultaneous Moves MCTS



  



  



Information Set MCTS
● Flat Monte Carlo Search gives good results 

for Phantom Go.
● Information Set MCTS.
● Card games.



Counter Factual Regret 
Minimization

● Poker : Libratus (CMU), DeepStack (UofA).
● Approximation of the Nash Equilibrium.
● There are about 320 trillion “information sets” in heads-

up limit hold’em.
● What the algorithm does is look at all strategies that do 

not include a move, and count how much we “regret” 
having excluded the move from our mix.

● Combination with neural networks.
● Better than top professional players.



αμ
● Bridge
● Generate a set of possible worlds.
● Solve each world exactly
● Search multiple moves ahead
● Strategy Fusion => joint search
● Non Locality => Pareto fronts



PIMC

For all possible moves
    For all possible worlds
        Exactly solve the world

Play the move winning in the most worlds



Strategy Fusion

● Problem = PIMC can play different 
moves in different worlds.

● Whereas the player cannot 
distinguish between the different 
worlds.



Non Locality



Pareto Fronts
● A Pareto Front is a set of vectors.
● It maintains the set of vectors that are not dominated by other vectors.

● Consider the Pareto front {[1 0 0], [0 1 1]}. 
● If the vector [0 0 1] is a candidate for entering the front, then the front stays 

unchanged since [0 0 1] is dominated by [0 1 1]. 

● If we add the vector [1 1 0] then the vector [1 0 0] is removed from the front since it is 
dominated by [1 1 0], and then [1 1 0] is inserted in the front. The new front becomes 
{[1 1 0], [0 1 1]}.

● It is useful to compare Pareto fronts. 
● A Pareto front P1 dominates or is equal to a Pareto front P2 iff  v  P2 ,  v’  P1 ∀ ∈ ∃ ∈

such that (v’ dominates v) or v’=v.



AlphaMu

● At Max nodes each possible move returns a 
Pareto front. 

● The overall Pareto front is the union of all the 
Pareto fronts of the moves. 

● The idea is to keep all the possible options 
for Max, i.e. Max has the choice between all 
the vectors of the overall Pareto front.



AlphaMu

● At Min nodes, the Min players can choose 
different moves in different possible worlds. 

● They take the minimum outcome over all the 
possible moves for a possible world. 

● When they can choose between two vectors 
they take for each index the minimum 
between the two values at this index of the 
two vectors.



AlphaMu
● When Min moves lead to Pareto fronts, the Max player can 

choose any member of the Pareto front. 
● For two possible moves of Min, the Max player can also choose 

any combination of a vector in the Pareto front of the first move 
and of a vector in the Pareto front of the second move. 

● Compute all the combinations of the vectors in the Pareto fronts 
of all the Min moves. 

● For each combination the minimum outcome is kept so as to 
produce a unique vector. 

● Then this vector is inserted in the Pareto front of the Min node.



Product of Pareto Fronts at Min 
nodes



  

The Early Cut



  

The Root Cut
● If a move at the root of αμ for M Max moves gives the same 

probability of winning than the best move of the previous 
iteration of iterative deepening for M-1 Max moves, the search 
can safely be stopped since it is not possible to find a better 
move. 

● A deeper search will always return a worse probability than the 
previous search because of strategy fusion. 

●  Therefore if the probability is equal to the one of the best move 
of the previous shallower search the probability cannot be 
improved and a better move cannot be found so it is safe to cut.



  

Experimental Results
● Comparison of the average time per move of different 

configurations of αμ on deals with 52 cards for the 3NT 
contract.



  

Experimental Results
● Comparison of αμ versus PIMC for the 7NT contract, 
 playing 10 000 games.



  

AlphaMu

● AlphaMu solves de strategy fusion and the non 
locality problems of PIMC up to a given depth.

● It maintains Pareto Fronts in its search tree.
● It improves on PIMC for the 7NT contract of 

Bridge.



Nook and Bridge



PIMC

For all possible moves
    For all possible worlds
        Exactly solve the world

Play the move winning in the most worlds



Strategy Fusion

● Problem = PIMC can play different 
moves in different worlds.

● Whereas the player cannot 
distinguish between the different 
worlds.



  

Nook

● Opponent Modeling
● Alpha-Beta on each possible world
● AlphaMu
● Rule based opening lead
● Contract : 1NT 2NT 3NT
● Declarer



  

Nook



  

Nook



  

Nook



Sequential Halving



Sequential Halving
Sequential Halving, a method so wise
Dividing tasks with great precision and size
Starting from many, it reduces the few
Towards a solution that's both true and true

With each iteration, the choices do narrow
Till the answer shines bright like a beacon so sparrow
No guesses, no chances, no luck needed here
Just a systematic approach, crystal clear

From the simplest problems to the hardest of quest
Sequential Halving never fails to impress
A friend to all seekers, a guide in the night
Bringing order to chaos, and making things right

So let us embrace it, in all we embark
With Sequential Halving, success is just a mark.



Sequential Halving
● Sequential Halving [Karnin & al. 2013] is a 

bandit algorithm that minimizes the simple 
regret.

● It has a fixed budget of arm pulls.
● It gives the same number of playouts to all the 

arms.
● It selects the best half.
● Repeat until only one move is left



Sequential Halving



SHOT
● SHOT is the acronym for Sequential 

Halving Applied to Trees [Cazenave 2015].
● When the search comes back to a node it 

considers the spent budget and the new 
budget as a whole.

● It distributes the overall budget with 
Sequential Halving.



  

SHOT



  

SHOT



SHOT
● SHOT gives good results for Nogo.
● Combining SHOT and UCT :

SHOT near the root
UCT deeper in the tree

● The combination gives good results for 
Atarigo, Breakthrough, Amazons and 
partially observable games.



  

• Exercise:

• Write the code to perform Sequential Halving at the 
root on top of UCT.

Sequential Halving



  

Sequential Halving
def SequentialHalving (state, budget):
    global Table
    Table = {}
    add (state)
    moves = state.legalMoves ()
    total = len (moves)
    nplayouts = [0.0 for x in range (MaxCodeLegalMoves)]
    nwins = [0.0 for x in range (MaxCodeLegalMoves)]
    while (len (moves) > 1):
        for m in moves:
            for i in range (int (budget // (len (moves) * np.log2 (total)))):
                s = copy.deepcopy (state)
                s.play (m)
                res = UCT (s)
                nplayouts [m.code (state)] += 1
                if state.turn == White:
                    nwins [m.code (state)] += res
                else:
                    nwins [m.code (state)] += 1.0 - res
        moves = bestHalf (state, moves, nwins, nplayouts)
    return moves [0]



  

Sequential Halving
def bestHalf (state, moves, nwins, nplayouts):
   half = []
   notused = list(np.full(MaxCodeLegalMoves,True))
   for i in range (int(np.ceil(len (moves) / 2))):
       best = -1.0
       bestMove = moves [0]
       for m in moves:
            code = m.code (state)
            if notused [code]:
                mu = nwins [code] / nplayouts [code]
                if mu > best:
                    best = mu
                    bestMove = m
        notused [bestMove.code (state)] = False
        half.append (bestMove)
    return half



  

Sequential Halving Using Scores,
A method to find the best of many,
It starts with many choices,
And narrows them down, through many voices.

It divides the options in groups,
And test them with different scores,
Eliminating the ones that lag,
Until the best one, it ensures.

This method is efficient and fast,
It saves time and resources,
And finds the best solution, at last,
Among many possible courses.

Sequential Halving Using Scores,
A powerful tool for decision,
It helps us to find the right doors,
And make the best decision.

SHUSS



  

• Sequential Halving combined with other statistics such as AMAF 
statistics.

• Instead of selecting the best half with the mean (mui), use:

                          mui + c * AMAFi / pi

with pi the number of playouts of move i and c ≥ 128.

• Combining SH with AMAF = SHUSS (Sequential Halving Using 
Scores) [Fabiano et al. 2021]

SHUSS



  

SHUSS



  

SHUSS



  

• Exercise:

Write the code to perform SHUSS at the root on top 
of GRAVE.

