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Monte Carlo Tree Search



Monte Carlo Tree Search

Monte Carlo Tree Search, a method so bold,
Exploring the tree, with its stories untold,
Simulating the future, with random rolls,

To find the path with the greatest goals.

It starts with a root, and expands the tree,
Each node a choice, a potential key,

To unlock the door, to the desired goal,
Monte Carlo guides, in finding the whole.

It's not always perfect, with a fixed plan,

But it adapts, to the situation at hand,

With each simulation, it learns and it grows,

To find the best move, with more and more those.

Monte Carlo Tree Search, a powerful tool,

To navigate the game, and be the cool,

So let's explore the tree, and see what we find,
And use Monte Carlo, to be one of a kind.



Monte Carlo Tree Search

Monte Carlo Tree Search, a method so grand,
A path to victory, with a strategic hand.

It starts with a tree, and a game to play,
Simulations to run, to find the best way.

Each node a move, and each branch a choice,
We explore them all, with a clear and steady voice.

With randomness guiding us, and statistics to aid,
We search for the path, that will surely lead the way.

Monte Carlo Tree Search, a brilliant mind,

With its power and wisdom, it will never be confined.

It's a strategy that's proven, and a method that's sound,
Monte Carlo Tree Search, will always be found.

In the game of life, and the game of chance,
Monte Carlo Tree Search, will always enhance,
Our ability to win, to be victorious,

It's a path to success, so mysterious.



Monte Carlo Go

* 1993 : first Monte Carlo Go program
— Gobble, Bernd Bruegmann.
— How nature would play Go ?
— Simulated annealing on two lists of moves.
— Statistics on moves.
— Only one rule : do not fill eyes.
— Result = average program for 9x9 Go.

— Advantage : much more simple than alternative
approaches.



Monte Carlo Go

1998 : first master course on Monte Carlo Go.

2000 : sampling based algorithm instead of
simulated annealing.

2001 : Computer Go an Al Oriented Survey.
2002 : Bernard Helmstetter.

2003 : Bernard Helmstetter, Bruno Bouzy,
Developments on Monte Carlo Go.



Monte Carlo Phantom Go

Phantom Go is Go when you cannot see the
opponent's moves.

A referee tells you illegal moves.
2005 : Monte Carlo Phantom Go program.

Many Gold medals at computer Olympiad since
then using flat Monte Carlo.

2011 : Exhibition against human players at
European Go Congress.



UCT

* UCT : Exploration/Exploitation dilemma for trees
| Kocsis and Szepesvari 2006].

* Play random random games (playouts).

* Exploitation : choose the move that maximizes the
mean of the playouts starting with the move.

* Exploration : add a regret term (UCB).



UCT

* UCT : exploration/exploitation dilemma.
* Play the move that maximizes
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In which

e W, - number of wins after the /~th move

e ;= number of simulations after the /-th move

e C- exploration parameter (theoretically equal to V2)
¢ [ =total number of simulations for the parent node



UCT
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RAVE

* A big improvement for Go, Hex and other
games Is Rapid Action Value Estimation
(RAVE) [Gelly and Silver 2007].

* RAVE combines the mean of the playouts
that start with the move and the mean of
the playouts that contain the move (AMAF).



RAVE

* Parameter Bnfor move mis:
Bm < pPAMAF, / (PAMAF + pm + bias X pAMAF,X pm)

* 3 starts at 1 when no playouts and decreases as
more playouts are played.

e Selection of moves In the tree :
argmaxm((1.0 — Bm) X meanm+ Bm x AMAF)



GRAVE

* Generalized Rapid Action Value Estimation
(GRAVE) is a simple modification of RAVE.

* |t consists In using the first ancestor node
with more than n playouts to compute the
RAVE values.

* |t Is a big Improvement over RAVE for Go,
Atarigo, Knightthrough and Domineering
[Cazenave 2015].



Atarigo




Knightthrough




Domineering







RAVE vs UCT

Game Score

Atarigo 8x8 94.2 %
Domineering 712.6 %
Go 9x9 713.2%
Knightthrough 56.2 %

Three Color Go 9x9 70.8 %



GRAVE vs RAVE

Game

Atarigo 8x8
Domineering

Go 9x9
Knightthrough
Three Color Go 9x9

Score

88.4 %
62.4 %
54.4 %
67.2 %
57.2 %



Parallelization of MCTS

* Root Parallelization.
* Tree Parallelization (virtual loss).

* ].eaf Parallelization.



* Great success for the game of Go since 2007.

* Much better than all previous approaches to
computer Go.



AlphaGo

Lee Sedol is among the strongest and most famous 9p Go
player :

AlphaGo has won 4-1 against Lee Sedol in March 2016
phaGo Master wins 3-0 against Ke Jie, 60-0 against pros.
AlphaGo Zero wins 89-11 against AlphaGo Master in 2017.

>




General Game Playing

General Game Playing = play a new game just
given the rules.

Competition organized every year by Stanford.
Ary world champion in 2009 and 2010.
All world champions since 2007 use MCTS.



Other two-player games

* Hex : 2009
* Amazons : 2009
* Lines of Action : 2009




MCTS Solver

* When a subtree has been completely
explored the exact result is known.

* MCTS can solve games.

* Score Bounded MCTS is the extension of
pruning to solving games with multiple
outcomes.
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Predicting the structure of large protein
complexes using AlphaFold and Monte
Carlo tree search
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Abstract

AlphaFold can predict the structure of single- and multiple-chain proteins with very high
accuracy. However, the accuracy decreases with the number of chains, and the available
GPU memory limits the size of protein complexes which can be predicted. Here we show
that one can predict the structure of large complexes starting from predictions of
subcomponents. We assemble 91 out of 175 complexes with 10-30 chains from predicted
subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are
30 highly accurate complexes (TM-score 20.8, 33% of complete assemblies). We create a
scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their
accuracy. We find that complexes containing symmetry are accurately assembled, while
asymmetrical complexes remain challenging. The method is freely available and accesible
as a Colab notebook
https://colab.research.google.com/aithub/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb.
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ARTICLE INFO ABSTRACT

Keywords: Recent years have witnessed an enormous growth of wind farm capacity worldwide. Due to the wake effect, the
Evolutionary computations velocity of incoming wind is reduced for the wind turbines in the downwind directions, thus causing discounted
"\df‘Pt“"e genetic alg?nr.hm power generation in a wind farm. Previously, a self-informed adaptivity mechanism in evolutionary algorithms
Reinforcement lezrning was introduced by the authors, which is inspired by the individuals’ self-adaptive capability to fit the envi-
Monte-Carlo Tree Search N . N . . .
: L ronment in the natural world, where relocating the worst wind turbine with a surrogate model informed
Wind farm layout optimization N L ! N . N K
mechanism was found to be effective in improving the power conversion efficiency. In this paper, the exploi-
tation capability in the adaptive genetic algorithm is further improved by casting the relocation of multiple wind
turbines into a single-player reinforcement learning problem, which is further addressed by Monte-Carlo Tree
Search embedded within the evolutionary algorithm. In contrast to the moderate improvements of the authors”
previous algorithms, significant improvement is achieved due to the enhanced algorithmic exploitation. The new
algorithm is also applied to solve the optimal layout problem for a recently approved wind farm in New Jersey,
and showed better performance against the benchmark algorithms.

layout of the wind turbines to reduce the wake effect [10]. Wake effect
refers to the situation when the input wind speed for the wind turbinesin
the downwind directions are discounted after the wind turbines in the
upwind directions absorb the kinetic energy from the wind [11]. In
addition to the energy output decrease caused by the wake effect, the
wake effect can also cause fatigue loads due to the increased turbulence
of wind flow, which can cause mechanical failure and shorten the life
expectancy of wind turbines [12]. Every percentage of improvement in
efficiency can mean significant profit income, thus requires a meticulous
effort of investigation. The wind farm layout optimization problem
(WFLOP) is a highly complicated problem as even 30 wind turbines
could lead to a high 10** potential solutions given discrete and uniform
turbine types [13] and suffer from “curse of dimensionality” for increase
numbers of wind turbines [14]. With the recent trend of constructing
wind farms with larger capacities, the WFLOP is even more challenging
to solve. The nonconvex and NP-hard nature in WFLOP poses challenges
for exact solution methods such as linear programming, mixed integer
programming. However, there are some attempts using mixed integer
programming [15,16]. Many nature-inspired, population-based meta-
heuristic algorithms have been proposed to solve the WFLOP, such as

1. Introduction

Climate change and global warming have been a major concern for
sustainable social and economic development around the world. It is
estimated that the portion of renewable energy should be at least 67%
among all resources of energies in 2050 compared to 20% in 2018 [1], in
order to meet the target of limiting the global temperature within 1.5 °C
above the preindustrial level according to Intergovernmental Panel on
Climate Change (IPCC) [2] on Climate Change [2]. Wind energy has
become an indispensable alternative to fossil fuels given its advantage of
being sustainable, economically competitive, and abundant [ 3], which
has shown steady growth of capacity and power generation over the past
decades. In 2020 alone, the US has grown the capacity of wind energy by
23 Gigawatts (GW), the largest in history. Optimal design of wind farms
has been thoroughly investigated from different perspectives, such as
cite selection [4], wind turbine design [5], electrical cable placement
[6], wake effect modeling 7], wind speed forecasting [5], and wind
power prediction [9].

One challenge for maximizing the power output is to find an optimal

* Gorresponding author.
E-mail addresses: 1510353 @tongji.educn (F. Bai), xinglongju@ou.edu (X. Ju), shouyiw@uta.edu (5. Wang), liu22@stevens.edu (F. Liu).
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Décodage guidé par un discriminateur avec le Monte Carlo Tree
Search pour la génération de texte contrainte
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RESUME
Dans cet article, nous explorons comment contriler la génération de texte au moment du décodage
pour satisfaire certaines contraintes (e.g. étre non toxigue, transmettre certaines émotions...), sans
nécessiter de ré-entrainer le modéle de langue. Pour cela, nous formalisons la génération sous
contrainte comme un processus d’exploration d’arbre guidé par un discriminateur qui indique dans
quelle mesure la séguence associée respecte la contrainte. Nous proposons plusieurs méthodes
originales pour explorer cet arbre de génération, notamment le Monte Carlo Tree Search (MCTS) qui
fournit des garanties théoriques sur Iefficacité de la recherche. Au travers d’expériences sur 3 jeux
de données et 2 langues, nous montrons que le décodage par MCTS guidé par les discriminateurs
permet d’obtenir des résultats i 1"état-de-1"art. Nous démontrons également que d’autres méthodes de
décodage que nous proposons, basées sur le re-ordonnancement, peuvent étre réellement efficaces
lorsque la diversité parmi les propositions générées est encouragée.

ABSTRACT
Discriminator-guided decoding with Monte Carlo Tree Search for constrained text generation

In this paper, we explore how to control text generation at decoding time to satisfy certain constraints
(eg. being non-toxic, conveying certain emotions. ..} without fine-tuning the language model. Precisely,
we formalize constrained generation as a tree exploration process guided by a diseriminator that
indicates how well the associated sequence respects the constraint. We propose several original
methods to search this generation tree, notably the Monte Carlo Tree Search (MCTS) which provides
theoretical guarantees on the search efficiency. Through 3 tasks and 2 languages, we show that
discriminator- guided MCTS decoding achieves state-of-the-art results without having to tune the
language model. We also demonstrate that other proposed decoding methods based on re-ranking can
be really effective when diversity among the generated propositions is encouraged.

MOTS-CLES : Génération de texte, génération collaborative, décodage, Monte Carlo Tree Search.

KEYWORDS: Text generation, collaborative generation, decoding, Monte Carlo Tree Search.

1 Introduction et état de I’art

Les modéles de langue génératifs (LM pour Language Models) existent depuis longtemps, mais
avec I'avénement de 1"architecture des transformers (Vaswani et al., 2017) et I'augmentation des
capaciiés de calcul, ils sont maintenant capables de générer des textes longs et bien écrits dans
beaucoup de sitwations. Ces LM, tels GPT-2 et 3 (Radford et al., 2019: Brown et al., 2020), ont été

Volume 1 : conférence principale, pages 27-41.
B Cette couvre est mise i disposition sous licence Attribution 4.0 International.
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Sensor tasking in the cislunar regime using Monte Carlo Tree Search
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Abstract

Maintaining tracks on space objects with limited sets of observers is a critical problem, made more urgent with exponential growth in
the population of near-Earth satellites. An optimally convergent decision making methodology is proposed for sensor tasking, using the
Monte Carlo Tree Search methodology. This methodology is underpinned by the partially observable Markov decision process frame-
work; it utilizes polynomial exploration of the action space, and double progressive widening to avoid curses of history. The developed
tasking techniques are applied to a large-scale application considering the tracking problem in the emerging cislunar regime. Uncertainty
studies are performed for a set of 500 objects in a variety of candidate periodic and highly elliptical orbits, with realistic sensor models
incorporating physical parameters and explicit probability of detection. These simulations are utilized as a means to evaluate observer
quality, considering candidate space-based sensors following L1 Lyapunov and L2 Northern Halo orbits. Results demonstrate the
importance of space-based observers for maintaining estimates on objects in cislunar space and give insight into the criticality of relative

motion between observers and targets when optical measurements are utilized.

© 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

Keywords: Sensor Tasking; Monte Carlo Tree Search; Cislunar S8A; Optical Sensor Systems; Orbit Determination

1. Introduction

Choosing tasking policies for a set of sensors maintain-
ing custody of space objects in various orbit regimes has
long been a relevant problem in Space Domain Awareness
(SDA). As a result of accelerating growth in space object
(SO) populations, it is imperative that limited observa-
tional assets are utilized efficiently. Collision concerns have
increased in recent years, especially in well-populated envi-
ronments such as low-Earth orbit; as such, ensuring colli-
sion avoidance requires careful tracking of in-orbit
satellites and debris. The problem at hand quickly becomes
combinatoric as the object catalog considered expands, and

* Corresponding author.

E-mail addresses: samuel fedelert@colorado_edu (8. Fedeler), marcus.

holzingeri@colorado.edu (M.  Holzinger), wwhitacref@draper.com
(W. Whitacre).
https:/doi.org/10.1016/.asr.2022.05.003

0273-1177/© 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

multiple competing objectives are often desired to leverage
uncued detection of objects in addition to catalog mainte-
nance. As such, the sensor tasking problem is largely bro-
ken into tractable subproblems, in which the objective is
to capture a single aspect of the overarching goal.

Also of interest when considering the sensor tasking
problem is application to the cislunar regime of space. Rel-
atively little literature has been produced on the subject,
and the region is expected to be a growing frontier for
space exploration in coming years (Holzinger et al., 2021;
Bobskill, 2012). As volumes of space further from Earth
are considered, dynamic complexities are introduced, and
it is no longer sufficient to neglect perturbations from the
Moon and the Sun. Trajectories in the cislunar regime
are not necessarily stable, and many initial conditions are
chaotic even when the circular restricted three-body simpli-
fication is applied for analysis. Periodic orbits exist in the
circular and elliptic-restricted three-body problems (Folta
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Artificial intelligence-based inventory management: a Monte
Carlo tree search approach
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Abstract

The coordination of order policies constitutes a great challenge in supply chain inven-
tory management as various stochastic factors increase its complexity. Therefore, analytical
approaches to determine a policy that minimises overall inventory costs are only suitable to a
limited extent. In contrast, we adopt a heuristic approach, from the domain of artificial intel-
ligence (Al), namely, Monte Carlo tree search (MCTS). To the best of our knowledge, MCTS
has neither been applied to supply chain inventory management before nor is it yet widely
disseminated in other branches of operations research. We develop an offline model as well
as an online model which bases decisions onreal-time data. For demonstration purposes, we
consider a supply chain structure similar to the classical beer game with four actors and both
stochastic demand and lead times. We demonstrate that both the offline and the online MCTS
models perform better than other previously adopted Al-based approaches. Furthermore, we
provide evidence that a dynamic order policy determined by MCTS eliminates the bullwhip
effect.