SHUSS



  

SHUSS
def SHUSS (state, budget):
    global Table
    Table = {}
    addAMAF (state)
    root = look (state)
    moves = state.legalMoves ()
    total = len (moves)
    nplayouts = np.zeros(MaxCodeLegalMoves)
    nwins = np.zeros(MaxCodeLegalMoves)
    while (len (moves) > 1):
        for m in moves:
            for i in range (int(budget // (len (moves) * np.log2 (total)))):
                s = copy.deepcopy (state)
                s.play (m)
                code = m.code (state)
                played =  [code]
                res = GRAVE (s, played, root)
                updateAMAF (root, played, res)
                nplayouts [code] += 1
                if state.turn == White:
                    nwins [code] += res
                else:
                    nwins [code] += 1.0 - res
        moves = bestHalfSHUSS (root, state, moves, nwins, nplayouts)
    return moves [0]



  

SHUSS
def bestHalfSHUSS (t, state, moves, nwins, nplayouts):
    half = []
    notused = list(np.full(MaxCodeLegalMoves,True))
    c = 128
    for i in range (int(np.ceil(len (moves) / 2))):
        best = -1.0
        bestMove = moves [0]
        for m in moves:
            code = m.code (state)
            if notused [code]:
                AMAF = t [4] [code] / t [3] [code]
                if state.turn == Black:
                    AMAF = 1 - AMAF
                mu = nwins [code] / nplayouts [code] + c * AMAF / nplayouts [code] 
                if mu > best:
                    best = mu
                    bestMove = m
        notused [bestMove.code (state)] = False
        half.append (bestMove)
    return half



Nested Monte Carlo Search



  

Nested Monte Carlo Search
Nested Monte Carlo Search, a complex game,
A method to find the best move, it can claim,
It looks deeper, it goes beyond,
To find the winning move, it has fond.

It takes the Monte Carlo Tree Search,
And adds another layer, to research,
It explores the branches, with great care,
To find the best outcome, with much flair.

It simulates the game, again and again,
And analyzes the data, to win.
It's like a Russian doll, inside and out,
Nested Monte Carlo Search, without a doubt.

It's a powerful tool, for AI,
To make machines better, that's its aim high,
It's a step towards true intelligence,
Nested Monte Carlo Search, a true excellence.



  

Single Agent Monte Carlo
 UCT can be used for single-agent problems.
 Nested Monte Carlo Search often gives better 
   results.
 Nested Rollout Policy Adaptation is an 
 online learning variation that has beaten 
 world records.



  

Nested Monte-Carlo Search



  

• Play random games at level 0
• For each move at level n+1, play the move then 

play a game at level n
• Choose to play the move with the greatest 

associated score
• Important : memorize and follow the best 

sequence found at each level

Nested Monte-Carlo Search



  



Analysis

• Analysis on two very simple abstract 
problems.

• Search tree = binary tree.
• In each state there are only two possible 

moves: going to the left or going to the 
right.



Analysis
• The scoring function of the leftmost path 

problem consists in counting the number of 
moves on the leftmost path of the tree. 



Analysis
• Sample search : probability 2-n of finding the 

best score of a depth n problem. 
• Depth-first search : one chance out of two of 

choosing the wrong move at the root, so the 
mean complexity > 2n-2. 

• A level 1 Nested Monte-Carlo Search will 
always find the best score, complexity is n(n-1). 

• Nested Monte-Carlo Search is appropriate for 
the leftmost path problem because the scores 
at the leaves are extremely correlated with the 
structure of the search tree.



Analysis
• The scoring function of the left move 

problem consists in counting the number of 
moves on the left. 



Analysis
• The probability distribution can be 

computed exactly with a recursive formula 
and dynamic programming.

• A program that plays the left move 
problems has also been written and 
results with 100,000 runs are within 1% of 
the exact probability distribution.



Analysis
• Distributions of the scores for a depth 60 

problem.



Analysis
• Mean score in real time



Morpion Solitaire

• Morpion Solitaire is an NP-hard puzzle and the 
high score is inapproximable within n1-epsilon 

• A move consists in adding a circle such that a 
line containing five circles can be drawn. 

• In the disjoint version a circle cannot be a part 
of two lines that have the same direction. 

• Best human score is 68 moves.
• Level 4 Search => 80 moves, after 5 hours of 

computation on a 64 cores cluster.



Morpion Solitaire
• 80 moves :



Morpion Solitaire
• Distribution of the scores



Morpion Solitaire
• Mean scores in real-time



SameGame

• NP-complete puzzle.
• It consists in a grid composed of cells of different 

colors. Adjacent cells of the same color can be 
removed together, there is a bonus of 1,000 points 
for removing all the cells.

• TabuColorRandom strategy: the color that has the 
most cells is set as the tabu color.

• During the playouts, moves of the tabu color are 
played only if there are no moves of the others 
colors or it removes all the cells of the tabu color.



Same Game



Same Game

• SP-MCTS = restarts of the UCT algorithm 
• SP-MCTS scored 73,998 on a standard test 

set.
• IDA* : 22,354
• Darse Billings program : 72,816.
• Level 2 without memorization : 44,731
• Nested level 2 with memorization : 65,937 
• Nested level 3 : 77,934 



Application to Constraint 
Satisfaction

• A nested search of level 0 is a playout.
• A nested search of level 1 uses a playout 

to choose a value.
• A nested search of level 2 uses nested 

search of level 1 to choose a value.
• etc.
• The score is always the number of free 

variables.



Sudoku

• Sudoku is a popular NP-complete puzzle.
• 16x16 grids with 66% of empty cells.
• Easy-Hard-Easy distribution of problems.
• Forward Checking (FC) is stopped when 

the search time for a problem exceeds 
20,000 s.



Sudoku

• FC :     > 446,771.09 s.
• Iterative Sampling :     61.83 s.
• Nested level 1 :   1.34 s.
• Nested level 2 :   1.64 s.



Kakuro
          24    25    20    26    24 
18       .       .        .       .       .
26       .       .        .       .       .
28       .       .        .       .       .
26       .       .        .       .       .
21       .       .        .       .       .

A 5x5 grid



Kakuro
         24     25     20    26    24 
18       1      7       5       3      2 
26      4       5       3       8      6 
28      5       6       7       2      8 
26      8       4       1       6      7 
21      6       3       4       7      1 

Solution



Kakuro

Algorithme              Solved problems              Time

Forward Checking                 8/100        92,131.18 s.
Iterative Sampling               10/100        94,605.16 s.
Monte-Carlo level 1          100/100               78.30 s.
Monte-Carlo level 2          100/100               17.85 s.

8x8 Grids, 9 values, stop at 1,000 s.



Bus Regulation
• Goal : minimize passengers waiting 

times by making buses wait at a stop.

• Evaluation of an algorithm : sum of the 
waiting times for all passengers.



Regulation Algorithms
• Rule-based regulation: The waiting time 

depends on the number of stop with the next 
bus

• Monte-Carlo regulation : Choose the waiting 
time that has the best mean of random 
playouts

• Nested Monte-Carlo regulation :  Use 
multiple levels of playouts



Rule-based regulation
• : number of stop 

before the next bus.
• w : waiting time if the 

next bus is at more 
than  .

• No regulation : 171 
• Wait during 4 if more 

than 7 stops : 164



Monte-Carlo Regulation
• 165 for N = 100
• 154 for N = 1000
• 147 for N = 10000

better than rule-based regulation (164).



Parallel Nested Monte-Carlo 
Search

• Play the highest level sequentially
• Play the lowest levels in parallel
• Speedup = 56 for 64 cores at Morpion 

Solitaire
• A more simple parallelization : play 

completely different searches in parallel 
(i.e. use a different seed for each search).



  

Monte Carlo Beam Search



  

Single-Agent General Game 
Playing

• Nested Monte-Carlo search gives better 
results than UCT on average.

• For some problems UCT is better.
• Ary searches with both UCT and Nested 

Monte-Carlo search and plays the move that 
has the best score.



  

Snake in the box

• A path such that for every node only two 
neighbors are in the path.

• Applications: Electrical engineering, coding 
theory, computer network topologies.

• World records with NMCS [Kinny 2012].



  

Multi-agent pathfinding

• Find routes for the agents avoiding 
collisions.

• Monte Carlo Fork Search enables to branch 
in the playouts.

• It solves difficult problems faster than other 
algorithms [Bouzy 2013].



  

The Pancake Problem

• Nested Monte Carlo Search has beaten 
world records using specialized playout 
policies [Bouzy 2015].



  

Software Engineering

• Search based software testing [Feldt and 
Poulding 2015].

• Heuristic Model Checking [Poulding and 
Feldt 2015].

• Generating structured test data with specific 
properties [Poulding and Feldt 2014].



Inverse RNA Folding

● Find a sequence that has a given folding



  

Inverse RNA Folding

• Molecule Design as a Search Problem
• Find the sequence of nucleotides that gives 

a predefined structure.
• A biochimist applied Nested Monte Carlo 

Search to this problem [Portela 2018].
• Better than the state of the art.
• Transformers improve the policy



Refutation of Spectral Graph 
Theory Conjectures

 

 
● Monte Carlo Search better than Deep RL 
[Roucairol & Cazenave 2022]



Coalition Structure Generation

● Lazy Nested Monte Carlo Search with clever 
state space :

 

 



  

• Find a set of chemical reactions that enable to 
synthetize a given molecule.

• The state space is an AND/OR tree as in games.
• DF-PN and MCTS have been used to find 

retrosynthesis pathways.
• Alphachem [Segler et al. 2017].
• AiZynthFinder [Genheden et al. 2020].

Retrosynthesis



  

Retrosynthesis



  

DrugSynthMC

• Atom-Based Generation of Drug-like Molecules with 
Monte Carlo Search



  

DrugSynthMC

•



  

Nested Monte Carlo Search :
● Morpion Solitaire [Cazenave 2009]
● SameGame [Cazenave 2009]
● Sudoku [Cazenave 2009]
● Expression Discovery [Cazenave 2010]
● The Snake in the Box [Kinny 2012]
● Cooperative Pathfinding [Bouzy 2013]
● Software Testing [Poulding et al. 2014]
● Heuristic Model-Checking [Poulding et al. 2015]
● Pancake problem [Bouzy 2015]
● Games [Cazenave et al. 2016]
● Cryptography [Dwivedi et al. 2018]
● Inverse RNA folding [Portela 2019]
● Refutation of Spectral Graph Theory Conjectures [Roucairol & Cazenave 2022]
● Retrosynthesis [Roucairol & Cazenave 2024]
● De Novo Drug Design [Roucairol & Cazenave 2024]
● …

Applications



  

• Write a Nested Monte Carlo Search for the left move problem.
• Functions to write : 

legalMoves (state)
play (state, move)
terminal (state)
score (state)
playout (state)

• Then write a Nested Monte Carlo Search using these functions.

Exercise



  

import random
import copy

def legalMoves (state):
    return [0, 1]

def play (state, move):
    state.append (move)
    return state

def terminal (state):
    return len (state) >= 60

def score (state):
    return sum (state)

Left Move Problem



  

Left Move Problem

def playout (state):
    while not terminal (state):
        moves = legalMoves (state)
        move = moves [int(random.random () * len (moves))]
        state = play (state, move)
    return state
     



  

Left Move Problem
def nested (state, n):
    if (n == 0):
       return playout (state)
    bestSequence = []
    while not terminal (state):
        moves = legalMoves (state)
        for m in moves:
            s1 = copy.deepcopy (state)
            s1 = play (s1, m)
            s1 = nested (s1, n - 1)
            if score (s1) >= score (bestSequence):
                bestSequence = s1
        state = play (state, bestSequence [len (state)])
    return state



  

Monte-Carlo Discovery of 
Expressions

• Possible moves are pushing atoms.
• Evaluation of a complete expression.
• Better than Genetic Programming for some 

problems [Cazenave 2010, 2013].



Monte-Carlo Discovery of 
Expressions

Prime Generating Polynomials:
The score of an expression is the number of 
different primes it generates in a row for 
integer values of x starting at zero and 
increasing by one at each step.
Nested Monte-Carlo search is better than 
UCT and Iterative Deepening search.



Monte-Carlo Discovery of 
Expressions



Monte-Carlo Discovery of 
Expressions



Monte-Carlo Discovery of 
Expressions



Monte-Carlo Discovery of 
Expressions

 N prisoners are assigned with either a 0 or a 1. 
 A prisoner can see the number assigned to the other prisoners but 
cannot see his own number.
 Each prisoner is asked independently to guess if he is 0 or 1 or to 
pass. 
 The prisoners can formulate a strategy before beginning the game.
 All the prisoners are free if at least one guesses correctly and none 
guess incorrectly.
 A possible strategy is for example that one of the prisoners says 1 
and the others pass, this strategy has fifty percent chances of 
winning.



Monte-Carlo Discovery of 
Expressions



Monte-Carlo Discovery of 
Expressions



Monte-Carlo Discovery of 
Expressions



Application to financial data
● Data used to perform our empirical analysis 

are daily prices of European S&P500 index 
call options.

● The sample period is from January 02, 
2003 to August 29, 2003. 

● S&P500 index options are among the most 
actively traded financial derivatives in the 
world.



Atom Set
+         Addition                                         C/K Call Price/Strike Price 

-         Subtraction                                    S/K  Index Price/Strike Price

*         Multiplication                                  tau  Time to Maturity

%       Protected Division  

ln       Protected Natural Log  

Exp    Exponential function  

Sqrt    Protected Square Root  

cos     Cosinus

sin      Sinus 

Ncfd   Normal cumulative distribution 



Fitness function
● Each formula found by NMCS or GP is 

evaluated to test whether it can accurately 
forecast the implied volatility for all entries 
in the training set. 

● Fitness = Mean Squared Error (MSE) 
between the estimated volatility and the 
target volatility.



Mean Square Error



Poor Fitted Observations



  

Exercise :
• Possible atoms : 1, 2, 3, +, -
• Goal : find expressions containing less than 11 

atoms that have great evaluations.
• Generate random expressions (i.e. list of atoms).
• Evaluate an expression given as a list of atoms.
• Use NMCS to generate expressions

Expression Discovery



  

Expression Discovery

+

+

+2

1 3

1

+ + 2 + 1 3 1



  

import random
import copy

atoms = [1, 2, 3, '+', '-']
children = [0, 0, 0, 2, 2]
MaxLength = 11

def legalMoves (state, leaves):
    l = []
    for a in range (len (atoms)):
        if len (state) + leaves + children [a] <= MaxLength:
            l.append (a)
    return l

def play (state, move, leaves):
    state.append (move)
    return [state, leaves - 1 + children [move]]

def terminal (state, leaves):
    return leaves == 0

Expression Discovery



  

Expression Discovery

def playout (state, leaves):
    while not terminal (state, leaves):
        moves = legalMoves (state, leaves)
        move = moves [int(random.random () * len (moves))]
        [state, leaves] = play (state, move, leaves)
    return state
     



  

Expression Discovery
def score (state, i):
    if children [state [i]] == 0:
        return [atoms [state [i]], i + 1]
    if children [state [i]] == 2:
        a = atoms [state [i]]
        [s1,i1] = score (state, i + 1)
        [s2,i2] = score (state, i1)
        if a == '+':
            return [s1 + s2, i2]
        if a == '-':
            return [s1 - s2, i2]
     



  

Expression Discovery
def nested (state, leaves, n):
    bestSequence = []
    bestScore = -10e9
    while not terminal (state, leaves):
        moves = legalMoves (state, leaves)
        for m in moves:
            s1 = copy.deepcopy (state)
            [s1, leaves1] = play (s1, m, leaves)
            if (n == 1):
                s1 = playout (s1, leaves1)
            else:
                s1 = nested (s1, leaves1, n - 1)
            [score1, i] = score (s1, 0)
            if score1 > bestScore:
                bestScore = score1
                bestSequence = s1
        [state, leaves] = play (state, bestSequence [len (state)], leaves)
    return state



  

Expression Discovery
import sys

def printExpression (state):
    for i in state:
        sys.stdout.write (str (atoms [i]) + ' ')
    sys.stdout.write ('\n')
    
def test ():
    for i in range (10):
        s = playout ([], 1)
        printExpression (s)
        print (score (s, 0) [0])
    for i in range (10):
        s = nested ([], 1, 2)
        printExpression (s)
        print (score (s, 0) [0])

test ()



  

Outline

• Algorithm Discovery
• Discovery of MCTS Algorithms
• Discovery of SHUSS Exploration Terms
• Conclusion



  

Algorithm Discovery



Algorithm Discovery

● Using an algorithm to discover an algorithm
● AlphaZero or MuZero can be used to play the game of 

algorithm discovery.



Algorithm Discovery
Monte Carlo Tree Search and Deep Reinforcement 
Learning to discover new fast matrix multiplication 
algorithms [Fawzi & al. 2022]



Algorithm Discovery
● AlphaDev [Mankowitz & al. 2023]:

Faster sorting algorithms discovered using deep 
reinforcement learning 





LION
Automated discovery of optimization algorithms 



  

Discovery of MCTS Algorithms



  

Discovery of MCTS Algorithms

• Evolving Monte-Carlo Tree Search Algorithms 
[Cazenave 2007]

• Inventing new exploration terms for MCTS with 
Genetic Programming.