Keywords Monte Carlo tree search - Supply chain inventory management - Artificial
intelligence - Bullwhip effect

1 Introduction

The supply chain management literature spans a wide range of topics, such as facility location,
production, scheduling, transportation, return of goods, forecasting, and inventory manage-
ment, this last being the main subject of this paper. One key task of supply chain management
is the integrated planning and control of the inventory of all actors in the supply chain, from
the source of supply to the end user, to reduce the overall inventory costs while improving
customer service (Ellram 1991). Reducing inventory costs is of major importance, as these
costs account for a considerable proportion of the companies’ total logistics costs (Rood-
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Keywords:

Energy management

Monte Carlo tree search
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Electric vehicle

Coupled powertrain platform

To improve the performance and efficiency of the energy management strategy used in electric vehicles
equipped with a dual-motor coupled powertrain platform, this study proposes a systematic real-time
search approach via vehicle-to-cloud (V2C) connectivity to reduce the battery degradation and elec-
trical consumption by control working mode and split torque. To be specific, the Monte Carlo Tree Search
(MCTS) is employed to search for optimal control sequence in the velocity feasible range in the doud
platform, considering battery loss and electric cost. The logic of time and velocity range updating is
proposed as the solution for abrupt traffic changes. To evaluate the effectiveness of the propoesed method,
a rule-based and an online DP (Dynamic Programming) -based strategy is developed as the baseline
approach. Meanwhile, the assessment conditions include standard cycles following power noise and
real-world driving cycles. Finally, actual vehicle and hardware-in-the-loop (HIL) experimental results
demonstrate that the proposed method significantly outperforms other strategies, the average total cost
is 0.36 USD{km, and the improvements are 12.9% and 11.4% compared to the rule-based and online DP-

based approaches, respectively.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background

Electrification and increased energy efficiency of vehicles,
particularly commercial vehicles, are considered critical factors for
carbon emission mitigation [1,2]. Consequently, the demand for
applications in complex traffic scenarios over the past few years has
led to significant growth in research of powertrain configuration
and energy management strategy (EMS) design while enhancing
the collaboration and efficiency of these technologies [3,4]. For
instance, in recent years, multi-motor with multi-gear coupled
powertrains have been widely used in electric vehicles (EVs) [5,6].
However, the cost and performance of the powertrain-battery
system are heavily dependent on its EMS [7]. Therefore, it is
essential to equip the complex system with a collaborative EMS to

* Corresponding author. National Engineering Research Center for Electric Ve-
hicles, Beijing Institute of Technology, Beijing, 100081, China.
E-mail address: lincheng@bireduw.cn (C. Lin).

https: {{doLorg(10.1016j.energy. 2022 124619
0360-5442{© 2022 Elsevier Ltd. All rights reserved.

minimize EV power consumption and battery degradation costs.
Meanwhile, along with the rapid development of vehicle-to-cloud
(V2C) connectivity, cloud computing, and intelligent trans-
portation system, efficient machine learning arithmetic and accu-
rate real-time approaches are becoming feasible for EVs [8,9].

1.2, Method review

A number of EMS have been developed, which can be classified
into rule-based, optimization-based, and optimal rule extraction
methods to achieve better performance in the operation of EVs [10].
The former is most prevalent in practical engineering, which is
characterized by clear logical architecture, straightforward opera-
tion, and rapid verification [11,12]. However, this strategy
constantly demands plenty of calibration for diverse operation
conditions to validate the core control thresholds, making it resis-
tant to optimizing operation [13].

On the contrary, the optimization-based approaches are typi-
cally used in real-time EMS, such as dynamic programming (DP)
[14,15], model predictive control (MPC) [16], and pontryagin's
minimum principle (PMP) [17]. DP provides a global optimization
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Abstract

Variational quantum algorithms stand at the forefront of simulations on near-term and future
fault-tolerant quantum devices. While most variational quantum algorithms involve only continu-
ous optimization variables, the representational power of the variational ansatz can sometimes be
significantly enhanced by adding certain discrete optimization variables, as is exemplified by the
generalized quantum approximate optimization algorithm (QAOA). However, the hybrid discrete-
continuous optimization problem in the generalized QAOA poses a challenge to the optimization.
We propose a new algorithm called MCTS-QAOA, which combines a Monte Carlo tree search
method with an improved natural policy gradient solver to optimize the discrete and continuous
variables in the quantum circuit, respectively. We find that MCTS-QAQOA has excellent noise-
resilience properties and outperforms prior algorithms in challenging instances of the generalized
QAOA.
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Abstract

Nonlinear dynamics is ubiquitous in nature and commonly seen in various science
and engineering disciplines. Distilling analytical expressions that govern nonlinear
dynamics from limited data remains vital but challenging. To tackle this funda-
mental issue, we propose a novel Symbolic Physics Learner (SPL) machine to
discover the mathematical structure of nonlinear dynamics. The key concept is
to interpret mathematical operations and system state variables by computational
rules and symbols, establish symbolic reasoning of mathematical formulas via
expression trees, and employ a Monte Carlo tree search (MCTS) agent to explore
optimal expression trees based on measurement data. The MCTS agent obtains an
optimistic selection policy through the traversal of expression trees, featuring the
one that maps to the arithmetic expression of underlying physics. Salient features
of the proposed framework include search flexibility and enforcement of parsimony
for discovered equations. The efficacy and superiority of the PSL machine are
demonstrated by numerical examples, compared with state-of-the-art baselines.

1 Introduction

We usually learn the behavior of a nonlinear dynamical system through its nonlinear governing
differential equations. These equations can be formulated as

y(t) = dy/dt = F(y(t)) M

where y (1) = {y1 (1), y2(2), ..., yn ()} € '™ denotes the system state at time f, F(-) a nonlinear
function set defining the state motions and n the system dimension. The explicit form of F(-) for
some nonlinear dynamics remains underexplored. For example, in a mounted double pendulum
system, the mathematical description of the underlying physics might be unclear due to unknown
viscous and frictional damping forms. These uncertainties yield critical demands for the discovery
of nonlinear dynamics given observational data. Nevertheless, distilling the analytical form of the
governing equations from limited and noisy measurement data, commonly seen in practice, is an
intractable challenge.

Ever since the early work on the data-driven discovery of nonlinear dynamics [ 1, 2], many scientists
have stepped into this field of study. In the recent decade, the escalating advances in machine learning,
data science, and computing power enabled several milestone efforts of unearthing the governing
equations for nonlinear dynamical systems. Notably, a breakthrough model named SINDy based on

"Corresponding author
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Abstract

This paper presents a new approach for controlling emotion
in symbolic music generation with Monte Carlo Tree Search.
We use Monte Carlo Tree Search as a decoding mechanism to
steer the probability distribution learned by a language model
towards a given emotion. At every step of the decoding pro-
cess, we use Predictor Upper Confidence for Trees (PUCT)
to search for sequences that maximize the average values of
emotion and quality as given by an emotion classifier and
a discriminator, respectively. We use a language model as
PUCT’s policy and a combination of the emotion classifier
and the discriminator as its value function. To decode the next
token in a piece of music, we sample from the distribution of
node visits created during the search. We evaluate the qual-
ity of the generated samples with respect to human-composed
pieces using a set of objective metrics computed directly from
the generated samples. We also perform a user study to eval-
uate how human subjects perceive the generated samples’
quality and emotion. We compare PUCT against Stochas-
tic Bi-Objective Beam Search (SBBS) and Conditional Sam-
pling (CS). Results suggest that PUCT outperforms SBBS
and CS in almost all metrics of music quality and emotion.

Introduction

Neural language models (LMs) are currently one of the lead-
ing generative models for algorithmic music composition
(Yang et al. 2019). Neural LMs are trained to predict the
next musical token with a data set of symbolic music pieces
(Huang et al. 2018). A major problem with neural LMs is the
lack of control for specific musical features on the decoded
pieces. For example, one cannot control an LM trained on
classical piano pieces to compose a tense piece for a scene of
a thriller movie. It is hard to control the generative process
of these models because they typically have a large num-
ber of parameters, and it is not clear what parameters affect
what musical features. Controlling the perceived emotion
of generated music is a central problem in Affective Mu-
sic Composition (Williams et al. 2015b), with applications
in games (Williams et al. 2015a), stories (Davis and Mo-
hammad 2014), and sonification (Chen, Bowers, and Dur-
rant 2015).

Controlling neural LMs to generate music with a tar-
get emotion started to be explored only recently. Two

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaal.org). All ights reserved.
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prominent decoding methods are Conditional Sampling (CS,
Hung et al. 2021) and Stochastic Bi-Objective Beam Search
(SBBS, Ferreira, Lelis, and Whitehead 2020). The former
consists of sampling from the LM with conditional sig-
nals that represent a target emotion. The latter is a vari-
ant of beam search that steers the probability distribution
of LMs toward a target emotion by using a music emo-
tion classifier at decoding time. In this paper, we propose
a new decoding algorithm inspired by AlphaZero (Silver
etal. 2017). AlphaZero uses Predictor Upper Confidence for
Trees (PUCT, Rosin 2011) as a policy improvement opera-
tor. We use PUCT to change an initial distribution given by
an LM to a distribution that has higher musical quality and
conveys a target emotion in the decoded pieces.

‘We start with a neural LM that represents a prior probabil-
ity distribution over tokens. At decoding time, we run mul-
tiple PUCT iterations to build a distribution of node visits
that improves the LM distribution and steers it towards a tar-
get emotion. This is achieved by using both a music emotion
classifier and a music discriminator as the value function of
PUCT, while the LM is used as its policy. The policy and
value function jointly define the set of nodes evaluated in
the search. The frequency of node visits offers a distribution
that produces music with higher quality than the LM ini-
tial distribution, shifted to convey the emotion given by the
emotion classifier. We sample the next token in the sequence
from this new distribution.

We train a neural LM with a Linear Transformer
(Katharopoulos et al. 2020) on the unlabelled pieces of the
VGMIDI data set (Ferreira and Whitehead 2019). The VG-
MIDI data set is a collection of 928 piano pieces from video
game soundtracks, where 200 pieces are labelled according
to the circumplex model of emotion (Russell 1980). We ex-
tend the number of unlabelled pieces of the VGMIDI data
set from 728 to 3.850. Following the approach of Ferreira,
Lelis, and Whitehead (2020), we train the music emotion
classifier with the 200 labelled pieces of the VGMIDI data
set by fine-tuning the Linear Transformer LM with a classifi-
cation head. We train the music discriminator with the same
fine-tuning approach. This discriminator distinguishes real
data from the data created by sampling from the LM.

‘We conducted two experiments to evaluate our PUCT de-
coding method. The first one evaluates the quality and emo-
tion of the generated samples with respect to human com-



Breakthrough
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(a) Starting position on size 5 x 5. (b) Possible movements,

* Write the Board and Move classes for Breakthrough 5x5.
* Write the function for the possible moves.
* Write a program to play random games at Breakthrough 5x5.



Breakthrough

* The Move class contains the color, the starting and arriving
locations of a pawn.

class Move(object):
def _init_ (self, color, x1, y1, X2, y2):

self.color = color

self.x1 = x1
self.yl =yl
self.x2 = x2

self.y2 =y2



Breakthrough

* The Board class initializes the board with two rows of Black and two rows of White pawns:
Dx=5
Dy =5
Empty =0
White = 1
Black =2
class Board(object):
def __init_ (self):
self.h=0
self.turn = White
self.board = np.zeros ((Dx, Dy))
for iinrange (0, 2):
for j in range (0, Dy):
self.board [i] [j] = White
foriin range (Dx - 2, Dx):
for j in range (0, Dy):
self.board [i] [j] = Black



Breakthrough

* Test, in the Move class, if a move is valid for a given board:

def valid (self, board):
iIf self.x2 >= Dx or self.y2 >= Dy or self.x2 <0 or self.y2 < 0:
return False
if self.color == White:
if self.x2 !=self.x1 + 1:
return False
if board.board [self.x2] [self.y2] == Black:
if self.y2 == self.yl + 1 or self.y2 == self.yl - 1:
return True
return False
elif board.board [self.x2] [self.y2] == Empty:
if self.y2 == self.yl + 1 or self.y2 == self.yl - 1 or self.y2 == self.y1:
return True
return False



Breakthrough

elif self.color == Black:
If self.x2 '=self.x1 - 1:
return False
If board.board [self.x2] [self.y2] == White:
If self.y2 == self.yl + 1 or self.y2 == self.y1 - 1:
return True
return False
elif board.board [self.x2] [self.y2] == Empty:
If self.y2 == self.yl + 1 or self.y2 == self.yl - 1 or self.y2 == self.y1:
return True
return False
return False



Breakthrough

* Generate the legal moves in the Board class:
def legalMoves(self):
moves = []
for 1 in range (O, DX):
for j in range (0O, Dy):
If self.board [i] [j] == self.turn:
forkin[-1, 0, 1]
forlin[-1, O, 1]:
m = Move (self.turn, 1, J,1 + Kk, | + 1)
If m.valid (self):
moves.append (m)
return moves



Playouts

* Write, in the Board class, a score function to score a
game (1.0 if White wins, 0.0 else) and a terminal
function to detect the end of the game.

* Wirite, in the Board class, a playout function that
plays a random game from the current state and
returns the result of the random game.



In the Board class :

def score (self):
for i in range (0, Dy):
if (self.board [Dx - 1] [i] == White):
return 1.0
elif (self.board [0] [i] == Black):
return 0.0
1 = self.legalMoves ()
if len (1) == 0:
if self.turn == Black:
return 1.0
else:
return 0.0
return 0.5

def terminal (self):
if self.score () == 0.5:
return False
return True

Playouts



Playout

In the Board class :

def play (self, move):
self.board [move.x1] [move.y1] = Empty
self.board [move.x2] [move.y2] = move.color
if (self.turn == White):
self.turn = Black
else:
self.turn = White

def playout (self):
while (True):
moves = self.legalMoves ()
if self.terminal ():
return self.score ()
n = random.randint (0, len (moves) - 1)

self.play (moves [n])



Flat Monte Carlo

* For each move of the current state, do a fixed
number of playouts starting with the move.

* (Calculate the number of playouts won after the
move.

* Play the move with the greatest number of playouts
woOn.



def flat (board, n):
moves = board.legalMoves ()
bestScore = 0
bestMove = 0
for m in range (Ilen(moves)):

sum =0

Flat Monte Carlo

for i in range (n // len (moves)):

b = copy.deepcopy (board)
b.play (moves [m])
r = b.playout ()
if board.turn == Black:
r=1-r
sum = sum + r
if sum > bestScore:
bestScore = sum
bestMove = m
return moves [bestMove]



UCB

* Keep statistics for all the moves of the current state.

* For each move of the current state, keep the number
of playouts starting with the move and the number of
playouts starting with the move that have been won.

* Play the most simulated move when all the playouts
are finished.



UCB

Choose the first move at the root according to

UCB before each playout:
w; Int
— +c
n, n;
In which

e W, - number of wins after the /~th move

e ;= number of simulations after the /-th move

e c- exploration parameter (theoretically equal to V2)
¢ [ =total number of simulations for the parent node



UCB

def UCB (board, n):
moves = board.legalMoves ()
sumScores = [0.0 for x in range (len (moves))]
nbVisits = [0 for x in range (len(moves))]
for i in range (n):
bestScore = 0
bestMove =0
for m in range (len(moves)):
score = 1000000
if nbVisits [m] > 0:
score = sumScores [m] / nbVisits [m] + 0.4 * math.sqrt (math.log (i) / nbVisits [m])
if score > bestScore:
bestScore = score
bestMove = m



UCB

b = copy.deepcopy (board)
b.play (moves [bestMove])
r = b.playout ()
if board.turn == Black:
r=10-r
sumScores [bestMove] +=r
nbVisits [bestMove] += 1
bestNbVisits = 0
bestMove = 0
for m in range (len(moves)):
if nbVisits [m] > bestNbVisits:
bestNbVisits = nbVisits [m]
bestMove = m

return moves [bestMove]



Transposition Table

Each state is associated to a hash code.
We use Zobrist hashing.

Each piece for each cell is associated to a fixed
random number.

The hashcode of a state Is the XOR of the random
numbers of the pieces on the board.

Why XOR ?
How many random numbers for a chess board ?




Transposition Table

e XOR is used because:

* XOR of uniformly distributed integers is an
uniformly distributed integer.

e XOR is fast.
e (b XORa) XORa=Db

* To add or to remove a piece, just XOR with the
associated fixed random number: the new
hascode after a move Is rapidly calculated.



Transposition Table

For chess:

pieces * cells =12 * 64 = 768

Castling
prise en passant
turn

total

Breakthrough 5x5 :

4
16

1
789

50 + 1 for the turn



Transposition Table

* Fixing the random numbers for Breakthrough 5x5 from 1 to 25 for
Black and 26 to 50 for White.

* The random number for the turn is 51 :

TTTTT
TTTTT

 Let hl = 0 be the hashcode of the initial board ?

 What is the hashcode h2 of the board where the leftmost White
pawn moves forward?



Transposition Table

TTTTT
TTTTT

h1=0
h2=h1"41"36"51=62



Transposition Table

* Code to generate the fixed random number
associated to the cells and the pawns.

* Modification of the play function so that a board
IS always associated to a Zobrist hashcode.



Transposition Table

hashTable =[]
for k in range (3):
=]
for 1 in range (Dx):.
11 =1
for j in range (Dy):
|1.append (random.randint (0, 2 ** 64))
l.append (I1)
hashTable.append (1)
hashTurn = random.randint (0, 2 ** 64)



Transposition Table

def play (self, move):
col = int (self.board [move.x2] [move.y2])
if col I= Empty:
self.h = self.h » hashTable [col] [move.x2] [move.y2]
self.h = self.h  hashTable [move.color] [move.x2] [move.y2]
self.h = self.h  hashTable [move.color] [move.x1] [move.yl]
self.h = self.h » hashTurn
self.board [move.x2] [move.y2] = move.color
self.board [move.x1] [move.yl] = Empty
if (move.color == White):
self.turn = Black
else:
self.turn = White



Transposition Table

An entry of a state in the transposition table
contains :

The hashcode of the stored state.
he total number of playouts of the state.

T
The number of playouts for each possible move.
T

he number of wins for each possible move.



Transposition Table
* First Option (C++ like) :

— Write a class TranspoMonteCarlo containing the data
associated to a state.

— Write a class TableMonteCarlo that contains a table of
list of entries.

— Fach entry is an instance of TranspoMonteCarlo. The
size of the table is 65535. The index in the table of a
hashcode h is h & 65535.

— The TableMonteCarlo class also contains the functions :
* look (self, board) which returns the entry of board.
* add (self, t) which adds en entry in the table.



Transposition Table

Alternative : use a Python dictionary with the hash as a
key and lists as elements.

Each list contains 3 elements :
— the total numbers of playouts,

— the list of the number of playouts for each move,
— the list of the number of wins for each move.

Write a function that returns the entry of the
transposition table if it exists or else None.

Write a function that adds an entry in the transposition
table.



Transposition Table

MaxLegalMoves = 6 * Dx
Table = {}

def add (board):
nplayouts = [0.0 for x in range (MaxLegalMoves)]
nwins = [0.0 for x in range (MaxLegalMoves)]

Table [board.h] = [0, nplayouts, nwins]

def look (board):
return Table.get (board.h, None)



UCT

procedure UCTSEARCH(Sp)
while time available do
SIMULATE(board. sg)
end while
board.SetPosition(sp)
return SELECTMovVE(board, 5. 0)
end procedure

procedure SIMULATE(board, sg)
board.SetPosition(sg)

[50.....57] =SIMTREE(board)
z = SIMDEFAULT(board)
BACKUP([sg. ....5T7]. 2)

end procedure



UCT

procedure SIMTREE(board)
¢ = exploration constant
t=20
while not hoard.GameOver() do
st = board.GetPosition()
if s; ¢ tree then
NEWNODE(St)
return [s5p..... St
end if
a = SELECTMovE(board. s¢. ©)
board.Play(a)
t=t+1
end while

end procedure



UCT

procedure SiMDEFAULT(board)
while not board.GameOver() do
a = DErFAULTPoLICY(board)
board.Play(a)
end while
return board.BlackWins()
end procedure

procedure BACKUP([sp, ..., stl. Z)
fort=0to T do
N(st) =Nis;) +1

N(se,ap) +=1
Q{spuf}+zw
end for

end procedure



UCT

procedure SELECTMoVE(board, s, c)
legal = board.Legal()
if board.BlackToPlay() then

o { log N (s)
ihi= argmaxue!ega!((l{s‘ a)-+ E'\f N(s.a) }
else . _
_ ; /log Nis)
q* = argmlnue!egﬂ!(q{s* a)— C\/ N(s.a) }
end if

return a*
end procedure

procedure NEWNODE(S)
tree.Insert(s)

N(s)=0

forall a e A do
N(@G,a)=0
Q(s.a)=0

end for

end procedure



Algorithm 4 The UCT algorithm

UCT (board, player, policy)
moves < possible moves on board
if board is terminal then
return winner (board)
end if
t « entry of board in the transposition table
if  exists then
bestValue +— —oc
for m in moves do
t + t.total Playouts
w «+ t.awins[m)
p + t.playouts[m|
value + “; oy froalt)
if value > bestValue then
bestValue + value
best Move +— m
end if
end for
play (board, best M ove)
player < opponent (player)
res «+ UCT (board, player, policy)
update t with res
else
t « new entry of board in the transposition table
res < playout (board, player, policy)
update t with res
end if

return res




UCT

Exercise : write the Python code for UCT.
The available functions are:
board.playout () that returns the result of a playout.

board.legalMoves () that returns the list of legal moves for
the board.

board.play (move) that plays the move on board.

look (board) that returns the entry of the board in the
transposition table.

add (board) that adds an empty entry for the board in the
transposition table.



def UCT (board):
if board.terminal ():
return board.score ()
t = look (board)
if t I= None:
bestValue =0
best =0
moves = board.legalMoves ()
for i in range (0, len (moves)):
val = 1000000.0
n=t[0]
ni =t[1] [i]
wi =t [2] [i]
if ni > 0:
Q=wi/ni
if board.turn == Black:
Q=1-Q
val = Q + 0.4 * sqrt (log (n) / ni)

UCT



UCT

if val > bestValue:
bestValue = val
best =i
board.play (moves [best])
res = UCT (board)
t[0] +=1
t[1] [best] +=1
t [2] [best] += res
return res
else:
add (board)
return board.playout ()



UCT

def BestMoveUCT (board, n):
global Table
Table = {}
foriin range (n):
b1 = copy.deepcopy (board)
res = UCT (b1)
t = look (board)
moves = board.legalMoves ()
best = moves [0]
bestValue =t [1] [0]
foriin range (1, len(moves)):
if (t [1] [i] > bestValue):
bestValue =t [1] [i]
best = moves [i]

return best



UCT vs Flat

* Make UCT with 200 playouts play 100 games
against Flat with 200 playouts.

* Winrate ?
* Tune the UCT constant (hint 0.4).



Sequential UCT

UCT is the fundamental algorithm for MCTS.

In order to be sure you have understood how UCT works,
write the code for the sequential version of UCT.

Use the pseudo code of Silver and Gelly that performs the
four phases sequentially to write the corresponding
Python code.

Test it to verify it does the same thing as the recursive
version and that it plays on par with the recursive version.



AMAF

* All Moves As First (AMAF).

 AMAF calculates for each possible move of
a state the average of the playouts that
contain this move.

Priz=1|st=s, at =a) = Q" (s,a),
Priz=0|st=s, as=a)=1—-Q7 (s,q),
Priz=1|s;=s, Ju>tsta,=a)= Q7 (s, a),

Pr(iz=0|s;=s, Ju>tsta,=a)=1— Q" (s, a).



AMAF

Exercise :

Write a playout function memorizing the played moves.

Add an integer code for moves in the Move class.

Add AMATF statistics to the Transposition Table entries.

Update the AMAF statistics of the Transposition Table.



AMAF

def playoutAMAF (board, played):
while (True):
moves = board.legalMoves ()
if len (moves) == 0 or board.terminal ():
return board.score ()

n = random.randint (0, len (moves) - 1)
played.append (moves [n].code (board))
board.play (moves [n])



AMAF

In the Move class:

def code (self, board):
direction = 0
if self.y2 > self.y1:
if board.board [self.x2] [self.y2] == Empty:
direction = 1
else:
direction = 2
if self.y2 <self.y1:
if board.board [self.x2] [self.y2] == Empty:
direction = 3
else:
direction = 4
if self.color == White:
return 5 * (Dy * self.x1 + self.y1) + direction
else:
return 5 * Dx * Dy + 5 * (Dy * self.x1 + self.y1) + direction



AMAF

MaxCodelL.egalMoves = 2 * Dx * Dy * 5

def addAMAF (board):
nplayouts = [0.0 for x in range (MaxLegalMoves)]
nwins = [0.0 for x in range (MaxLegalMoves)]
nplayoutsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
nwinsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
Table [board.h] = [0, nplayouts, nwins, nplayoutsAMAF, nwinsAMAF]



AMAF

def update AMAF (t, played, res):
for i in range (len (played)):

if played

t [3] [p!
t [4] [p]

ayed [i]] +=1

ayed [i1]] +=res

:i].count (played [i]) == O:



AMAF

Exercise :

Write the Flat AMAF player that computes AMAF
statistics for the Flat Monte Carlo algorithm.

The Flat AMAF player plays the move that has the
best AMAF statistics instead of the move that has
the best statistics.

Make Flat AMAF play against Flat Monte Carlo
with 30 playouts for both algorithms.



RAVE

Q.(s.a)=(1—B(s.@))Q(s.a) + B(s,a)Q (s.a)

im=0Q(s, a)
fL=Q(s,a)
e = Q. (5,0),

b=Q"(s.a)— Q" (s,a) =0,

o2 =E[(Q(s.a) — Q™ (5.m)" | Ns.a) =n].
G2 =E:(Q(5,a] — Q7 (s, a]]z | N(s, a) =],
ol =E[(Qu(s,a) — Q7 (s.a)” | N(s.a) =n. N(s.a) =1,

e = E[(Q.(s,a) — Q7 (s, a])z | N(s,a) =n, N(s,a) = ).



RAVE

el =0?+b?
=(1-p)?0? + p26% + (Bb+ (1 — p)b)”
— (1—p)202 + B52% + p2b2.
Differentiating with respect to 8 and setting to zero,

0=286%—2(1—B)o?+28b2,

o2

p= = -
o2 +062+b?




RAVE

52 Q“sa}l—Q“sa]) o M (1= 114)

N(s, a) n
6’22 QH ]E QH(57 ﬂ]] ~ !'-'L*(‘l _Ju'*] '
N(s, a) n
n

Cn+n+ b2/ . (1 — j)
In roughly even positions, i, =~ % we can further simplify the schedule,

n

_n+ﬁ+4nﬁ52'



RAVE

procedure Mc-RAVE(sy)
while time available do
SIMULATE(board, sqg)
end while
board.SetPosition(so)
return SELECTMovE(board, sq, 0)
end procedure

procedure SIMULATE(board, 5q)
board.SetPosition(sg)

[$0.0Q0..... st.a7 ]| = SIMTREE(board)
l[aT+1, ..., ap|, z=SIMDEFAULT(board, T)
BACKUP([5q. ..., stl. lag. ..., apl, z)

end procedure



RAVE

procedure SIMDEFAULT(board, T)
t=T+1
while not board.GameOver() do
a; = DEFAULTPoLIcY(board)
board.Play(a; )
t=t+1
end while
z = board.BlackWins()
return [arq...., ar_1l].z
end procedure

procedure SIMTREE(board)
t=0
while not board.GameOver() do
st = board.GetPosition()
if s; ¢ tree then

NEWNODE(5¢)
a; = DErFaAULTPoOLICY(board)
return [sg.ag. ..., Sp. 0y
end if
ar = SELEcTMovE(board, s;)
board.Play(a; )
t=t+1
end while
return [sg. dg.....5—1,0:—1]

end procedure




RAVE

procedure SELECTMOVE(board, s)
legal = board.Legal()
if board.BlackToPlay() then
return argmax; jpsq EVAL(S, )
else
return argminggjegq EVAL(S, a)
end if
end procedure

procedure EvAL(s, a)
b = pretuned constant bias value

B = N
Nis.a)+Nis.a)+4N(s,a)N(s.a)b?

return (1 — $)Q(s,a) + fQ (s, a)
end procedure




RAVE

procedure BACKUP([so, ..., stl. [ao, ..., apl. z)
fort=0to T do
N(s¢, ap) +=1 &t
Q(st,ar) += z;;?w
for u =t to D step 2 do

if a, ¢ [ar, a4 2, ..., a,_>] then
N(se.a) +=1
Q (st, au) += zm;;}?;[-f;r‘;”
end if
end for
end for

end procedure

procedure NEwNODE(board, s)
tree.Insert(s)
for all a € board.Legal() do
N(s,a), Q (s, a), N(s.a), Q (s, a) = HEurisTiC(board, a)
end for
end procedure



RAVE

* Exercise :

* Compute the AMAF statistics for each node.

* Modify the UCT code to implement RAVE.



RAVE

def RAVE (board, played):
if (board.terminal ()):
return board.score ()
t = look (board)
if t '= None:
bestValue =0
best =0
moves = board.legalMoves ()
bestcode = moves [0].code (board)
foriin range (0, len (moves)):
val = 1000000.0
code = moves [i].code (board)
if t [3] [code] > O:
beta =t [3] [code] / (t [1] [i] + t [3] [code] + 1e-5 * t [1] [i] * t [3] [code])
Q=1
if t [1] [i] > O:
Q=t[2][i]/t[1][i]
if board.turn == Black:
Q=1-Q



RAVE

AMAF =t[4] [code] / t[3] [code]
if board.turn == Black:
AMAF =1 - AMAF
val = (1.0 - beta) * Q + beta * AMAF
if val > bestValue:
bestValue = val
best =i
bestcode = code
board.play (moves [best])
played.append (bestcode)
res = RAVE (board, played)
t[0]+=1
t[1] [best] +=1
t [2] [best] +=res
updateAMAF (t, played, res)
return res
else:
addAMAF (board)
return playoutAMAF (board, played)



RAVE

def BestMoveRAVE (board, n):
global Table
Table = {}
foriin range (n):
b1 = copy.deepcopy (board)
res = RAVE (b1, [])
t = look (board)
moves = board.legalMoves ()
best = moves [0]
bestValue =t [1] [0]
foriin range (1, len(moves)):
if (t [1] [i] > bestValue):
bestValue =t [1] [i]
best = moves [i]

return best



GRAVE

State of the art in General Game Playing (GGP)
Best Al of the Ludii system (https://ludii.games/)
Simple modification of RAVE

Uses statistics both for Black and White at all nodes

“In principle it is also possible to incorporate the
AMAF values, from ancestor subtrees. However, in
our experiments, combining ancestor AMAF values
did not appear to confer any advantage.”



GRAVE

Use the AMAF statistics of the last ancestor with
more than n playouts instead of the AMAF statistics
of the current node.

More accurate when few playouts.
Published at IJCAI 2015.

GRAVE is a generalization of RAVE since GRAVE
with n=0 is RAVE.