  

Discovery of MCTS Algorithms

• Nested Monte Carlo Search can be used to 
discover mathematical expressions and algorithms 
[Cazenave 2010]

• It can replace Genetic Programming to discover 
new Monte Carlo Search algorithms with a Monte 
Carlo Search algorithm



  

Discovery of SHUSS Exploration Terms





SHUSS



  

SHUSS

• SHUSS with a policy network
• Select the n best moves according to the policy
• Perform Sequential Halving on this set of moves
• Game : Go
• Neural Network : Transformer trained on Katago 

games



SHUSS



Discovery of Exploration Terms



Discovery of Exploration Terms



  

Discovery of Exploration Terms



  

Conclusion

• Sampling of Exploration Terms
• The SHUSS dataset for evaluating exploration 

terms
• SHUSS is improved using the automatically found 

exploration term
• SHUSS using the discovered exploration term 

becomes competitive with PUCT for small budgets



  

• The quality of information propagated during the search 
can be increased via a discounting heuristic, leading to a 
better move selection for the overall algorithm.

• Improving the cost-effectiveness of the algorithm 
without changing the resulting policy by using safe 
pruning criteria.

• Long-term convergence to an optimal strategy can be 
guaranteed by wrapping NMCS inside a UCT-like 
algorithm.

Nested Monte-Carlo Search for 
Two-player Games



  

• The discounting heuristic turns a win/loss game into 
a game with a wide range of outcomes by having the 
max player preferring short wins to long wins, and 
long losses to short losses.

• A playout returns v(st) / (t + 1) with v(st) in {-1,1}

Nested Monte-Carlo Search for 
Two-player Games



  



  



  

Nested Monte-Carlo Search for 
Two-player Games



  

Nested Monte-Carlo Search for 
Two-player Games



  



  



  

• Modify Breakthrough to play Misere Breakthrough.
• Modify playouts for discounted rewards.
• Nested playouts.
• UCT with nested discounted playouts.
• Compare to standard UCT.

Exercise



  

def misereScore (self):
    s = self.score ()
    if s == 1:
        return -1
    if s == 0:
        return 1
    return s

Discounted Playout



  

def discountedPlayout (self, t):
    while (True):
        moves = self.legalMoves ()
        if self.terminal ():
            return self.misereScore () / (t + 1)
        n = random.randint (0, len (moves) - 1)
        self.play (moves [n])
        t = t + 1

Discounted Playout



  

def nestedDiscountedPlayout (self, t):
    while (True):
        if self.terminal ():
            return self.misereScore () / (t + 1)
        moves = self.legalMoves ()
        bestMove = moves [0]
        best = -2
        for i in range (len (moves)):
            b = copy.deepcopy (self)
            b.play (moves [i])
            s = b.discountedPlayout (t + 1)
            if self.turn == Black:
               s = -s
            if s > best:
                best = s
                bestMove = moves [i]
        self.play (bestMove)
        t = t + 1

Nested Discounted Playout



  

def UCTNested (board, t1):
    if board.terminal ():
        return board.misereScore () / (t1 + 1)
    t = look (board)
    if t != None:
        bestValue = -1000000.0
        best = 0
        moves = board.legalMoves ()
        for i in range (len (moves)):
            val = 1000000.0
            if t [1] [i] > 0:
                Q = t [2] [i] / t [1] [i]
                if board.turn == Black:
                    Q = -Q
                val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
            if val > bestValue:
                bestValue = val
                best = i

UCT Nested Discounted



  

        board.play (moves [best])
        res = UCTNested (board, t1 + 1)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        return res
    else:
        add (board)
        return board.nestedDiscountedPlayout (t1)

UCT Nested Discounted



Nested Rollout Policy Adaptation



Nested Rollout Policy 
Adaptation

● NRPA [Rosin 2011] is NMCS with policy learning.
● It uses sampling with a softmax of the move 

weights as a playout policy.
● It adapts the weights of the moves according to the 

best sequence of moves found so far.
● During adaptation each weight of a move of the 

best sequence is incremented and all possible 
moves in the same state are decreased 
proportionally to theire probabilities.



Nested Rollout Policy 
Adaptation

● Each move is associated to a weight wi

● During a playout each move is played with 
a probability:

exp (wi) / Sk exp (wk)



Nested Rollout Policy 
Adaptation

● For each move of the best sequence:
wi = wi + 1

● For each possible move of each state of the 
best sequence:
wj = wj – exp (wj) / Sk exp (wk)



Morpion Solitaire

                                       World record [Rosin 2011]



Applications of NRPA

● 3D packing with object orientation.



Applications of NRPA

● Improvement of some alignments for 
Multiple Sequence Alignment [Edelkamp & 
al 2015].



Applications of NRPA

● Traveling Salesman Problem with Time 
Windows [Cazenave 2012].

● Physical traveling salesman problem.



Applications of NRPA

● State of the art results for Logistics 
[Edelkamp & al. 2016].



ENEDIS Agents

● ENEDIS fleet of vehicles is one of the 
largest.

● They plan interventions every day.
● Monte Carlo Search is 5% better than the 

specialized algorithms they use.
● Millions of kilometers saved each year 

[Cazenave et al. 2021].



RNA Molecule Design

● Find a sequence that has a given folding 
[Cazenave et al. 2020].



Network Traffic Engineering
● Provide routing configurations in networks that:

●  Miminize ressources 
●  Preserve QoS.

● Better than local search [Dang et al. 2021]:



Virtual Network Embedding

● MCTS for 5G network slicing [Elkael 2023]



Snake in the Box
● Find a long path in an hypercube :

● Improved lower bounds [Dang & al. 2023]



  

● Morpion Solitaire [Rosin 2011]
● CrossWords [Rosin 2011]
● Traveling Salesman Problem with Time Windows [Cazenave et al. 2012]
● 3D Packing with Object Orientation [Edelkamp et al. 2014]
● Multiple Sequence Alignment [Edelkamp et al. 2015]
● SameGame [Cazenave et al. 2016]
● Vehicle Routing Problems [Edelkamp et al. 2016, Cazenave et al. 2020]
● Graph Coloring [Cazenave et al. 2020]
● RNA Inverse Folding [Cazenave & Fournier 2020]
● Network Traffic Engineering [Dang et al. 2021]
● Slicing 5G [Elkael et al. 2023]
● Snake in the Box [Dang et al. 2023]
● …

Nested Rollout Policy Adaptation









Exercise 
● Apply NRPA to the Left Move problem.
● Write a function playout (state) that plays a playout 

using Gibbs sampling.
● The probability of playing a move is proportional to the 

exponential of the weight of the move.
● weight is a dictionary that contains the weights of the 

moves.
● Write the Adapt function
● Write the NRPA function



Exercise 
def randomMove (state, policy):
    moves = legalMoves (state)
    z = 0.0
    for m in moves:
        if policy.get (code(state,m)) == None:
            policy [code(state,m)] = 0.0
        z = z + math.exp (policy [code(state,m)])
    stop = random.random () * z
    sum = 0.0
    for m in moves:
        sum = sum + math.exp (policy [code(state,m)])
        if (sum >= stop):
            return m
        
def playout (state, policy):
    while not terminal (state):
        move = randomMove (state, policy)
        play (state, move)
    return score (state),sequence(state)



Exercise 

def adapt (policy, sequence, alpha = 1.0):
    s = []
    polp = copy.deepcopy (policy)
    for best in sequence:
        moves = legalMoves (s)
        z = 0.0
        for m in moves:
            if policy.get (code(s,m)) == None:
                policy [code(s,m)] = 0.0
            z = z + math.exp (policy [code(s,m)])
        for m in moves:
            if polp.get (code(s,m)) == None:
                polp [code(s,m)] = 0.0
            polp [code(s,m)] -= alpha * math.exp (policy [code(s,m)]) / z
        polp [code(s,best)] += alpha
        play (s, best)
    return polp



Exercise 
def NRPA (level, policy):
    if level == 0:
        return playout ([], policy)
    best = -np.inf
    seq = []
    for i in range (100):
        pol = copy.deepcopy (policy)
        sc, s = NRPA (level - 1, pol)
        if sc > best:
            best = sc
            seq = s
        policy = adapt (policy, seq)
    return best, seq



Exercise 
def score (state):
    return sum (state)

def play (state, move):
    state.append (move)

def legalMoves (state):
    return [0,1]

def terminal (state):
    return len(state) >= 60

def sequence (state):
    return state

def code (state, m):
    return 2 * len (state) + m

sc,s = NRPA (1, {})
print (sc, s)
sc,s = NRPA (2, {})
print (sc, s)



Selective Policies
● Prune bad moves during playouts.
● Modify the legal moves function.
● Use rules to find bad moves.
● Different domain specific rules for :

– Bus regulation, 
– SameGame, 
– Weak Schur numbers.