Algorithm 1 The GRAVE algorithm

GRAVE (board, tref)
mouves +— possible moves
if board is terminal then
return score(board)
end if
t +— entry of board in the transposition table
if ¢ exists then
if t.playouts > ref then
tref «t
end if
bestValue + —oco
for m in moves do
w + t.wins[m]
p + t.playouts[m]
wa + tre f.wins AM AF[m)]
pa + tref.playout sAM AF [m]
ﬁm. A pa—l—p—l—bif.‘s ® pa X p
AMAF + :—f‘:
mean +— %

value + (1.0 — 8,,,) x mean + 8, x AMAF
if value > bestValue then
bestValue + value
best Move +— m
end if
end for
play(board, be st M ove)
res « GRAV E(board, tref)
update { with res

else

t +— new entry of board in the transposition table
res + playout(player, board)
update ¢ with res

end if
return res




GRAVE

* Exercise :

* Modify the RAVE code to implement GRAVE.



GRAVE

def GRAVE (board, played, tref):
if (board.terminal ()):
return board.score ()
t = look (board)
if t = None:
tr = tref
if t [0] > 50:
tr=t
bestValue =0
best =0
moves = board.legalMoves ()
bestcode = moves [0].code (board)
for i in range (0, len (moves)):
val = 1000000.0
code = moves [i].code (board)
if tr [3] [code] > O:
beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
Q=1
if t [1] [i] > O:
Q=t[2] [i]/t[1][i]
if board.turn == Black:
Q=1-Q



GRAVE

AMAF =tr [4] [code] / tr [3] [code]
if board.turn == Black:
AMAF =1 - AMAF
val = (1.0 - beta) * Q + beta * AMAF
if val > bestValue:
bestValue = val
best =i
bestcode = code
board.play (moves [best])
played.append (bestcode)
res = GRAVE (board, played, tr)
t[0] +=1
t[1] [best] +=1
t [2] [best] +=res
updateAMAF (t, played, res)
return res
else:
addAMAF (board)
return playoutAMAF (board, played)



GRAVE

def BestMoveGRAVE (board, n):
global Table
Table = {}
addAMAF (board)
for i in range (n):
root = look (board)
b1l = copy.deepcopy (board)
res = GRAVE (bl, [], root)
root = look (board)
moves = board.legalMoves ()
best = moves [0]
bestValue =root [1] [0]
for i in range (1, len(moves)):
if (root [1] [i] > bestValue):
bestValue = root [1] [i]
best = moves [i]
return best



Continuous MCTS

Infinite number of moves

Progressive Widening

Action Decomposition (AD)
Constraints-based Selective Policy (CSP)
cRAVE and cGRAVE

Application : Biology



Improving continuous Monte Carlo Tree Search
for identifying parameters in hybrid Gene
Regulatory Networks

Romain Michelueei', Denis Pallez'. Tristan Cazenave . and Jean-Panl Comet '

Université Chte d'Azur, CNRS, [35, Sophia Antipolis. France
firstname. namefuniv-cotedazur. fr
LAMSADE, Université Pards Dauphine - PSL, CNRS, Paris, France
firstname.name@lamsade .dauphine.fr

Abstract. Monte-Carlo Tree Search (MOTS) is largely responzible for
the improvement not only of many computer games, including Go and
General Game Playing (GPP). but also of real-world continuons Markov
decizion process problems. MOTS initially uses the Upper Confidence
bounds applicd to Trees (UCT), but the Rapid Action Value Estimation
(RAVE) heuristic has rapidly taken over in the discerete and continu-
ous domains. Recently, generalized RAVE (GRAVE) outperformed such
heuristics in the discrete domain. This paper is conoerned with extending
the GRAVE heuristic to contimous action and state spaces (cGRAVE).
To enhanece itz performance, wesuggest an action decompesition strategy
to break down multidimensional actions into multiple unidimensional ac-
tions, and we propese a selective policy based on constraints that bias the
playouts and select promizsing actions in the search tree. The approach is
experimentally validated on a real-world biological problem: the goal & to
identify the continuous parameters of gene regulatory networks (GRNz).

Keywords: MOTS - continuous GRAVE .« constmints-based selective
policy - action decomposition - chronotherapy - hybrid GRN.

1 Introduction

MCTS is a peneral decision-time planning algorithm that was initially desipned
for the improvement of computer Go [13]. The MCTS core idea is to incremen-
tally build a search tree whose nodes represent the states of the environment
and edges represent the actions taken from one state to a snceessor state. MCTS
has proved to be effective in a wide variety of settings, including General Game
Playing {GGP) [15,23] but is not limited to games [5. 26]: it can be effective
for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation. The most popular MCTS algorithm
is Upper Confidence bounds applied to Trees (UCT) |19], which addresses the
exploration versus exploitation trade-off in each state of the tree search using
the Upper Confidence Bound [1]. The Rapid Action Value Estimate [16,17] & a



Progressive Widening

* A new child state is sampled from state s every time the
visitation count of s (n(s)) to the power of pw is greater than or
equal to its number of children :

n(s)* > | s.children |

* pw is a problem dependent parameter that controls the number
of actions allowed in s.

* While UCT ensures that the tree grows deeper in the
promising regions of the search space by balancing exploration
and exploitation, the PW strategy guarantees that it grows
wider in those regions.



cRAVE

cRAVE is an extension of RAVE to the case of continuous action and state
spaces. It considers a smooth estimate of action and state values using a Gaussian
convolution. Formally, it states that the AMAF score of choosing an action a
from a state s is weighted by the contribution related to the state-action pairs
(si,a;) encountered in every tree-walk x, starting from s:

_IDth'llr l[r.!'[.--s..i.":l:2 + :.Hu.u.i:l'? }
AMAF,, = ) e Vet s’ x R,) (3)

T, 0;ET,

where R(z;) is the cumulative reward obtained after following z., N, . denotes
the number of state-action pairs involved in every z, (the sub-tree of s), and
Qaction (TE€SP. Qgiate ) IS a problem-dependent parameter tuning the importance of
d(a,a;) (resp. d(s, s;)) representing the distance between the action a (resp. state
s) and the considered action a; (resp. state s;) from the sub-tree. The Euclidean
distance is commonly chosen, but the choice of such a measure also depends
on the problem. pAMAF, , is the number of tree-walks containing the state s
followed by the action a and is also computed using Gaussian convolutions:

. dle,e; 2 dla.e;)?
—logN iy 2
pAMAF, , = Z e toaNa AT o (4)

T, .0,exr,




cGRAVE

Algorithm 1 Continuous GRAVE and enhancements

Input: N tree-walks, initial state sg, PW parameter pw, reference state constant ref
Output: A search tree

1: Initialize constraints from the CSP module

2: fori=1to N do
3: s = 8y, 5=1{s}
4

while s is not a leaf state and is not simulatable do P> Tree-walk step
5: if n(s)"" < |s.children| then > PW test, section 2.2
B: sref = s
7 if n(sref) > ref then > GRAVE reference state test
8: sref =s
9: end if
10: for all a € s.children do ) > Compute GRAV E(s,a)
1L f= J-;r(_'_f_p_r'lJ'LJ';l['":.:.(;i-;ﬂj:;:'ij'.pz'l.hfz‘lf’x:;_p > Eq. 2
12: grave = (1. — 3) x s.mean + 8 % sref AMAF > Eq. 1
13: end for
14: Select a = argmax{GRAV E(s.a) | a € s.children}
15: else
16: Sample a new action a from Aggp(s)
BT Add P(s,a) as a child node of s > P(s,a) is the transition function
18: end if
19: s=Pls,a), S=8SuUs
20: end while
21: while s is not a terminal state do B> Simulation step
22: Sample a € A, gp(s) based on default policy
23: s=P(s,a), S=Sus
24: end while
25: score = evaluate(s)
26: for all s € § do > Backpropagation step
27 Update s with score > Eq3&4

28: end for
29: end for




Action Decomposition

a1 4 . Aoy o @y d . Ay d

#‘L\ !L\
4 1 saw / 1
1 i 13 r
W N

Fig. 1: Action decomposition strategy illustrated (in a deterministic case). The
multidimensional actions are decomposed component by component following a
particular ordering and forming a tree structure.



Hybrid Gene Regulatory Networks

(a) (b)

oW O

Loy
Fig. 2: Example of a hGRN depicted as a directed graph (a), and a possible
hybrid state graph (b). The hGRN dynamic parameters are depicted as black
ATTOWS.

(b)
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Fig. 3: Interaction graph of the G-genes hGRN (a) and its corresponding biolog-
ical knowledpe (b).



cGRAVE
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Fig. 4: Comparative performances (cumulative reward) of the different variants
on the 5 genes hGRN, versus the computational budget {number of iterations).
The upper the better: a reward of 12 means that a sclution is found.



cGRAVE
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Fig. 5: CDF curves showing the best results for the different variants.

Alg mean+std max min % of solutions
cRAVE 097+018 1 O 0
cRAVEcgp 87y +2¥2 12 4§ 20
cRAVEcspap 11.2+1.54 12 6 70
cGRAVEgsp 1I¥6 1.3 12 @ 93.33
¢GRAVE gp.ap 12.0 £ 0.0 12 12 100

Table 1: Statistics of cumulative rewards gathered by the different algorithms
tested. Bold values denote the best results column by column.



cGRAVE
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Fig. 6: Visualisation of the 30 solutions (one for each run) obtained by
cGRAVEcgp.ap on the 5 genes hGRN identification problem. Black vertical

lines illustrate the 12 different discrete states.
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Continuous MCTS

Open the Humanoid notebook on the course page

Test UCT with 10 randomly chosen actions as the
possible moves

Progressive widening for UCT
Action Decomposition (AD)
cGRAVE



PUCT



PUCT

* MCTS used in AlphaGo and AlphaZero.

* A neural network gives a policy and a value.

* No playouts, evaluation with the value at the leaves.
* P(s,a) = probability for move a of being the best.

* Bandit for the tree descent:

Uls, a) P( j*-."Ew‘*"{Si??J
(5, a) = cpuaP(s5, a)——
f : 14+ N(s,a)




Algorithm 1 The PUCT algorithm.

1: PUCT (board, plaver)
2. moves +— possible moves on board
32 it board 1s terminal then
4: return evaluation { board )
5. endif
6: 1+ entry of board inthe transposition table
70 ifrexists then
8 bestValue +— —oo
9. for m in moves do
10 t i ttotalPlavout s
11: mean <— f.mean :m:
12: p i t.plavoutsim|
13: prior «+ t.priorim|
14: valte +— mean + ¢ % prior x X2
15: it value = best Value then
16: bestValue — value
17: bestMove «— m
18: end if
19: end for
20): play ( board, bestMove)
21: plaver «— opponent { plaver)
22: res +— PUCT (board, plaver)
23: update r with res
24:  else
25: t +— new entry of board 1n the transposition table
26: rex +— evaluation (board, plaver)

27: update 1
28: end if
20: return res




PUCT

* Exercise :
Modity the UCT code into PUCT.

Suppose a random policy and a random value.



PUCT

def PUCT (board):
if board.terminal ():
return board.score ()
t = look (board)
if t = None:
bestValue = -1000000.0
best =0
moves = board.legalMoves ()
for i in range (0, len (moves)):
# t [4] = value from the neural network
Q=t[4]
if t [1] [i] > O:
Q=t[2] [i]/t[1][i]
if board.turn == Black:
Q=1-Q
# t [3] = policy from the neural network
val = Q + 0.4 * t [3] [i] * sqrt (t [0]) / (1 + t [1] [i])
if val > bestValue:
bestValue = val
best = i



PUCT

board.play (moves [best])
res = PUCT (board)
t[0] +=1
t [1] [best] +=1
t [2] [best] +=res
return res
else:
t = add (board)
return t [4]



Zero Learning



Zero Learning

AlphaGo
Golois
AlphaGo Zero
Alpha Zero
Mu Zero
Polygames
Athenan
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AlphaGo

Fan Hui is the european Go champion and a 2p
professional Go player :

AlphaGo Fan won 5-0
against Fan Hui in
November 2015.

Nature, January 2016.




AlphaGo

Lee Sedol is among the strongest and most famous
9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march
2016.



AlphaGo

Ke Jie is the world champion of Go according to
Elo ratings :

AlphaGo Master
won 3-0 against
Ke Jie in

may 2017.




AlphaGo

AlphaGo combines MCTS and Deep Learning.

There are four phases to the development of
AlphaGo :

Learn strong players moves => policy network.

Play against itself and improve the policy network
=> reinforcement learning.

[.earn a value network to evaluate states from
millions of games played against itself.

Combine MCTS, policy and value network.
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AlphaGo
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AlphaGo

The policy network is a 13 layers network.
It uses either 128 or 256 feature planes.

It is fully convolutional.

It learns to predict moves from hundreds of
thousands of strong players games.

Once it has learned, it finds the strong player
move 57.0 % of the time.

It takes 3 ms to run.



AlphaGo

The value network is also a deep convolutional
neural network.

AlphaGo played a lot of games and kept for each
game a state and the corresponding terminal state.

It learns to evaluate states with the result of the
terminal state.

The value network has learned an evaluation
function that gives the probability of winning.



Mean squarad emror

on axpart games

0.50 -
0.45 -
0.40 -
0.35 -

0.30 +
0.25 -

0.20 +
0.15 -

AlphaGo

--——- Uniform randcum\

rollout policy
--—- Fast rollout policy

— Walue network
sbL policy network
--- HL policy network

010

15

45

7h

106 136 166
Mowve number

195 225 255 =285






AlphaGo

The policy network is used as a prior to consider
good moves at first.

Playouts are used to evaluate moves

The value network is combined with the statistics
of the moves coming from the playouts.

PUCT :

U(s, a) P( :.*-."Eei‘*"(& b)
I(5, a) = cpuatPls, a)——
i : 1 + N(s, a)




AlphaCGo win rate (%)

AlphaGo
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AlphaGo

* AlphaGo has been parallelized using a distributed
version.

* 40 search threads, 1,202 CPUs and 176 GPU.



Elo Rating
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AlphaGo

Extended Data Table 2 | Input features for neural networks

Feature

# of planes

Description

Stone colour 3 Player stone / opponent stone / empty

Ones I A constant plane filled with 1

Turns since 8 How many turns since a move was played

Liberties 8  Number of liberties (empty adjacent points)

Capture size 8 How many opponent stones would be captured

Self-atari size 8 How many of own stones would be captured

Liberties after move 8  Number of liberties after this move is played

Ladder capture I Whether a move at this point is a successful ladder capture
Ladder escape I Whether a move at this point is a successful ladder escape
Sensibleness I Whether a move is legal and does not fill its own eyes
Zeros I A constant plane filled with 0

Player color I Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).



AlphaGo

Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation
Filters Symmetries Features Test accu- Trainaccu- Raw  net AlphaGo Forward
racy % racy % wins % wins % time (ms)

128 1 48 54.6 57.0 36 53 2.8

192 1 48 554 58.0 50 50 4.8

256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 514 25 15 4.8

192 1 12 54.7 57.1 30 34 4.8

192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 584 42 3 36.8

The policy netwaork architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4,12 or
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy
network against AlphaGo's policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo's search to select moves (AlphaGo
wins); and finally the computation time for a single evaluation of the policy network.



AlphaGo

Extended Data Table 7 | Results of a tournament between different variants of AlphaGo

Short Policy Value Rollouts Mixing Policy Value Elo
name network network constant GPUs GPUs rating
Opyp Do Vg D A=0.5 2 6 2890
Oty Do Vg - A=10 2 6 2177
Cpp Do - . A=1 8 0 2416
Obpy [pr] Ug Par A=0.5 0 8 2077
Oy [pr] g - A=10 0 8 1655
ey [p-] - P A=1 0 0 1457
Oty Pa - - - 0 0 1517

Evaluating positions using rollouts only (s, o) valus nets only (e, o). or mixng both (o, o) sither using the policy network p (o, oy, i), 0F no policy

network (ooap, o, o), that is, instead using the placeholder probabilities from the tree policy p.throughout Each program used 5 s per move on a single machine
with 48 CPUs and 8 GPUs. Elo ratings were com puted by BayesElo.



AlphaGo

Extended Data Table 8 | Results of a tournament between AlphaGo and distributed AlphaGo, testing scalability
with hardware

AlphaGo Search threads CPUs GPUs Elo

Asynchronous 1 48 8 2203
Asynchronous 2 48 8 2393
Asynchronous 4 48 8 2564
Asynchronous 8 48 8 2065
Asynchronous 16 48 8 2778
Asynchronous 32 48 8 2867
Asynchronous 40 48 8 2890
Asynchronous 40 48 1 2181
Asynchronous 40 48 2 2738
Asynchronous 40 48 4 2850
Distributed 12 428 64 2937
Distributed 24 764 112 3079
Distributed 40 1202 176 3140
Distributed 64 1920 280 3168

Each program played with a maximum of 2 s thinking time per move. Elo ratings were computed by BayesElo.
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Golois

I replicated the AlphaGo experiments with the policy
and value networks.

Golois policy network scores 58.54% on the test set
(57.0% for AlphaGo).

Golois plays on the kgs internet Go server.

It has a strong 4d ranking just with the learned policy
network (AlphaGo policy network is 3d).



Data

* Learning set = games played on the KGS Go server
by players being 6d or more between 2000 and 2014.

* No handicap games.

* Each position is rotated to eight possible symmetric
positions.

* 160 000 000 positions in the learning set.
* Test set = games played in 2015.
e 100 000 different positions not mirrored.



Residual Nets

Input

* Residual Nets :

Convolution

Batch Norm

Convolution

Batch Norm

Addition

i

Output




Wean Square Error

Evolution of the error

10

95 r

85 t

75

resnet.20.256 ——
vanilla.l3.256 ——

0 10 20 30 40 50 60 70 80

Examples



AcCcuracy

60

46 |

Evolution of the accuracy

resnet, 20,256 —— |

vanilla.l3.256 —x—

10 20 30 40 50 60 70

Examples

80



Golois Policy Network

* Using residual network enables to train deeper network.

* It enables better accuracy than AlphaGo policy
network.

* It has a 4 dan level on kgs, playing moves instantly.



AlphaGo Zero



AlphaGo Zero

AlphaGo Zero learns to play Go from scratch playing against itself.
After 40 days of self play it surpasses AlphaGo Master.

Nature, 18 october 2017.

It uses the raw representation of the board as input, even liberties are
not used.

It has 15 input planes, 7 for the previous Black stones, 7 for the
previous White Stones and 1 plane for the color to play.



AlphaGo Zero

* It plays against itself using PUCT and 1,600 tree
descent:

, N(s, b)
4+ Nis, a)

U(s, a) = cpuctP(s, :1] V2

* It uses a residual neural network with two heads.

* One head is the policy, the other head is the value.
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AlphaGo Zero

* After 4.9 million games against itself a 20 residual

blocks neural network reaches the level of AlphaGo
Lee (100-0).

* 3 days of self play on the machines of DeepMind.

* Comparison : Golois searches 1,600 nodes in 10
seconds on a 4 GPU machine.

* It would take Golois 466 years to play 4.9 million such
games.
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Elo rating
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AlphaGo Zero

* They used a longer experiment with a deeper network.
* 40 residual blocks.

* 40 days of self play on the machines of DeepMind.

* In the end it beats Master 89-11.
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AlphaGo Zero

* AlphaGo Zero uses 40 residual blocks instead of 20
blocks for AlphaGo Master.

* With 20 blocks learning stalls after 3 days.
* Master with 40 blocks better than AlphaGo Zero?



Alpha Zero



Alpha Zero

* Arxiv, 5 december 2017.
* Deep reinforcement learning similar to AlphaGo Zero.

* Same algorithm applied to two other games :
Chess and Shogi.

* Learning from scratch without prior knowledge.



Alpha Zero

* Alpha Zero surpasse Stockfish at Chess after 4 hours of
self-play.

* Alpha Zero surpasses Elmo at shogi after 2 hours of self

play.
Program Chess Shogi Go
AlphaZero 80k 40k lek
Stockfish 70,000k
Elmo 35,000k

Table S4: Evaluation speed (positions/second) of AlphaZero, Stockfish, and Elmo in chess,
shogi and Go.



Alpha Zero

* 5 000 first generation TPU for training.

*4 TPU for playing.

Chess Shogi Go
Mini-batches 700k 700k 700k
Training Time 9h 12h 34h
Training Games 44 million 24 million 21 million
Thinking Time 800 sims 800 sims 800 sims

40 ms 80 ms 200 ms

Table S3: Selected statistics of AlphaZero training in Chess, Shogi and Go.



Mu Zero



Mu Zero

* Arxiv, december 2019.

* Similar to Alpha Zero without knowing the rules of the
games.

* Atari, Go, Chess and Shogi.

* Learning from scratch without prior knowledge.



Polygames



Polygames

* Alpha Zero approach for many games.

* A common interface to all the games.

* Fully convolutional network, average pooling...
* Pytorch and C++.

* Open source !



Mathematics



Automated Theorem Proving

The state space is an AND/OR tree as in games.

Algorithms for solving games can be used to prove
theorems.

MCTS has been used in some theorem provers.
Holophrasm [Daniel Whalen 2016].
Tactictoe [Gauthier et al. 2021].



Automated Theorem Proving

Final Comparisons

Number of proved theocrem

145
140 -
135 -
—— HyperTreeProofSearch
—— Holophrasm
PNS
130 PUCT
—— Modified PUCT+PP
— PUCT4PP
— PP
125 1L . ' : '
(250,1) {(500,1) (1000,1) (2000,2) (4000,4)

(MaxPasses, TimeLimit)



Code Generation



MCTS and Deep RL

Monte Carlo Tree Search and Deep Reinforcement
Learning to discover new fast matrix multiplication
algorithms:




MCTS and Deep RL

AlphaDev improves sorting algorithms:

Original AlphaDev

Mamory[@] B
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s 45 = men[dh, D] ciovl TS f/ 5 = max(A, D)
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Athénan and the Computer
Olympiad



Athénan

* 48 gold medals at the Computer Olympiads!

* Amazons, Arimaa, Ataxx, Breakthrough, Canadian Draughts, Chinese Chess,
Clobber, Havannah (8x8), Havannah (10x10), Hex (11x11), Hex (13%13),
Hex (19%19), Lines of Action, Othello (10x10), Santorini, Surakarta.




Unbounded Minimax

* Principle = Extend the most promising leaf.

* Asymmetric growing of the search tree.
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Descent

* Only uses a value network.

* Self play without prior knowledge.

* Learns the scores inside the trees developed by the
Unbounded MiniMax.

* Minimax Strikes Back [Cohen-Solal & Cazenave 2023].



Descent

Descent Minimax algorithm

@ variant of Unbounded Minimax
e one iteration : until the end of the game
@ instead of : until reaching the horizon
@ = endgame deterministic simulations

@ always choosing the best action

Monte Carlo Tree Search

@ iteratively extend the sequence of actions maximizing

o state value : victory statistics
o exploration term / confidence bound




Athénan

Data for learning

e terminal learning :

e states : states of the match

o target value : gain of the endgame
@ tree learning :

e states : states of searches during the game
e target value : minimax

.

AlphaZero

@ no use of policy e use of a policy : probability of playing an action
@ search : e calculated by the neural network
e during training : Descent Minimax @ MCTS : exploration term : PUCT

e after training : Unbounded Minimax
@ learning target :
@ tree learning

@ with respect to the policy
@ learning target :
@ terminal learning

@ use of reinforcement heuristic @ policy : proportional to v™
e terminal evaluation more expressive than —1/0/1 @ v : number of selections
@ ex : score; wining fast and losing slowly @ 7 . parameter

Open-source re-implementation of AlphaZero : Polygames



Athénan

Average results :

| | Connects | Hawvanmah 10 | Hovannah & | Chater-Open-Grameaku | Hex 13 | Surnkarta | hella | Breakthrough

| Learned states | 55 | (2 | 111 | 115 | 350 | 443 529 | 63

In average

@ Athénan 296 times more learned states :
=> use of Tree Learning




Athénan

Evolutions of performances (win - loss) :

Al gamas
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Polygames :

Athénan

1raTd
ATt T

TE

iy

0% of win at any time of the training...

Win rate against a strong hex program (Mohex 2.0) :




Athénan

Polygames Tournament Networks : 100 GPUs and 1 learning week
Athénan : 1 GPU and 5 learning days

Win percentages for several games and time search
Bl

W Polygairss
0 . S-days Athénan

Percentsges [in %)

Bregiftheough with 1.5 Breakthrowgh with 5S¢ Othello & with 1.55 Othello 8 with 55 Othello 10 with 1.5 Otnello 10 with 55



Athénan

@ 2020 : 5 gold medals
e Othello 10, Breakthrough, Clobber, Amazons, Surakarta
@ 2021 : 11 gold medals

e news : Brazilian & Canadian Draughts, Hex 11&134:19,
Othello 8, Havannah 8&10

@ 2022 : 5 gold medals

o losses : Othello 8, Brazilian Draughts
@ news : Santorini, Ataxx

e 2023 : 16 gold medals
e news : Arimaa, Xianggi, Lines of Action,
e 2024 : 11 gold medals

o losses : Santorini
@ news : Shobu, Othello 16




Athénan

Athénan Results compared to Polygames (AlphaZero)

at least 300 times more learning data efficient
at least more than 3 times more wins

learning speed at least 30 times faster
at least on some games

o Athénan + 1 GPU > Polygames + 100 GPUs
Computer Olympiad

e 48 gold medals in five years
@ triple the record ever achieved in a single year

@ 2020, arxiv :

e Learning to Play Two-Player Perfect-Information Games
without Knowledge

@ Quentin Cohen-Solal
e 2023, AMAAS :
e Minimax Strikes Back
@ Quentin Cohen-Solal and Tristan Cazenave

Thanks to GREYC, CRIL, IDRIS, LAMSADE
for their computing servers |



Conclusion
* AlphaGo : supervised learning and self play.

* Golois : residual networks and Spatial Batch
Normalization improve learning.

* AlphaGo Zero : reinforcement learning from self play
with MCTS. Raw inputs. Residual networks and
combined policy and value network. Better than Master.

* AlphaZero : Go, Chess and Shogi.

* MuZero : Atari, Go, Chess and Shogi.
* Polygames : many games.

* Athenan: Minimax Strikes Back.



Alpha Zero Project



Alpha Zero

Define a network that takes as input the
Breakthrough board and gives as output the policy
and the value for the board.

Bias the MCTS with policy and value using PUCT.

Make the network play games and record the results
of the Monte Carlo and the result of the games.

Train the network on the results of the games.
Iterate.



Alpha Zero

* The network takes 41 inputs with values 0 or 1, 20 inputs
for black pawns, 20 inputs for white pawns and one input
for the color to play.

Option: also use previous boards as inputs.

The network has 60 outputs for the policy head (3 possible
moves for each cell), and 1 output for the value head.

The architecture of the network can be completely
connected as a starting point.

Option : convolutional network, residual network.



Alpha Zero

1) Define the network
2) Implement the PUCT algorithm using the network.

Use t

ne same network for black and white, rotate the

boaro

for white so that moves are always forward.

3) Make the algorithm play against itself.

4) Re
result

cord the Monte Carlo distributions and the
of self played games.

5) Train the network on the recorded data.



Monte Carlo Search with
Imperfect Information



Simultaneous Moves MCT'S

* The moves of the other players are not known

* Application : Auctions
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BIDDING EFFICIENTLY IN SAA WITH BUDGET AND ELIGIBILITY CONSTRAINTS USING SM-MCTS 1

Bidding efficiently in Simultaneous Ascending
Auctions with budget and eligibility constraints
using Simultaneous Move Monte Carlo Tree Search

Alexandre Pacaud, Aurelien Bechler and Marceau Coupechoux

Abstract—For decades, Simultaneous Ascending Auction
(SAA) has been the most popular mechanism used for spectrum
auctions. It has recently been employed by many countries for
the allocation of 5G licences. Although SAA presents relatively
simple rules, it induces a complex strategic game for which the
optimal bidding strategy is unknown. Considering the fact that
sometimes billions of euros are at stake in an SAA, establishing
an efficient bidding strategy is crucial. In this work, we model
the auction as a n-player simultaneous move game with complete
information and propose the first efficient bidding algorithm that
tackles simultaneously its four main strategic issues: the exposure
problem, the own price effect, budget constraints and the eligibility
management problem. Our solution, called SMS, is based on
Simultaneous Move Monte Carlo Tree Search (SM-MCTS) and
relies on a new method for the prediction of closing prices.
By introducing a new reward function in SMS”, we give the
possibility to bidders to define their own level of risk-aversion.
Through extensive numerical experiments on instances of realistic
size, we show that SMS® largely outperforms state-of-the-art
algorithms, notably by achieving higher expected utility while
taking less risks.

Index Terms—Simultaneous Move Monte Carlo Tree Search,
Ascending Auctions, Exposure, Own price effect, Risk-aversion

1. INTRODUCTION

In order to provide high quality service and develop wire-
less communication networks, mobile operators need to have
access to a wide range of frequencies. These frequencies are
obtained in the form of licences. A licence is defined by four
features: its frequency band, its geographic coverage, its period
of usage and its restrictions on use. Nowadays, spectrum
licences are mainly assigned through auctions. Simultaneous
Ascending Auction (SAA), also known as Simultaneous Multi
Round Auction (SMRA), has been the privileged mechanism
used for spectrum auction since its introduction in 1994 by
the US Federal Communications Commission (FCC) for the
allocation of wireless spectrum rights. For instance, it has
been used in Portugal , Germany @ [taly and the
UK to sell 5G licences. SAA is also expected to play
a central role in future spectrum allocations, e.g. for 6G
licenses. The popularity of SAA is mainly due to the relative
simplicity of its rules and the generation of substantial revenue
for the regulator. Both of its creators, Paul Milgrom and
Robert Wilson, received the 2020 Sveriges Riksbank Prize in

APacaud and A Bechler are with Orange Labs, France (e-mail: alexan-
dre.pacaud @orange.com, aurelien.bechler@ orange.com).

A.Pacaud and M.Coupechoux are with LTCI, Telecom Paris, Institut Poly-
technique de Paris, France (e-mail: marceau.coupechoux@telecom-paris.fr).
The work of M. Coupechoux has been performed at LINCS (lincs.fr).

Economic Sciences in Memory of Alfred Nobel mainly for
their contributions to SAA. Establishing an efficient bidding
strategy for SAA is crucial for mobile operators, especially
considering the large amount of money involved, e.g. Deutsche
Telekom spent 2.17 billion euros in the SG German SAA. This
is the aim of this work.

SAA has a dynamic multi-round auction mechanism where
bidders submit their bids simultaneously on all licences each
round. It offers the freedom to adjust bids throughout the auc-
tion while taking into account the latest information about the
likelihood of winning different sets of licences. Hence, a great
number of bidding strategies can be applied. Unfortunately,
selecting the most efficient one is a difficult task. Indeed, SAA
induces a n-player simultaneous move game with incomplete
information with a large state space for the solution of which
no generic exact game resolution method is known .