Bus Regulation
● At each stop a regulator can decide to make a bus 

wait before continuing his route.
● Waiting at a stop can reduce the overall 

passengers waiting time. 
● The score of a simulation is the sum of all the 

passengers waiting time. 
● Optimizing a problem is finding a set of bus 

stopping times that minimizes the score of the 
simulation.



Bus Regulation
● Standard policy: between 1 and 5 minutes 
● Selective policy : waiting time of 1 if there are 

fewer than δ stops before the next bus.
● Code for a move: 

– the bus stop, 
– the time of arrival to the bus stop,
– the number of minutes to wait before leaving the 

stop.



Bus Regulation
                                           Time                                 No δ                             δ = 3

                                           0.01                                2,620                            2,147
                                           0.02                                2,441                            2,049
                                           0.04                                2,329                            2,000
                                           0.08                                2,242                            1,959
                                           0.16                                2,157                            1,925
                                           0.32                                2,107                            1,903
                                           0.64                                2,046                            1,868
                                           1.28                                1,974                            1,811
                                           2.56                                1,892                            1,754
                                           5.12                                1,802                            1,703
                                           10.24                              1,737                            1,660
                                           20.48                              1,698                            1,640
                                           40.96                              1,682                            1,629
                                           81.92                              1,660                            1,617
                                           163.84                            1,632                            1,610



SameGame



SameGame
● Code of a move = Zobrist hashing.
● Tabu color strategy = avoid moves of the 

dominant color until there is only one block 
of the dominant color.

● Selective policy = allow moves of size two 
of the tabu color when the number of 
moves already played is greater than t.



SameGame
                                    Time                            No tabu                          tabu                                 t > 10

                                     0.01                             155.83                       352.19                              257.59
                                     0.02                             251.28                       707.56                              505.05
                                     0.04                             340.18                       927.63                              677.57
                                     0.08                             404.27                    1,080.64                              822.44
                                     0.16                             466.15                    1,252.14                              939.30
                                     0.32                             545.78                    1,375.78                           1,058.54
                                     0.64                             647.63                    1,524.37                           1,203.91
                                     1.28                             807.20                    1,648.16                           1,356.81
                                     2.56                          1,012.42                    1,746.74                           1,497.90
                                     5.12                          1,184.77                    1,819.43                           1,605.86
                                   10.24                          1,286.25                    1,886.48                           1,712.17
                                   20.48                          1,425.55                    1,983.42                           1,879.10
                                   40.96                          1,579.67                    2,115.80                           2,100.47
                                   81.92                          1,781.40                    2,319.44                           2,384.24
                                  163.84                         2,011.25                    2,484.18                           2,636.22



SameGame

Standard test set of 20 boards:

NMCS    SP-MCTS       NRPA             web
77,934         78,012       80,030        87,858



  

Same Game

• Hybrid Parallelization [Negrevergne 2017].

• Root Parallelization for each computer. Leaf 
Parallelization of the playouts using threads.

• New record of 83 050.

• Parallelization for Morpion Solitaire [Nagorko 2019].



Weak Schur Numbers
● Find a partition of consecutive numbers that 

contains as many consecutive numbers as possible
● A partition must not contain a number that is the 

sum of two previous numbers in the same partition.
● Partition of size 3 :

1 2 4 8 11 22
3 5 6 7 19 21 23
9 10 12 13 14 15 16 17 18 20



Weak Schur Numbers
● Often a good move to put the next number in the 

same partition as the previous number. 
● If it is legal to put the next number in the same 

partition as the previous number then it is the only 
legal move considered.

● Otherwise all legal moves are considered.
● The code of a move for the Weak Schur problem 

takes as input the partition of the move, the integer 
to assign and the previous number in the partition.



Weak Schur Numbers
                                           Time                                 ws(9)                        ws-rule(9)

                                           0.01                                    199                             2,847
                                           0.02                                    246                             3,342
                                           0.04                                    263                             3,717
                                           0.08                                    273                             4,125
                                           0.16                                    286                             4,465
                                           0.32                                    293                             4,757
                                           0.64                                    303                             5,044
                                           1.28                                    314                             5,357
                                           2.56                                    331                             5,679
                                           5.12                                    362                             6,065
                                           10.24                                  384                             6,458 
                                           20.48                                  403                             6,805
                                           40.96                                  422                             7,117
                                           81.92                                  444                             7,311
                                           163.84                                473                             7,538



Selective Policies
● We have applied selective policies to three 

quite different problems. 
● For each problem selective policies 

improve NRPA. 
● We used only simple policy improvements.
● Better performance could be obtained 

refining the proposed policies.



Exercise 
● Apply NRPA to the Weak Schur problem.
● Write a class defining the Weak Schur problem.
● Write a function that plays a playout using Gibbs sampling.
● The probability of playing a move is proportional to the 

exponential of the weight of the move.
● weight is a dictionary that contains the weights associated 

to the moves.
● code (move) returns the integer associated to the move in 

the weight dictionary.



Weak Schur
import random
import math
import numpy as np
N = 3
MaxNumber = 10000
class WS (object):
    def __init__ (self):
        self.partitions = [[] for i in range (N)]
        self.possible = np.full((N,MaxNumber),True))
        self.next = 1
        self.sequence = []

    def legalMoves (self):
        l = []
        for i in range (N):
            if self.possible [i] [self.next]:
                l.append (i)
        return l

    def code (self, p):
        return N * self.next + p



Weak Schur
    def terminal (self):
        l = self.legalMoves ()
        if l == []:
            return True
        return False

    def score (self):
        return self.next - 1

    def play (self, p):
        for i in range (len (self.partitions [p])):
            self.possible [p] [self.next + self.partitions [p] [i]] = False
        self.partitions [p].append (self.next)
        self.next = self.next + 1
        self.sequence.append (p)



Weak Schur
class Policy (object):
    def __init__ (self):
        self.dict = {}

    def get (self, code):
        w = 0
        if code in self.dict:
            w = self.dict [code]
        return w

    def put (self, code, w):
        self.dict [code] = w 



Weak Schur
def playout (state, policy):
    while not state.terminal ():
        l = state.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (state.code (l [i])))
        stop = random.random () * z
        move = 0
        z = 0
        while True:
            z = z + math.exp (policy.get (state.code (l [move])))
            if z >= stop:
                break
            move = move + 1
        state.play (l [move])



Exercise
● Write the adapt function that modifies the 

weights of the moves according to the best 
sequence of moves.

● Weights of the moves of the best sequence 
are incremented.

● For each state of the best sequence, 
weights of all the moves are reduced 
proportional to their probabilities.



Weak Schur
def adapt (sequence, policy):
    polp = copy.deepcopy (policy)
    s = WS ()
    while not s.terminal ():
        l = s.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (s.code (l [i])))
        move = sequence [len (s.sequence)]
        polp.put (s.code (move), polp.get(s.code (move)) + 1)
        for i in range (len (l)):
            proba = math.exp (policy.get (s.code (l [i]))) / z
            polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
        s.play (move)
    return polp



Exercise
● Write the multi level NRPA code that 

retains a best sequence per level and 
recursively calls lower levels.

● Level zero is a playout with Gibbs 
sampling.



Weak Schur
def NRPA (level, policy):
    state = WS ()
    if level == 0:
        playout (state, policy)
        return state
    pol = copy.deepcopy (policy)
    for i in range (100):
        ws = NRPA (level - 1, pol)
        if ws.score () >= state.score ():
            state = ws
        pol = adapt (state.sequence, pol)
    return state

ws = NRPA (2, Policy ())
print (ws.partitions)
[[1, 2, 4, 8, 11, 16, 22], [3, 5, 6, 7, 19, 21, 23], [9, 10, 12, 13, 14, 15, 17, 18, 20]]



  

Analysis of Nested Rollout Policy Adaptation



  

Generalized Nested Rollout Policy 
Adaptation



  

Generalized Nested Rollout Policy 
Adaptation



  

Generalized Nested Rollout Policy 
Adaptation



  

Generalized Nested Rollout Policy 
Adaptation



  

Generalized Nested Rollout Policy 
Adaptation



  

SameGame



  

TSPTW



  

TSPTW



  

GNRPA

● NRPA with a bias.
● Equivalent to the initialization of the weights.
● More convenient to use a bias.
● We can always set the temperature to 1 without a 

loss of generality.
● Good results for SameGame and TSPTW.