In addition to the complexities tied to its general game
properties, SAA presents a number of complex strategic issues.
Its four main strategic issues are the exposure problem, the own
price effect, budget constraints and the eligibility management
problem. The exposure problem corresponds to the situation
where a bidder pursues a set of complementary licences but
ends up by paying more than its valuation for the ones it
actually wins. The own price effect refers to the fact that
bidding on a licence inevitably increases its price and, hence,
decreases the utility of all bidders willing to acquire it. On
the contrary, it is in the interest of all bidders to keep prices
as low as possible. Budget constraints correspond to a fix
budget that caps the maximum amount that a bidder can bid
during an auction and, thus, can hugely impact an auction’s
outcome. The eligibility management problem is introduced
by activity rules which penalise bidders that do not maintain
a certain level of bidding activity. At the beginning of the
auction, each bidder is given a certain level of eligibility.
Each round a bidder fails to satisfy the activity rule, its
eligibility is reduced. As bidders are forbidden to bid on sets
of licences which exceed their eligibility, managing efficiently
one’s eligibility during the course of an auction is crucial to
obtain a favourable outcome. In this work, we propose the first
efficient bidding algorithm which tackles simultaneously the
four strategic issues of SAA.

A. Related works

Most works on SAA, such as @ , , have focused
on its mechanism design, its efficiency and the revenue it



A Novel Bidding Strategy for PDAs using MCTS

in Continuous Action Spaces

Sanjay Chandlekar’? |© and Easwar Subramanian®

U TIIT Hyderabad, India
TCS Innovation Labs, Hyderabad, India
sanjay.chandlekar@research.iiit.ac.in
2 TCS Innovation Labs, Hyderabad, India
easwar.subramanian@tcs.com

Abstract. Bidding in a periodic double auction (PDA) is challenging
due to its sequential nature, where one needs to consider current as well
as future auctions to decide the bids. Monte-Carlo Tree Search (MCTS),
which is a state-of-the-art online planning algorithm for tackling sequen-
tial problems, seems a perfect fit for bidding in PDAs. However, the suc-
cess stories of MCTS are largely limited to diserete action spaces, and its
efficacy diminishes when dealing with continuous actions. Conventional
methods often resort to overly simplistic discretizations that limit explo-
ration and fail to provide valuable insights into unexplored actions. In
this work, we propose a novel bidding strategy for PDAs, Regression-
MCTS, that is built upon MCTS for a continuous action space of bid
prices. Unlike conventional methods, our novel MCTS method leverages
information obtained from explored actions to enhance the understand-
ing of the larger action set within the continuous domain to place bids
in the auctions, thus generalizing the information about action quality
between a wider action space for faster learning. To test the eflicacy of
our proposed method, we design an efficient PDA simulator that closely
resembles real-world PDAs. Our analysis verifies that the increase in
the mumber of rollouts improves its performance. Furthermore, our ex-
perimental results demonstrate that our approach outperforms existing
MCTS-based bidding strategies and the majority of state-of-the-art PDA
bidding strategies, showcasing its superior performance in PDAs.

Keywords: MCTS for Continuous Action Space, Online Planning, Bid-
ding Strategy for PDA

1 Introduction

Auctions play a pivotal role in computer science and its associated domains, serv-
ing as dynamic mechanisms for the allocation of resources and the facilitation of
transactions. Their significance spans a broad spectrum, from the allocation of
computational resources in cloud computing to the distribution of spectrum in
wireless networks. Double auctions, in particular, are widely used in industries
like stock trading and energy markets, with significant economic influence. For



Information Set MCTS

* Flat Monte Carlo Search gives good results
for Phantom Go.

* Information Set MCTS.
* Card games.



Counter Factual Regret
Minimization
* Poker : Libratus (CMU), DeepStack (UofA).

* Approximation of the Nash Equilibrium.

 There are about 320 trillion “information sets” in heads-
up limit hold’em.

* What the algorithm does is look at all strategies that do
not include a move, and count how much we “regret”
having excluded the move from our mix.

* Combination with neural networks.
* Better than top professional players.
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Bridge
Generate a set of possible worlds.

Solve each world exactly
Search multiple moves ahead
Strategy Fusion => joint search
Non Locality => Pareto fronts



PIMC

For all possible moves
For all possible worlds
Exactly solve the world

Play the move winning in the most worlds



Strategy Fusion

* Problem = PIMC can play different
moves In different worlds.

* Whereas the player cannot
distinguish between the different
worlds.
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Non Locality
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Pareto Fronts

A Pareto Front is a set of vectors.
It maintains the set of vectors that are not dominated by other vectors.

Consider the Pareto front {{1 0 0], [0 1 1]}.

If the vector [0 O 1] is a candidate for entering the front, then the front stays
unchanged since [0 0 1] is dominated by [0 1 1].

* If we add the vector [1 1 0] then the vector [1 0 O] is removed from the front since it is
dominated by [1 1 0], and then [1 1 O] is inserted in the front. The new front becomes
{[110],[011]}

* It is useful to compare Pareto fronts.

» A Pareto front P1 dominates or is equal to a Pareto front P2 iff vv € P2 ,3v' € P1
such that (v’ dominates v) or v'=v.



AlphaMu

* At Max nodes each possible move returns a
Pareto front.

e The overall Pareto front is the union of all the
Pareto fronts of the moves.

* The idea Is to keep all the possible options
for Max, I1.e. Max has the choice between all
the vectors of the overall Pareto front.



AlphaMu

* At Min nodes, the Min players can choose

different moves In different possible wor

* They take the minimum outcome over a
possible moves for a possible world.

ds.
| the

* When they can choose between two vectors

they take for each index the minimum

between the two values at this index of the

two vectors.



AlphaMu

When Min moves lead to Pareto fronts, the Max player can
choose any member of the Pareto front.

For two possible moves of Min, the Max player can also choose
any combination of a vector in the Pareto front of the first move
and of a vector in the Pareto front of the second move.

Compute all the combinations of the vectors in the Pareto fronts
of all the Min moves.

For each combination the minimum outcome is kept so as to
produce a unigue vector.

Then this vector Is inserted in the Pareto front of the Min node.



Product of Pareto Fronts at Min
nodes

{00 1], [110]}

c {[110],[101]}

/N AN




The Early Cut

{[110],[01 1]}\ [110] = cut




The Root Cut

* If a move at the root of ap for M Max moves gives the same
probability of winning than the best move of the previous
iteration of iterative deepening for M-1 Max moves, the search
can safely be stopped since it is not possible to find a better
move.

* A deeper search will always return a worse probability than the
previous search because of strategy fusion.

* Therefore if the probability is equal to the one of the best move
of the previous shallower search the probability cannot be
improved and a better move cannot be found so it is safe to cut.



Experimental Results

®* Comparison of the average time per move of different
configurations of ap on deals with 52 cards for the 3NT
contract.

Cards M Worlds TT R E Time
52 | 20 0.118
52 2 20 nnn 1.054
52 2 20 y yn 0.512
52 2 20 yny 0.503
52 2 20 yyy 0.433
52 3 20 nnn 10.276
52 3 20 yyn 3.891
52 3 20 yny 1.950
52 3 20 yyy 1.176



Experimental Results

* Comparison of ap versus PIMC for the 7NT contract,

playing 10 000 games.

Cards M Worlds # results  Winrate o
52 2 20 283 0.643  0.0285
52 3 20 333 0.673  0.0257
52 4 20 374 0.679  0.0241
52 2 40 324 0.630 0.0268
52 3 40 347 0.637 0.0258
52 4 40 368 0.655 0.0248



AlphaMu

* AlphaMu solves de strategy fusion and the non
locality problems of PIMC up to a given depth.

* [t maintains Pareto Fronts in its search tree.

* It improves on PIMC for the 7NT contract of
Bridge.



Nook and Bridge



PIMC

For all possible moves
For all possible worlds
Exactly solve the world

Play the move winning in the most worlds



Strategy Fusion

* Problem = PIMC can play different
moves In different worlds.

* Whereas the player cannot
distinguish between the different
worlds.
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Nook

* Opponent Modeling

* Alpha-Beta on each possible world
* AlphaMu

* Rule based opening lead

* Contract : INT 2NT 3NT

* Declarer
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Artificial intelligence @ This article is more than 7 months old

(aD e . .
Artificial intelligence beats eight world
champions at bridge
Victory marks milestone for Al as bridge requires more human
skills than other strategy games

Laura Spinney

Tue 29 Mar 2022 06.00 BST

f v @

O The Al, NooK, was able to read its opponents and explain its decision-making. Photograph:
switas/Getty Images/iStockphoto

An artificial intelligence has beaten eight world champions at bridge, a game
in which human supremacy has resisted the march of the machines until
now.

The victory represents a new milestone for Al because in bridge players work
with incomplete information and must react to the behaviour of several
other players - a scenario far closer to human decision-making.

In contrast, chess and Go - in both of which Als have already beaten human
champions - a player has a single opponent at a time and both are in
nnssessinn nf all the infarmatian



Sequential Halving



Sequential Halving

Sequential Halving, a method so wise
Dividing tasks with great precision and size
Starting from many, it reduces the few
Towards a solution that's both true and true

With each iteration, the choices do narrow

Till the answer shines bright like a beacon so sparrow
No guesses, no chances, no luck needed here

Just a systematic approach, crystal clear

From the simplest problems to the hardest of quest
Sequential Halving never fails to impress

A friend to all seekers, a guide in the night

Bringing order to chaos, and making things right

So let us embrace it, in all we embark
With Sequential Halving, success is just a mark.



Sequential Halving

Sequential Halving [Karnin & al. 2013] is a
bandit algorithm that minimizes the simple
regret.

It has a fixed budget of arm pulls.

It gives the same number of playouts to all the
arms.

It selects the best half.
Repeat until only one move is left



Sequential Halving

S < [possible M oves|
while |S| > 1 do
for each move m in S do
play (m)
perform
undo (m)
end for
S <« set of Pziq moves in S with the largest
empirical average
end while

budget
S| % [log2(|possible M oves|)|

J playouts



SHOT

« SHOT Is the acronym for Sequential
Halving Applied to Trees [Cazenave 2015].

* When the search comes back to a node it
considers the spent budget and the new
pudget as a whole.

* |t distributes the overall budget with
Sequential Halving.



SHOT







SHOT

« SHOT gives good results for Nogo.
 Combining SHOT and UCT

SHOT near the root
UCT deeper in the tree

 The combination gives good results for
Atarigo, Breakthrough, Amazons and
partially observable games.



Sequential Halving

* Exercise:

* Write the code to perform Sequential Halving at the
root on top of UCT.



Sequential Halving

def SequentialHalving (state, budget):
global Table
Table = {}
add (state)
moves = state.legalMoves ()
total = len (moves)
nplayouts = [0.0 for x in range (MaxCodeLegalMoves)]
nwins = [0.0 for x in range (MaxCodeLegalMoves)]
while (len (moves) > 1):
for m in moves:
for i in range (int (budget // (len (moves) * np.log2 (total)))):
s = copy.deepcopy (state)
s.play (m)
res = UCT (s)
nplayouts [m.code (state)] += 1
if state.turn == White:
nwins [m.code (state)] += res
else:
nwins [m.code (state)] += 1.0 - res
moves = bestHalf (state, moves, nwins, nplayouts)

return moves [0]



Sequential Halving

def bestHalf (state, moves, nwins, nplayouts):
half =[]
notused = list(np.full(MaxCodeLegalMoves, True))
for i in range (int(np.ceil(len (moves) / 2))):
best = -1.0
bestMove = moves [0]
for m in moves:
code = m.code (state)
if notused [code]:
mu = nwins [code] / nplayouts [code]
if mu > best:
best = mu
bestMove = m
notused [bestMove.code (state)] = False
half.append (bestMove)
return half



Sequential Halving Using Scores,
A method to find the best of many,
It starts with many choices,

And narrows them down, through many voices.

It divides the options in groups,
And test them with different scores,
Eliminating the ones that lag,

Until the best one, it ensures.

This method is efficient and fast,
It saves time and resources,

And finds the best solution, at last,
Among many possible courses.

Sequential Halving Using Scores,
A powerful tool for decision,

It helps us to find the right doors,
And make the best decision.

SHUSS



SHUSS

* Sequential Halving combined with other statistics such as AMAF
statistics.

« Instead of selecting the best half with the mean (mu,), use:
mu. + ¢ * AMAF./p.
with p. the number of playouts of move i and ¢ > 128.

* Combining SH with AMAF = SHUSS (Sequential Halving Using
Scores) [Fabiano et al. 2021]



SHUSS

Table 1: Comparison of Hybrid-SHUSS with AMAF score against RAVE.

Game

Atarigo 7x7

Atarigo 9x9

Ataxx 8x8
Breakthrough 8x&
Domineering 8x&
Go 7x7

Go 9x9

Hex 11x11
Knightthrough 8x8
NoAtaxx 8x8
NoBreakthrough 8x8
NoDomineering 8x8
NoGo 7x7

NoGo 9x9

NoHex 11x11
NoKnightthrough 8x8

Playouts

10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000
10 000

0

44.2
35.6
30.2
54.0
41.4
45.2
43.4
15.8
61.0
91.0
37.8
40.4
38.8
30.0
46.4
29.0

128

47.2
41.4
33.6
57.8
47.8
49.2
53.2
43.0
61.6
87.4
40.8
45.6
40.8
37.8
48.0
36.8

256

49.6
40.0
35.2
56.8
44.8
46.2
58.2
43.4
65.0
76.8
44.0
49.4
45.6
38.8
48.6
38.8

512

50.2
38.2
342
56.0
49.0
53.8
522
514
63.8
72.0
46.2
46.0
44.0
40.0
49.0
39.6

1024

50.0
41.0
42.0
56.6
46.2
58.6
50.8
48.4
62.2
62.8
514
48.4
50.8
41.0
49.2
47.8

2048

49.6
41.2
46.2
55.2
47.2
50.2
43.8
50.2
60.2
55.2
442
50.0
47.6
42.0
48.6
46.2

4096

45.2
434
55.0
53.8
46.2
42.6
35.6
46.4
54.2
53.8
46.4
47.6
50.8
42.8
48.6
46.0

8192

47.8
414
624
51.0
45.6
332
264
46.6
544
44.6
440
474
494
450
492
452

16384

46.4
36.4
62.0
55.0
43.0
31.0
19.0
43.4
56.2
45.8
50.0
45.0
47.6
45.8
48.8
48.2

45.2
40.2
71.8
524
42.4
15.8
12.2
42.6
52.8
43.2
46.6
47.6
51.8
37.4
49.2
47.6



SHUSS

Algorithm 2 Sequential Halving USing Scores (SHUSS)

Parameter: cutting ratio \, ¢/

Input: total budget 7, set of arms S, online scores X .,(f&)
S() +«~ S, 1o < T
R < number of rounds before |Sg| = 1
forr =0to R —1do
tr 4 Lsptis
Tr_|_1 <— Tr — tr\Sr\
sample each arm in S ¢, times, giving an empirical

mean pg(,,é) to arm ¢ out of ¢ trials

i =+ LEW

Sr+1 < S, without the fraction 1 — X of the worst
(2)

arms in terms of gy
end for
Output: arm in Sy




SHUSS

* Exercise:

Write the code to perform SHUSS at the root on top
of GRAVE.



SHUSS

def SHUSS (state, budget):
global Table
Table = {}
addAMAF (state)
root = look (state)
moves = state.legalMoves ()
total = len (moves)
nplayouts = np.zeros(MaxCodeLegalMoves)
nwins = np.zeros(MaxCodeLegalMoves)
while (len (moves) > 1):
for m in moves:
for i in range (int(budget // (len (moves) * np.log?2 (total)))):
s = copy.deepcopy (state)
s.play (m)
code = m.code (state)
played = [code]
res = GRAVE (s, played, root)
updateAMAF (root, played, res)
nplayouts [code] += 1
if state.turn == White:
nwins [code] +=res
else:
nwins [code] += 1.0 - res
moves = bestHalfSHUSS (root, state, moves, nwins, nplayouts)

return moves [0]



SHUSS

def bestHalfSHUSS (t, state, moves, nwins, nplayouts):
half =[]
notused = list(np.full(MaxCodeLegalMoves, True))
c=128
for i in range (int(np.ceil(len (moves) / 2))):
best =-1.0
bestMove = moves [0]
for m in moves:
code = m.code (state)
if notused [code]:
AMAF =t [4] [code] / t [3] [code]
if state.turn == Black:
AMAF =1 - AMAF
mu = nwins [code] / nplayouts [code] + ¢ * AMAF / nplayouts [code]
if mu > best:
best = mu
bestMove = m
notused [bestMove.code (state)] = False
half.append (bestMove)
return half



Nested Monte Carlo Search



Nested Monte Carlo Search

Nested Monte Carlo Search, a complex game,
A method to find the best move, it can claim,
It looks deeper, it goes beyond,

To find the winning move, it has fond.

It takes the Monte Carlo Tree Search,
And adds another layer, to research,

It explores the branches, with great care,
To find the best outcome, with much flair.

It simulates the game, again and again,

And analyzes the data, to win.

It's like a Russian doll, inside and out,
Nested Monte Carlo Search, without a doubt.

It's a powerful tool, for Al,

To make machines better, that's its aim high,
It's a step towards true intelligence,

Nested Monte Carlo Search, a true excellence.



Single Agent Monte Carlo

* UCT can be used for single-agent problems.

* Nested Monte Carlo Search often gives better
results.

* Nested Rollout Policy Adaptation is an
online learning variation that has beaten

world records.



10

Nested Monte-Carlo Search

10 20 20 30 10 10 30

40



Nested Monte-Carlo Search

Play random games at level 0

For each move at level n+1, play the move then
play a game at level n

Choose to play the move with the greatest
associated score

Important : memorize and follow the best
sequence found at each level



Algorithm 4 The NMCS algorithm.

NMCS (state, level)
if level == 0 then
return playout (state, uniform)
end if
BestSequenceO f Level < ()
while state is not terminal do
for m in possible moves for state do
s < play (state, m)
NMCS (s, level — 1)
update BestSequenceO f Level
end for
best M ove <— move of the BestSequenceO f Level
state <— play (state, best Move)
end while




Analysis

* Analysis on two very simple abstract
problems.

* Search tree = binary tree.

* |[n each state there are only two possible

moves: going to the left or going to the
right.



Analysis

* The scoring function of the leftmost path
problem consists in counting the number of
moves on the leftmost path of the tree.

3 2 1 10 0 0 0



Analysis

Sample search : probability 2™ of finding the
best score of a depth n problem.

Depth-first search : one chance out of two of
choosing the wrong move at the root, so the
mean complexity > 2",

A level 1 Nested Monte-Carlo Search will
always find the best score, complexity is n(n-1).

Nested Monte-Carlo Search is appropriate for
the leftmost path problem because the scores
at the leaves are extremely correlated with the
structure of the search tree.



Analysis

* The scoring function of the left move
problem consists in counting the number of
moves on the left.

3 2 2 1 2 1 1T 0



Analysis

* The probability distribution can be
computed exactly with a recursive formula
and dynamic programming.

* A program that plays the left move
problems has also been written and
results with 100,000 runs are within 1% of
the exact probabillity distribution.



Analysis
* Distributions of the scores for a depth 60
problem.

0.25 T T T | i
level 0 —+— o |
lewvel 1 with best sequence l 'I
level 2 with best sequence —x— || |
0.2 - lewvel 3 with best sequence —a— ' .

0.15 -

0.1

Probability of score

0.05




Analysis

* Mean score In real time
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Morpion Solitaire

Morpion Solitaire is an NP-hard puzzle and the
high score is inapproximable within nt-ersion

A move consists in adding a circle such that a
line containing five circles can be drawn.

In the disjoint version a circle cannot be a part
of two lines that have the same direction.

Best human score Is 68 moves.

Level 4 Search => 80 moves, after 5 hours of
computation on a 64 cores cluster.




Morpion Solitaire

* 80 moves :
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Morpion Solitaire

Distribution of the scores
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Morpion Solitaire

 Mean scores In real-time
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SameGame

* NP-complete puzzle.

* It consists in a grid composed of cells of different
colors. Adjacent cells of the same color can be
removed together, there is a bonus of 1,000 points
for removing all the cells.

* TabuColorRandom strategy: the color that has the
most cells is set as the tabu color.

* During the playouts, moves of the tabu color are
played only if there are no moves of the others
colors or it removes all the cells of the tabu color.




Same Game

Points possible: “

Points total: “




Same Game

SP-MCTS = restarts of the UCT algorithm

SP-MCTS scored 73,998 on a standard test
set.

DA* : 22,354

Darse Billings program : 72,816.

_evel 2 without memorization : 44,731
Nested level 2 with memorization : 65,937
Nested level 3 : 77,934




Application to Constraint
Satisfaction

A nested search of level O Iis a playout.

A nested search of level 1 uses a playout
to choose a value.

A nested search of level 2 uses nested
search of level 1 to choose a value.

etc.

The score Is always the number of free
variables.



Sudoku

Sudoku is a popular NP-complete puzzle.
16x16 grids with 66% of empty cells.
Easy-Hard-Easy distribution of problems.

Forward Checking (FC) Is stopped when
the search time for a problem exceeds
20,000 s.




Sudoku

FC .

lterative Sampling :
Nested level 1 :
Nested level 2 :

> 446,771.09 s.
61.83 s.

1.34 s.

1.64 s.



18
26
28
26
21

Kakuro

24 25 20 26 24

A 5x5 grid



Kakuro

24 25 20 26 24

18 1 7 5 3 2
26 4 5 3 8 6
28 5 6 / 2 8
26 8 4 1 6 7
21 6 3 4 7 1

Solution



Kakuro

Algorithme Solved problems Time

Forward Checking 8/100 92,131.18 s.
lterative Sampling 10/100 94,605.16 s.
Monte-Carlo level 1 100/100 78.30 s.
Monte-Carlo level 2 100/100 17.85 s.

8x8 Grids, 9 values, stop at 1,000 s.



Bus Regulation

* Goal : minimize passengers waiting
times by making buses walit at a stop.

* Evaluation of an algorithm : sum of the
wailting times for all passengers.



Regulation Algorithms

* Rule-based regulation: The waiting time
depends on the number of stop with the next
bus

* Monte-Carlo regulation : Choose the waiting
time that has the best mean of random
playouts

* Nested Monte-Carlo regulation : Use
multiple levels of playouts



Rule-based regulation

0 : number of stop
before the next bus.
w : waiting time if the
next bus Is at more
than 0.

No reqgulation : 171

Wait during 4 if more
than 7 stops : 164

SCORES FOR DIFFERENT RULES

TABLE 1

w=] | w=2 | w=!
=4 | 171 192] 193
=25 171 141 112
g =1 171 179 | 170
§=T 171 16:4) 104
d=8 171 164 | 167
§=19 171 164 167
a =10 171 1710 170




Monte-Carlo Regulation

e 165 for N =100
154 for N = 1000 |
147 for N = 10000 LI

better than rule-based regulation (164).




Parallel Nested Monte-Carlo
Search

Play the highest level sequentially
Play the lowest levels in parallel

Speedup = 56 for 64 cores at Morpion
Solitaire

A more simple parallelization : play
completely different searches in parallel
(l.e. use a different seed for each search).




Monte Carlo Beam Search
T

15 10 20 20 25 10 30 25 30

(

35 20 30 25 35 25



Single-Agent General Game
Playing
* Nested Monte-Carlo search gives better
results than UCT on average.

* For some problems UCT is better.

* Ary searches with both UCT and Nested
Monte-Carlo search and plays the move that
has the best score.



Snake in the box

110

111

100
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011

ooo
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* A path such that for every node only two
neighbors are in the path.

* Applications: Electrical engineering, coding
theory, computer network topologies.

* World records with NMCS [Kinny 2012].



Multi-agent pathfinding

* Find routes for the agents avoiding
collisions.

* Monte Carlo Fork Search enables to branch
in the playouts.

* It solves difficult problems faster than other
algorithms [Bouzy 2013].



The Pancake Problem
;

* Nested Monte Carlo Search has beaten
world records using specialized playout
policies [Bouzy 2015].



Software Engineering

* Search based software testing [Feldt and
Poulding 2015].

* Heuristic Model Checking [Poulding and
Feldt 2015].

* Generating structured test data with specific
properties [Poulding and Feldt 2014].



Inverse RNA Folding

* Find a sequence that has a given folding




Inverse RNA Folding

Molecule Design as a Search Problem

Find the sequence of nucleotides that gives
a predefined structure.

A biochimist applied Nested Monte Carlo
Search to this problem [Portela 2018].

Better than the state of the art.
Transformers improve the policy



Refutation of Spectral Graph
Theory Conjectures

* Monte Carlo Search better than Deep RL
[Roucairol & Cazenave 2022]



Coalition Structure Generation

* Lazy Nested Monte Carlo Search with clever

State Space .
) {az},{as}

+ T~
({1] (612) {a (I[ aa 64‘3} (cn a3),{a2}
P
/ [a, m (ag)\
la1],[a> ] (a3) (a1,a2.a (ay,az,az)
la1], (a2a I 1,02,03)
J'[al m] Fa] l
la1],[a ] [as] I[ﬂl az],[as]
[({1 ay. ((3-‘ [611.613.(.’3-‘

[a1],[a2,a3]

Figure 2: Model B: an example with three agents. We de-
note {} when the coalition is not locked and not active, ()
when the coalition is not locked and active, and [| when the
coalition 1s locked.



Retrosynthesis

Find a set of chemical reactions that enable to
synthetize a given molecule.

The state space is an AND/OR tree as in games.

DF-PN and MCTS have been used to find
retrosynthesis pathways.

Alphachem [Segler et al. 2017].
AiZynthFinder [Genheden et al. 2020].



Retrosynthesis

molecules solved
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DrugSynthMC

Atom-Based Generation of Drug-like Molecules with
Monte Carlo Search
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Applications

Nested Monte Carlo Search :
* Morpion Solitaire [Cazenave 2009]
* SameGame [Cazenave 2009]
* Sudoku [Cazenave 2009]
* Expression Discovery [Cazenave 2010]
* The Snake in the Box [Kinny 2012]
* Cooperative Pathfinding [Bouzy 2013]
* Software Testing [Poulding et al. 2014]
* Heuristic Model-Checking [Poulding et al. 2015]
* Pancake problem [Bouzy 2015]
* Games [Cazenave et al. 2016]
* Cryptography [Dwivedi et al. 2018]
* Inverse RNA folding [Portela 2019]
* Refutation of Spectral Graph Theory Conjectures [Roucairol & Cazenave 2022]
* Retrosynthesis [Roucairol & Cazenave 2024]
* De Novo Drug Design [Roucairol & Cazenave 2024]



Exercise

* Write a Nested Monte Carlo Search for the left move problem.
* Functions to write :

legalMoves (state)

play (state, move)

terminal (state)

score (state)

playout (state)

* Then write a Nested Monte Carlo Search using these functions.



import random

import copy

def legalMoves (state):
return [0, 1]

def play (state, move):
state.append (move)

return state

def terminal (state):
return len (state) >= 60

def score (state):

return sum (state)

[.eft Move Problem



[.eft Move Problem

def playout (state):
while not terminal (state):
moves = legalMoves (state)
move = moves [int(random.random () * len (moves))]
state = play (state, move)
return state



[.eft Move Problem

def nested (state, n):
if (n == 0):
return playout (state)
bestSequence = []
while not terminal (state):
moves = legalMoves (state)
for m in moves:
s1 = copy.deepcopy (state)
s1 = play (s1, m)
sl = nested (s1,n - 1)
if score (s1) >= score (bestSequence):
bestSequence = sl
state = play (state, bestSequence [len (state)])
return state



Monte-Carlo Discovery of

Expressions
()
e 4
e —
_|_

* Possible moves are pushing atoms.
* Evaluation of a complete expression.

* Better than Genetic Programming for some
problems [Cazenave 2010, 2013].



Monte-Carlo Discovery of
Expressions

Prime Generating Polynomials:

The score of an expression is the number of
different primes it generates in a row for
integer values of x starting at zero and
increasing by one at each step.

Nested Monte-Carlo search is better than
UCT and Iterative Deepening search.




Monte-Carlo Discovery of
Expressions

mean bast score
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Monte-Carlo Discovery of
Expressions
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mean best score

Monte-Carlo Discovery of

Expressions
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Monte-Carlo Discovery of
Expressions

* N prisoners are assigned with either a 0 or a 1.

* A prisoner can see the number assigned to the other prisoners but
cannot see his own number.

* Each prisoner is asked independently to guess if heis O or 1 or to
pass.

* The prisoners can formulate a strategy before beginning the game.
* All the prisoners are free if at least one guesses correctly and none
guess incorrectly.

* A possible strategy is for example that one of the prisoners says 1
and the others pass, this strategy has fifty percent chances of
winning.



mean best score

Monte-Carlo Discovery of
Expressions
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Monte-Carlo Discovery of

Expressions
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Application to financial data

* Data used to perform our empirical analysis
are daily prices of European S&P500 index

call options.

* The sample period is from January 02,
2003 to August 29, 2003.

* S&P500 index options are among the most
actively traded financial derivatives in the

world.



Atom Set

+ Addition C/K Call Price/Strike Price
- Subtraction S/K Index Price/Strike Price
* Multiplication tau Time to Maturity

% Protected Division

In Protected Natural Log
Exp Exponential function
Sqart  Protected Square Root
cos Cosinus

sin  Sinus

Ncfd Normal cumulative distribution



Fitness function

* Each formula found by NMCS or GP Is
evaluated to test whether it can accurately
forecast the implied volatility for all entries
In the training set.

* Fithess = Mean Squared Error (MSE)
between the estimated volatility and the

target volatility.



Mean Square Error

= NMICS Total MSE

m GP Total MSE
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60.00%
& 50.00% -
[7,]
4 e GP
[7,] 0,
e 40.00% \ NMICS
g
g 30.00%
uD
o \
2 20.00% -
=
2
e 10.00%

0.00%

03 04 05 06 07 08 0.9 1
Error level




Expression Discovery

Exercise :
* Possible atoms: 1, 2, 3, +, -

* Goal : find expressions containing less than 11
atoms that have great evaluations.

* Generate random expressions (i.e. list of atoms).
* Evaluate an expression given as a list of atoms.

* Use NMCS to generate expressions



Expression Discovery
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Expression Discovery

import random

import copy

atoms = [1, 2, 3, '+', '-']
children = [0, 0, 0, 2, 2]
MaxLength = 11

def legalMoves (state, leaves):
1=1]
for a in range (len (atoms)):
if len (state) + leaves + children [a] <= MaxLength:
l.append (a)

return |

def play (state, move, leaves):
state.append (move)

return [state, leaves - 1 + children [move]]

def terminal (state, leaves):

return leaves ==



Expression Discovery

def playout (state, leaves):
while not terminal (state, leaves):
moves = legalMoves (state, leaves)
move = moves [int(random.random () * len (moves))]
[state, leaves] = play (state, move, leaves)
return state



Expression Discovery

def score (state, i):
if children [state [i]] == 0O
return [atoms [state [i]], 1 + 1]
if children [state [i]] == 2:
a = atoms [state [i]]
[s1,i1] = score (state, 1 + 1)
[s2,i2] = score (state, i1)

ifa=="+"
return [s1 + s2, i2]
ifa=="-"

return [s1 - s2, i2]



Expression Discovery

def nested (state, leaves, n):
bestSequence = []
bestScore = -10e9
while not terminal (state, leaves):
moves = legalMoves (state, leaves)
for m in moves:
s1 = copy.deepcopy (state)
[s1, leaves1] = play (s1, m, leaves)

if (n==1):
s1 = playout (s1, leaves1)
else:

s1 = nested (s1, leavesl, n - 1)
[scorel, i] = score (s1, 0)
if scorel > bestScore:
bestScore = scorel
bestSequence = s1
[state, leaves] = play (state, bestSequence [len (state)], leaves)
return state



Expression Discovery

import sys

def printExpression (state):
for i in state:
sys.stdout.write (str (atoms [i]) +"'")
sys.stdout.write ("\n')

def test ():

for i in range (10):
s = playout ([], 1)
printExpression (s)
print (score (s, 0) [0])

for i in range (10):
s = nested ([], 1, 2)
printExpression (s)
print (score (s, 0) [0])

test ()



Outline

Algorithm Discovery
Discovery of MCTS Algorithms
Discovery of SHUSS Exploration Terms

Conclusion



Algorithm Discovery



Algorithm Discovery

* Using an algorithm to discover an algorithm

* AlphaZero or MuZero can be used to play the game of
algorithm discovery.