  

GNRPA

● Exercise:
● Apply GNRPA to the Weak Schur problem.



Weak Schur
def playout (state, policy):
    while not state.terminal ():
        l = state.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (state.code (l [i])) + state.beta (l [i]))
        stop = random.random () * z
        move = 0
        z = 0
        while True:
            z = z + math.exp (policy.get (state.code (l [move])) + state.beta (l [move]))
            if z >= stop:
                break
            move = move + 1
        state.play (l [move])



Weak Schur
def adapt (sequence, policy):
    polp = copy.deepcopy (policy)
    s = WS ()
    while not s.terminal ():
        l = s.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (s.code (l [i])) + s.beta (l [i]))
        move = sequence [len (s.sequence)]
        polp.put (s.code (move), polp.get(s.code (move)) + 1)
        for i in range (len (l)):
            proba = math.exp (policy.get (s.code (l [i])) + s.beta (l [i])) / z
            polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
        s.play (move)
    return polp



Weak Schur
    def beta (self, p):
        last = len (self.sequence)
        if last == 0:
            return 0
        if p == self.sequence [last – 1]:
            return 10
        return 0
 
 
  
 
 
 





  

Force Explore

● When a policy has been reinforced a lot, for example in 
the end of the iterations loop, the playouts are almost 
deterministic.

● NRPA very often replays the same playout.
● Force Explore detects when a terminal state has already 

been evaluated before.
● In this case it randomly chooses a move in the playout, 

modifies it and performs another playout.
● "Warm-Starting Nested Rollout Policy Adaptation with 

Optimal Stopping", Dang et al. AAAI 2023.



  

Force Explore

● Exercise:
● Apply Force Explore to the Weak Schur 

problem.



  

Force Explore

● First thing is to compute a hascode for states :

    def play (self, p):

        for i in range (len (self.partitions [p])):

            self.possible [p] [self.next + self.partitions [p] [i]] = False

        self.h = self.h ^ randomNumber [self.code (p)]

        self.partitions [p].append (self.next)

        self.next = self.next + 1

        self.sequence.append (p)



  

Force Explore

●  Modification of the playout function to force explore :

def playout (state, policy):
    while not terminal (state):
        move = randomMove (state, policy)
        state = play (state, move)
    s = TT.get (state.h, None)
    if s != None:
        index = random.randint (0, len (state.sequence) – 1)
        state1 = WS ()
        for i in range (index):
            state1 = play (state1, state.sequence [i])

    l = state1.legalMoves ()

    move = int(random.random () * len(l))

    state1.play (l [move])

        state = state1
        while not terminal (state):
            move = randomMove (state, policy)
            state = play (state, move)
    TT.add (state.h, 1)
    return state



  

Warm Starting

● Warm starting performs multiple recursive calls before 
starting to adapt.

● The optimal stopping criterion is the one of the secretary 
problem :

      Ri ≤ i * c / (n + 1 – i)
      with Ri relative rank of the ith item, 
      n the total number of items,
      c a constant.

● "Warm-Starting Nested Rollout Policy Adaptation with 
Optimal Stopping", Dang et al. AAAI 2023.



  

Warm Starting

● World records for the Snake-in-the-Box.



  

Warm Starting

● Exercise:
● Apply Warm Starting to the Weak Schur 

problem.



  

Warm Starting
def MetaNRPA (level, policy):

    state = WS ()

    if level == 0:

        playout (state, policy)

        return state

    pol = copy.deepcopy (policy)

    l = []

    startLearning = False

    c = 2.3

    for i in range (100):

        ws = MetaNRPA (level - 1, pol)

        score = ws.score ()

        if score >= state.score ():

            state = ws

        l.append (score)

        l.sort (reverse=True)

        index = l.index (score)

        if index + 1 <= (i + 1)  * c / (100 – i):

            startLearning = True

        if startLearning:

            pol = adapt (state.sequence, pol)

    return state



  

Limited Repetitions

● Stops the iterations at a level when the best sequence is found again.
● Enables to avoid deterministic policies that find the same sequence 

again and again and waste time.
● Simple to code.
● Generalized Nested Rollout Policy Adaptation with Limited Repetitions
● Applications : 

● TSPTW, 
● RNA Design, 
● Weak Schur.

● "Generalized Nested Rollout Policy Adaptation with Limited 
Repetitions", Tristan Cazenave. Arxiv 2024.



  



  

Limited Repetitions

● Exercise:
● Apply Limited Repetitions to the Weak Schur 

Problem.



  

Limited Repetitions
def GNRPALR (level, policy):

    state = WS ()

    if level == 0:

        playout (state, policy)

        return state

    pol = copy.deepcopy (policy)

     while True:

        ws = GNRPALR (level - 1, pol)

        score = ws.score ()

        if score > state.score ():

            state = ws

        if score == state.score ():

            return state

        pol = adapt (state.sequence, pol)



  

Learning a Prior by Replaying Solutions

● Generate solved problems.
● Compute statistics on moves for the generated solved problems.
● Use the logarithm of the statistics of a move as a prior for the 

move.
● Applications :

● Kakuro
● Latin Square Completion
● RNA Design

● "Learning a Prior for Monte Carlo Search by Replaying Solutions 
to Combinatorial Problems", Tristan Cazenave. Arxiv 2024.



  



  



  



  

Learning a Prior by Replaying Solutions



  

Learning a Prior by Replaying Solutions



  

Limited Repetitions



  

Learning a Prior by Replaying Solutions



  

Learning a Prior by Replaying Solutions

● Exercise:
● Apply Learning a Prior by Replaying Solutions 

to Kakuro.
● Generate Kakuro problems of size 10 with 11 

possible values.
● Compute statistics on moves.
● Use the statistics as a prior for GNRPA.



  

Learning a Prior by Replaying Solutions



  



  



  



  



  

Bias Weights Learning

● Bias Learning dynamically learns the weight to 
associate to a bias in GNRPA.

● "Learning the Bias Weights for Generalized 
Nested Rollout Policy Adaptation", Sentuc et al. 
LION 2023.



  



  



  

Bias Weights Learning



  



  



  



  

Bias Weights Learning

Exercise:
Apply Bias Weights Learning to the Weak Schur
problem.



  

Bias Weights Learning
def playout (state, policy,w1):
    while not state.terminal ():
        l = state.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (state.code (l [i])) + w1 * state.beta (l [i]))
        stop = random.random () * z
        move = 0
        z = 0
        while True:
            z = z + math.exp (policy.get (state.code (l [move])) + w1 * state.beta (l [move]))
            if z >= stop:
                break
            move = move + 1
        state.play (l [move])



  

Bias Weights Learning
def adapt (sequence, policy, w1):
    polp = copy.deepcopy (policy)
    w = w1
    s = WS ()
    while not s.terminal ():
        l = s.legalMoves ()
        z = 0
        b = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i]))
            b = b + s.beta (l [i]) * math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i]))
        move = sequence [len (s.sequence)]
        w = w + s.beta (move) – b / z
        polp.put (s.code (move), polp.get(s.code (move)) + 1)
        for i in range (len (l)):
            proba = math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i])) / z
            polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
        s.play (move)
    return (polp,w)



  

Bias Weights Learning
def BLGNRPA (level, policy, w):

    state = WS ()

    if level == 0:

        playout (state, policy, w)

        return state

   pol = copy.deepcopy (policy)

   w1 = w

   for i in range (100):

        ws = BLGNRPA (level - 1, pol, w1)

        score = ws.score ()

        if score >= state.score ():

            state = ws

        (pol, w1) = adapt (state.sequence, pol, w1)

    return state



Eterna 100

● Find a sequence that has a given folding



Eterna 100

● Human experts have managed to solve the 
  100 problems of the benchmark
● No program has so far achieved such a      
  score.
● The best score so far is 95/100 by NEMO:
 NEsted MOnte Carlo RNA Puzzle Solver



NEMO

● NEMO uses two sets of heuristics
● General ones that give probabilities to 
pairs of bases.
● More specific ones that are tailored to 
puzzle solving.



GNRPA



Other Improvements

● Stabilized GNRPA
● Beam GNRPA
● Zobrist Hashing
● Restarts
● Parallelization



Experimental Results



Experimental Results

●  Leaf Parallelization



Experimental Results



Experimental Results

●  Root Parallelization



  

Conclusion

● 95/100 problems solved, same as NEMO.
● Less domain knowledge.
● Various improvements of NRPA.



Playout Policy Adaptation



Offline learning of a playout 
policy

● Offline learning of playout policies has 
given good results in Go [Coulom 2007, 
Huang 2010] and Hex [Huang 2013], 
learning fixed pattern weights so as to bias 
the playouts.

● Patterns are also used to do progressive 
widening in the UCT tree.



Online learning of a playout 
policy

● The RAVE algorithm [Gelly 2011] performs online 
learning of moves values in order to bias the choice of 
moves in the UCT tree.

● RAVE has been very successful in Go and Hex. 
● A development of RAVE is to use the RAVE values to 

choose moves in the playouts using Pool RAVE 
[Rimmel 2010]. 

● Pool RAVE improves slightly on random playouts in 
Havannah and reaches 62.7% against random playouts 
in Go.



Online learning of a playout 
policy

● Move-Average Sampling Technique (MAST) 
is a technique used in the GGP program 
Cadia Player so as to bias the playouts with 
statistics on moves [Finnsson 2010].

● It consists of choosing a move in the playout 
proportionally to the exponential of its mean. 

● MAST keeps the average result of each 
action over all simulations. 



Online learning of a playout 
policy

● Later improvements of Cadia Player are N-
Grams and the last good reply policy [Tak 2012]. 

● They have been applied to GGP so as to 
improve playouts by learning move sequences. 

● A recent development in GGP is to have 
multiple playout strategies and to choose the 
one which is the most adapted to the problem at 
hand [Swiechowski 2014].



Online learning of a playout 
policy

● Playout Policy Adaptation (PPA) also uses 
Gibbs sampling.

● The evaluation of an action for PPA is not 
its mean over all simulations such as in 
MAST. 

● Instead the value of an action is learned 
comparing it to the other available actions 
for the state where it has been played.



Playout Policy learning

● Start with a uniform policy.

● Use the policy for the playouts.

● Adapt the policy for the winner of each 
playout.



Playout Policy learning
● Each move is associated to a weight wi.

● During a playout each move is played with 
a probability :

exp (wi) / Sk exp (wk)



Playout Policy learning
● Online learning :
● For each move of the winner :

wi = wi + 1
● For each possible move of each state of 

the winner :
wi = wi – exp (wi) / Sk exp (wk)



Breakthrough

● The first player to reach the opposite line has won



Misère Breakthrough

● The first player to reach the opposite line has lost



Knightthrough

● The first to put a knight on the opposite side has won.



Misère Knightthrough

● The first to put a knight on the opposite side has lost.



Atarigo

● The first to capture has won



Nogo

● The first to capture has lost



Domineering 
Misère Domineering

● The last to play has won / lost.



Experimental results
                             Size                  Playouts
                                           1,000        10,000 

Atarigo                  8 x 8             72.2           94.4
Breakthrough             8 x 8             55.2           54.4 
Misere Breakthrough      8 x 8             99.2           97.8
Domineering              8 x 8             48.4           58.0
Misere Domineering       8 x 8             76.4           83.4
Go                       8 x 8             23.0            1.2
Knightthrough            8 x 8             64.2           64.6
Misere Knightthrough     8 x 8             99.8          100.0
Nogo                     8 x 8             64.8           46.4
Misere Nogo              8 x 8             80.6           89.4



Playout Policy learning with 
Move Features

● Associate features to the move.

● A move and its features are associated to a code.

● The algorithm learns the weights of codes instead 
of simply the weights of moves.



Playout Policy learning with 
Move Features

● Atarigo : four adjacent intersections
● Breakthrough : capture in the move code
● Misère Breakthrough : same as Breakthrough
● Domineering : cells next to the domino played
● Misère Domineering : same as Domineering
● Knightthrough : capture in the move code
● Misère Knighthrough : same as Knighthrough
● Nogo : same as Atarigo



Experimental results
● Each result is the outcome of a 500 games 

match, 250 with White and 250 with Black.
● UCT with an adaptive policy (PPAF) is 

played against UCT with a random policy.
● Tests are done for 10,000 playouts.
● For each game we test size 8x8.
● We tested 8 different games.



Experimental results
                                                    Size                                  Winning %

                                                

    Atarigo                8 x 8               94.4 %

    Breakthrough           8 x 8               81.4 %

    Misere Breakthrough    8 x 8              100.0 %

    Domineering            8 x 8               80.4 %

    Misere Domineering     8 x 8               93.0 %

    Knightthrough          8 x 8               84.0 %

    Misere Knightthrough   8 x 8              100.0 %

    Nogo                   8 x 8               95.4 %



PPAF and Memorization

● Start a game with an uniform policy.

● Adapt at each move of the game.

● Start at each move with the policy of the 
previous move.



PPAF and Memorization

● A nice property of PPAF is that the move played 
after the algorithm has been run is the most 
simulated move.

● The memorized policy is related to the state after the 
move played by the algorithm since it is the most 
simulated move. 

● When starting with the memorized policy for the next 
state, this state has already been partially learned



PPAFM versus PPAF uniform
Game                                              Score

Atarigo                                            66.0%
Breakthrough                                  87.4%
Domineering                                   58.0%
Knightthrough                                 84.6%
Misere Breakthrough                      97.2%
Misere Domineering                       56.8%
Misere Knightthrough                     99.2%
Nogo                                              49.4%



PPAFM versus UCT
Game                                              Score

Atarigo                                            95.4%
Breakthrough                                  94.2%
Domineering                                   81 .8%
Knightthrough                                 96.6%
Misere Breakthrough                     100.0%
Misere Domineering                       95.8%
Misere Knightthrough                    100.0%
Nogo                                               91.6%



PPA Adapt Algorithm



  

• Try PPA for Misere Breakthrough.
– The playout function
– The adapt function
– Combination with UCT

• Take capture into account (PPAF).
• Memorize the policy (PPAFM).
• Compare to UCT.

Exercise



  

    def code (self, move):
        direction = 1
        if move.y2 > move.y1:
            direction = 0
        if move.y2 < move.y1:
            direction = 2
        capture = 0
        if self.board [move.x2] [move.y2] != Empty:
            capture = 1
        if move.color == White:
            return 6 * (Dy * move.x1 + move.y1) + 2 * direction + capture
        else:
            return 6 * Dx * Dy + 6 * (Dy * move.x1 + move.y1) + 2 * direction + capture

PPAF



  

def playout (state, policy):
    while not state.terminal ():
        l = state.legalMoves ()
        z = 0
        for i in range (len (l)):
            z = z + math.exp (policy.get (state.code (l [i])))
        stop = random.random () * z
        move = 0
        z = 0
        while True:
            z = z + math.exp (policy.get (state.code (l [move])))
            if z >= stop:
                break
            move = move + 1
        state.play (l [move])
    return state.score ()

PPAF



  

def adapt (s, winner, state, policy):
    polp = copy.deepcopy (policy)
    alpha = 0.32
    while not s.terminal ():
        l = s.legalMoves ()
        move = state.rollout [len (s.rollout)]
        if s.turn == winner:
            z = 0
            for i in range (len (l)):
                z = z + math.exp (policy.get (s.code (l [i])))
            polp.put (s.code (move), polp.get(s.code (move)) + alpha)
            for i in range (len (l)):
                proba = math.exp (policy.get (s.code (l [i]))) / z
                polp.put (s.code (l [i]), polp.get(s.code (l [i])) - alpha * proba)
        s.play (move)
    return polp

PPAF



  

def PPAF (board, policy):
    if board.terminal ():
        return board.score ()
    t = look (board)
    if t != None:
        bestValue = -1000000.0
        best = 0
        moves = board.legalMoves()
        for i in range (0, len (moves)):
            val = 1000000.0
            if t [1] [i] > 0:
                Q = t [2] [i] / t [1] [i]
                if board.turn == Black:
                    Q = 1 - Q
                val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
            if val > bestValue:
                bestValue = val
                best = i

PPAF



  

        board.play (moves [best])
        res = PPAF (board, policy)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        return res
    else:
        add (board)
        return playout (board, policy)

 

PPAF



  

def BestMovePPAF (board, n):
    global Table
    Table = {}
    policy = Policy ()
    for i in range (n):
        b1 = copy.deepcopy (board)
        res = PPAF (b1, policy)
        b2 = copy.deepcopy (board)
        if res == 1:
            policy = adapt (b2, White, b1, policy)
        else:
            policy = adapt (b2, Black, b1, policy)
    t = look (board)
    moves = board.legalMoves ()
    best = moves [0]
    bestValue = t [1] [0]
    for i in range (1, len(moves)):
        if (t [1] [i] > bestValue):
            bestValue = t [1] [i]
            best = moves [i]
    return best

PPAF



  

• Modify GRAVE to incorporate a policy and a bias.
• Use the AMAF statistics of the root node of GRAVE 

to bias the playouts as in GNRPA.
• Update the Adapt to take the bias into account.
• Write the main function that calls 

GRAVEPolicyBias and updates the policy.

Exercise



  

def GRAVEPolicyBias (board, played, tref, root, policy):
    if (board.terminal ()):
        return board.score ()
    t = look (board)
    if t != None:
        tr = tref
        if t [0] > 50:
            tr = t
        bestValue = -1000000.0
        best = 0
        moves = board.legalMoves ()
        bestcode = board.code (moves [0])
        for i in range (0, len (moves)):
            val = 1000000.0
            code = board.code (moves [i])
            if tr [3] [code] > 0:
                beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
                Q = 1
                if t [1] [i] > 0:
                    Q = t [2] [i] / t [1] [i]
                    if board.turn == Black:
                        Q = 1 - Q

GRAVE with Policy and Bias



  

                AMAF = tr [4] [code] / tr [3] [code]
                if board.turn == Black:
                    AMAF = 1 - AMAF
                val = (1.0 - beta) * Q + beta * AMAF
            if val > bestValue:
                bestValue = val
                best = i
                bestcode = code
        board.play (moves [best])
        played.append (bestcode)
        res = GRAVEPolicyBias (board, played, tr, root, policy)
        t [0] += 1
        t [1] [best] += 1
        t [2] [best] += res
        updateAMAF (t, played, res)
        return res
    else:
        addAMAF (board)
        return playoutBias (board, played, root, policy)

GRAVE with Policy and Bias



  

def playoutBias (state, played, root, policy):
    while not state.terminal ():
        l = state.legalMoves ()
        z = 0
        for i in range (len (l)):
            code = board.code (l [i])
            AMAF = 1
            if root [3] [code] > 0:
                AMAF = root [4] [code] / root [3] [code]
                if board.turn == Black:
                    AMAF = 1 – AMAF
            if AMAF > 0:
                z = z + math.exp (policy.get (state.code (l [i])) + math.log (AMAF))
        stop = random.random () * z

Playout AMAF Policy



  

        move = 0
        z = 0
        while True:
            code = board.code (l [move])
            AMAF = 1
            if root [3] [code] > 0:
                AMAF = root [4] [code] / root [3] [code]
                if board.turn == Black:
                    AMAF = 1 - AMAF
            if AMAF > 0:
                z = z + math.exp (policy.get (state.code (l [move])) + math.log(AMAF))
            if z >= stop or move == len (l) – 1:
                break
            move = move + 1
        played.append (state.code(l [move]))
        state.play (l [move])
    return state.score ()

Playout AMAF Policy



  

def adaptBias (s, winner, state, policy, root):
    polp = copy.deepcopy (policy)
    alpha = 0.32
    while not s.terminal ():
        l = s.legalMoves ()
        move = state.rollout [len (s.rollout)]
        if s.turn == winner:
            z = 0
            for i in range (len (l)):
                code = s.code (l [i])
                AMAF = 1
                if root [3] [code] > 0:
                    AMAF = root [4] [code] / root [3] [code]
                    if board.turn == Black:
                        AMAF = 1 – AMAF
                if AMAF > 0:
                    z = z + math.exp (policy.get (code) + math.log(AMAF))

Adapt with a Bias



  

            polp.put (s.code (move), polp.get (s.code (move)) + alpha)
            for i in range (len (l)):
                code = s.code (l [i])
                AMAF = 1
                if root [3] [code] > 0:
                    AMAF = root [4] [code] / root [3] [code]
                    if board.turn == Black:
                        AMAF = 1 – AMAF
                proba = 0
                if AMAF > 0:
                    proba = math.exp (policy.get (code) + math.log(AMAF)) / z
                polp.put (code, polp.get (code) - alpha * proba)
        s.play (move)
    return polp

Adapt with a Bias



  

def BestMoveGRAVEPolicyBias (board, n):
    Table = {}
    policy = Policy ()
    addAMAF (board)
    for i in range (n):
        root = look (board)
        b1 = copy.deepcopy (board)
        res = GRAVEPolicyBias (b1, [], root, root, policy)
        b2 = copy.deepcopy (board)
        if res == 1:
            policy = adaptBias (b2, White, b1, policy, root)
        else:
            policy = adaptBias (b2, Black, b1, policy, root)
    root = look (board)
    moves = board.legalMoves ()
    best = moves [0]
    bestValue = root [1] [0]
    for i in range (1, len(moves)):
        if (root [1] [i] > bestValue):
            bestValue = root [1] [i]
            best = moves [i]
    return best

GRAVE with Policy and Bias



Outline
● Algorithm for solving games
● GRAVE and PPAF
● Monte Carlo move ordering
● Experiments
● Conclusion



Solving Games
● Proof-Number Search (PN)
● PN2

● Alpha-Beta
● Iterative Deepening Alpha-Beta
● Retrograde Analysis



UCT



RAVE

● A big improvement for Go, Hex and 
other games is Rapid Action Value 
Estimation (RAVE) [Gelly and Silver 
2007].

● RAVE combines the mean of the 
playouts that start with the move and 
the mean of the playouts that contain 
the move (AMAF).



RAVE
● Parameter βm for move m is :

βm←pAMAFm /  (pAMAFm + pm + bias × 
pAMAFm× pm)

● βm starts at 1 when no playouts and 
decreases as more playouts are played.

● Selection of moves in the tree :
argmaxm((1.0 − βm) × meanm + βm × AMAFm)



GRAVE
● Generalized Rapid Action Value 

Estimation (GRAVE) is a simple 
modification of RAVE.

● It consists in using the first ancestor 
node with more than n playouts to 
compute the RAVE values.

● It is a big improvement over RAVE for 
Go, Atarigo, Knightthrough and 
Domineering [Cazenave 2015].



Playout Policy learning

● Start with a uniform policy.

● Use the policy for the playouts.

● Adapt the policy for the winner of each 
playout.



Playout Policy learning

● Each move is associated to a weight 
wi.

● During a playout each move is played 
with a probability :

exp (wi) / Sk exp (wk)



Playout Policy learning

● Online learning :
● For each move of the winner :

wi = wi + 1
● For each possible move of each state 

of the winner :
wi = wi – exp (wi) / Sk exp (wk)



Monte Carlo Game Solver

● Use the order of moves of GRAVE 
when the state is in the GRAVE tree.

● Use the order of moves of Playout 
Policy Adaptation when the state is 
outside the GRAVE tree.

























  

Conclusion
● For the games we solved, Misere Games are more difficult to solve 

than normal games.
● In Misere Games the player waits and tries to force the opponent to 

play a losing move.
● This makes the game longer and reduces the number of winning 

sequences and winning moves.
● Monte Carlo Move Ordering improves much the speed of αβ with 

transposition table compare to depth first αβ and Iterative Deepening 
αβ with transposition table but without Monte Carlo Move Ordering. 

● The experimental results show significant improvements for nine 
different games.



  

Conclusion
   Monte Carlo Search is a simple algorithm that gives 

state of the art results for multiple problems:
– Games
– Puzzles
– Discovery of formulas
– RNA Inverse Folding
– Snake in the box
– Pancake
– Logistics
– Multiple Sequence Alignement



  

• Transformer une position de breakthrough 5x5 en trois matrices 5x5 de 0 
et de 1 (Noir/Blanc/Vide).

• Faire deux réseaux convolutifs (blanc et noir) avec 76 sorties (75 
coups possibles + évaluation) et ces trois matrices en entrée.

• Utiliser les réseaux dans PUCT pour politique et évaluation.
• Faire jouer à PUCT >100 parties contre lui même.
• Mémoriser pour chaque position un vecteur de 76 réels entre 0 et 1 (une 

fréquence pour chaque code de coup entre 0 et 75, code = 3 *(5 * x + y) + 
0, 1 ou 2) et un réel (1.0 si blanc a gagné, 0.0 sinon).

• Entraîner les deux réseaux convolutifs pour retrouver les fréquences 
et le résultat de la partie en sortie pour chaque position en entrée.

• Itérer.

Projet Python