Algorithm Discovery

Monte Carlo Tree Search and Deep Reinforcement
Learning to discover new fast matrix multiplication
algorithms [Fawzi & al. 2022]




Algorithm Discovery

* AlphaDev [Mankowitz & al. 2023]:

Faster sorting algorithms discovered using deep
reinforcement learning

AlphaDev Algorithm
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Abstract

A key challenge in realizing fauli-tolerant quantum computers is circuit optimization. Focusing on
the most expensive gates in fault-tolerant quantum computation (namely, the T gates), we address the
problem of T-count optimization, i.e., minimizing the number of T gates that are needed to implement a
given circuit. To achieve this, we develop AlphaTensor-Quantum, a method based on deep reinforcement
learning that exploits the relationship between optimizing T-count and tensor decomposition. Unlike existing
methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about
quantum computation and leverage gadgets, which significantly reduces the T-count of the optimized circuits.
AlphaTensor-Quantum outperforms the existing methods for T-count optimization on a set of arithmetic
benchmarks (even when compared without making use of gadgets). Remarkably, it discovers an efficient
algorithm akin to Karatsuba’s method for multiplication in finite fields. AlphaTensor-Quantum also finds
the best human-designed solutions for relevant arithmetic computations used in Shor’s algorithm and for
quantum chemistry simulation, thus demonstrating it can save hundreds of hours of research by optimizing
relevant quantum circuits in a fully automated way.

1 Introduction

Quantum computation presents a fundamentally new approach to solving computational problems. Since its
inception [1. 2], many potential applications in various fields have been proposed. including cryptography [3].
drug discovery [4], and materials science and high energy physies [5]. Yet, fault-tolerant quantum computation
introduce some expensive components that have a significant impact on the overall runtime and resource cost
[6, 7]; thus it is important to minimize the use of these components in order to enable the execution of large
computations that address these real-world problems.
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Abstract

We present a method to formulate algorithm discovery as program search, and apply it to discover opti-
mization algorithms for deep neural network training. We leverage efficient search techniques to explore
an infinite and sparse program space. To bridge the large generalization gap between proxy and target
tasks, we also introduce program selection and simplification strategies. Our method discovers a simple
and effective optimization algorithm, Lion (EvoLved Sign Momentun). It is more memory-efficient than
Adam as it only keeps track of the momentum. Different from adaptive optimizers, its update has the same
magnitude for each parameter calculated through the sign operation. We compare Lion with widely used
optimizers, such as Adam and Adafactor, for training a variety of models on different tasks. On image
classification, Lion boosts the accuracy of ViT by up to 2% on ImageNet and saves up to 5x the pre-training
compute on JFT. On vision-language contrastive learning, we achieve 88.3% zero-shot and 91.1% fine-tuning
accuracy on ImageNet, surpassing the previous best results by 2% and 0.1%, respectively. On diffusion
models, Lion outperforms Adam by achieving a better FID score and reducing the training compute by up
to 2.3x. For autoregressive, masked language modeling, and fine-tuning, Lion exhibits a similar or better
performance compared to Adam. Our analysis of Lion reveals that its performance gain grows with the
training batch size. It also requires a smaller learning rate than Adam due to the larger norm of the update
produced by the sign function. Additionally, we examine the limitations of Lion and identify scenarios
where its improvements are small or not statistically significant. The implementation of Lion is publicly
available.! Lion is also successfully deployed in production systems such as Google’s search ads CTR model.

2302.06675v4 [cs.LG] 8 May 2023
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1 Introduction

Optimization algorithms, i.e., optimizers, play a fundamental role in training neural networks. There are a
large number of handcrafted optimizers, mostly adaptive ones, introduced in recent years (Anil et al., 2020;
Balles and Hennig, 2018; Bernstein et al., 2018; Dozat, 2016; Liu et al., 2020; Zhuang et al., 2020). However,
Adam (Kingma and Ba, 2014) with decoupled weight decay (Loshchilov and Hutter, 2019), also referred
to as AdamW, and Adafactor with factorized second moments (Shazeer and Stern, 2018), are still the de
facto standard optimizers for training most deep neural networks, especially the recent state-of-the-art
language (Brown et al., 2020; Devlin et al., 2019; Vaswani et al., 2017), vision (Dai et al., 2021; Dosovitskiy
etal., 2021; Zhai et al., 2021) and multimodal (Radford et al., 2021; Saharia et al., 2022; Yu et al., 2022) models.

*Work done as a student researcher at Google Brain.

*Work done while at Google.

Thttps://github. con/google/automl/tree/master/lion.
Corresp 3 ucla.edu, craz) com




Discovery of MCTS Algorithms



Discovery of MCTS Algorithms

* Evolving Monte-Carlo Tree Search Algorithms
|Cazenave 2007]

* Inventing new exploration terms for MCTS with
Genetic Programming.



Discovery of MCTS Algorithms

* Nested Monte Carlo Search can be used to

discover mathematical expressions and algorithms
|Cazenave 2010]

* It can replace Genetic Programming to discover
new Monte Carlo Search algorithms with a Monte
Carlo Search algorithm



Discovery of SHUSS Exploration Terms



Algorithm 1 Sequential Halving

Parameter: cutting ratio \

Input: total budget 7', set of arms S
S() < S, To « T

R < number of rounds before |Sr| =1
forr=0to R—1do

tr = g

TT-_|_1 T, —1t, |S |

sample ¢, times each arm in S,

Sr11 < S, deprived of the fraction 1 — X\ of the worst arms
end for
Output: arm in Sgr




SHUSS

2.5 Sequential Halving Using Scores

SHUSS [15] is an improvement of Sequential Halving that uses a prior to improve
the move selection at the root. The prior can be used either to eliminate moves
or to bias the selection of the actions.

When the prior is standard AMAF it selects the moves to keep using:

S StandardAMAF (a)
Qa - Qa + C X N(Toot’ a)
S

StandardAMAF (a) = 2_pez, 5(P)

[Pal



SHUSS

SHUSS with a policy network

Select the n best moves according to the policy
Perform Sequential Halving on this set of moves
Game : Go

Neural Network : Transformer trained on Katago
games



SHUSS

Algorithm 2 Selection of the moves to keep for the next round

Parameter: cutting ratio A
Input: set of moves S,
S’I"-l—l 5 @
for i =0 to A x |S,| do
bestScore < —oo
for j =0 to |S;| do
if S.[j] € Sr+1 then
if expression(S:[j]) > bestScore then
best Move < Sy [j]
bestScore < expression(Sy[j])
end if
end if
end for
Sr41 < Sr41 U {bestMove}
end for
return S,




Discovery of Exploration Terms

The atoms we used to generate expressions are:

1, 2, 3 and 100 numbers.

sc: the sum of the scores of the playouts starting with the move.
pr: the prior for the move given by the policy head.

nbp: the number of playouts starting with the move.

nb: the total number of playouts.

+, -, %, /, log, exp, =, max and min operators.



Discovery of Exploration Terms

74 { 3 Sampling with AMAF
[ Sampling

10! 10?
Time in seconds

Fig. 2: Evolution of the best expression accuracy with the logarithm of the sam-
pling search time with doubling search times. Each measure is the average of 100
runs of the sampling algorithms. Using the AMAF prior improves the results.
It finds the same accuracy more than 8 times faster than the uniform sampling
algorithm. The temperature of the AMAF sampling is set to % The dataset
used is the Sequential Halving moves with 128 evaluations dataset and the ex-
ploration terms are scored using 32 evaluations on each state out of the 2,000
states.



Discovery of Exploration Terms

Exploration Term ‘Accuracy on the SHUSS dataset
pr 44.85%

71.45%
72.85%

sC
pr+ 2 X sc X sc

Table 1: Accuracy of SHUSS with 32 evaluations on the SHUSS dataset. The
SHUSS label moves are found using Sequential Halving with 128 evaluations. The
accuracy is calculated on the moves found by SHUSS with 32 evaluations and
the depicted exploration term for halving. The sc exploration term corresponds
to standard SHUSS. The pr + 2 x sc x sc has a slightly better accuracy on the
SHUSS dataset.

Exploration Tcrm|Winrate against PUCT
sc 42.50%
pr+2 X sc X sc 51.00%

Table 2: Winrates of standard SHUSS (the exploration term is sc) and SHUSS
with the pr + 2 x sc¢ x sc exploration term against PUCT. The two SHUSS
algorithms use 32 evaluations and the 5 best prior moves. PUCT also uses 32
evaluations. We see that the discovered exploration term is an improvement on

standard SHUSS.



Conclusion

Sampling of Exploration Terms

The SHUSS dataset for evaluating exploration
terms

SHUSS is improved using the automatically found
exploration term

SHUSS using the discovered exploration term
becomes competitive with PUCT for small budgets



Nested Monte-Carlo Search for
Two-player Games

* The quality of information propagated during the search
can be increased via a discounting heuristic, leading to a
better move selection for the overall algorithm.

* Improving the cost-effectiveness of the algorithm
without changing the resulting policy by using safe
pruning criteria.

* Long-term convergence to an optimal strategy can be
guaranteed by wrapping NMCS inside a UCT-like
algorithm.



Nested Monte-Carlo Search for
Two-player Games

* The discounting heuristic turns a win/loss game into
a game with a wide range of outcomes by having the
max player preferring short wins to long wins, and
long losses to short losses.

« A playout returns v(s ) / (t + 1) with v(s) in {-1,1}



ok
ai O a9
ds a4

(a) The X player is to
play. Any move except as
leads to a draw with per-
fect play.

oqoq oq
odoq

— W = n Oy ] OO

a b ¢ d
(b) White's winning move is
ab5-a6. b6-a7 and b6-c7
initially seem good but are blun-
ders.

Figure 1: Partially played games of TicTacToe and Break-
through with a single winning move for the turn player.

Table 1: Effect of discounting on the distribution of nested
level 2 policies applied to Figure la, across 1000 games.

Move II(V(NMC(2))) II(Vp(NMCp(2)))
Value Frequency Value Frequency
g {0} 0 {0} 0
ay {0, 1} 176 {0} 0
@ {0,1} 123 {0.4) 0
as {1} 575 {3} 1000
(4 {0~ l} 126 {qu} 0




Current
state sg

Future
state sy

Playout

Payoft

values 1 1

Cut on Win  Prune on Depth
(b) (c)

Figure 2: Effect of the pruning strategies on an NMCS run.
We assume a max root state and a left-to-right evaluation
order. (a) In the standard case, the second and the fourth
successor states are equally preferred. With discounting, the
fourth successor state is the most-preferred one. (b) This
fourth state may fail to be selected when Cut on Win is en-
abled. (c) With Pruning on Depth and discounting, however,
this fourth state would be found and preferred too.




Nested Monte-Carlo Search for
Two-player Games

Table 2: Performance of NMC(3) and NMCp(3) starting
from Figure 1b, averaged over 900 runs; showing how dis-
counting and pruning affect the number of states visited and
the correct move frequency.

Discounting  Pruning States Visited(k) Freq(%)

No None 4,459+ 27 1194 2.2
No cow(< 1) LLogd+ 8 123426
No CoOw(< 2) 214+ 2 109+2.0
No cCow(< 3) 20+ 1 9.8+ 2.0
Yes None 2,7754+26 64.1+34
Yes POD(< 1) 1,924 £ 20 64.7+ 3.5
Yes POD(< 2) 1,463 £ 16 58.6 &+ 3.5

Yes POD(< 3) 627+ 19 624 +3.3




Nested Monte-Carlo Search for
Two-player Games

Table 3: Winrates (%) of NMCS with discounting vs. NMCS
without it for nesting levels 0 to 2 and game engine speed.

G Nesting Level States visited
ame
0 1 2 per second (k)
Breakthrough 796 996 994 411
misere 424 80.8 90.0 409
Knightthrough 78.6 100.0 100.0 264
misere  46.0 83.2 85.8 328
Domineering 71.2 77.0 83.8 550
misere 43.4 63.2 68.4 592
NoGo 62.8 76.4 834 357
misere  53.2 65.6 67.2 648

AtariGo 69.6 97.2 1000 280




Table 4: Win percentages of NMCS against a standard MCTS
player for various settings and thinking times.

Za
Game 222 10ms  20ms  40ms  80ms 160ms 320ms
1 3.2 60 120 116 78 64
= I ¢ 276 226 168 216 154 204
= Iv 226 252 304 346 352 396
= 2v 46 2.0 2.4 1.4 24 38
E ] 854 834 0.2 608 570 564
&= .§ I 914 956 970 978 038 088
2 1 952 952 980 990 99.8 99.8
2 10 276 436 BT0 932 956
1 422 572 98 494 502 500
= I ¢ 686 502 424 424 464 446
] Iv 272 254 280 434 492 496
15_; 2¢ 200 164 5.8 1.8 292 382
o o 1 430 316 200 154 112 126
S B 1 ¥546 722 806 884 92 984
2 1v 778 822 888 944 0982 986
2¢ 208 186 322 422 540 670
] 13.4 8.6 8.6 60 142 280
- I ¢ 408 344 374 484 500 500
= Iv 444 386 406 494 500 500
2 2¢ 112 144 202 252 322 454
E o 1 334 252 200 188 132 122
8 & 1 ¥454 472 568 602 628 542
2 1v 694 666 T16 704 68.4 586
2¢ 370 452 456 510 S5T.R 536
] 5.8 3.0 2.6 30 06 08
I ¢ 72 160 31.8 352 354 406
. Iv 376 392 384 408 478 480
S 2V 04 2.8 54 150 206 17.0
< o | 14.6 6.6 52 30 24 18
5 1 ¥ 172 250 388 512 482 488
2 1v 554 566 570 576 546 60.8
2¢ 52 106 194 356 372 478
I 0.6 22 46 54 68 16
= I ¢ 02 192 420 420 554 672
2 § v 420 590 602 TL0 712 772
2v 02 00 0.6 74 86 48




Algorithm 1: Two-player two-outcome NMCS.

1 nested (nesting n, state s, depth d, bound \)

2 whiles ¢ T'do

3 s* ¢ rand(d(s))

4 if 7(s) = maxthenf*-{——else:’* %,

5 if d-pruning and 7(s){—0*,\} = A then return \
6 if n > 0 then

7 foreach s’ in 4(s) do

8 [ <« nested(n-—1, s, d+ 1, [*)

9 if 7(s {:’:’};é:”‘thens — s 1
10 if cut on win and 7(s){l,0} # 0 then break
11 S 4 8"

12 d+—d+1
v(s)

13 if discounting then return —~
14  else return v(s)




Exercise

Modify Breakthrough to play Misere Breakthrough.
Modity playouts for discounted rewards.

Nested playouts.

UCT with nested discounted playouts.

Compare to standard UCT.



Discounted Playout

def misereScore (self):
s = self.score ()
if s == 1:
return -1
if s ==0:
return 1
return s



Discounted Playout

def discountedPlayout (self, t):
while (True):
moves = self.legalMoves ()
if self.terminal ():
return self.misereScore () / (t + 1)
n = random.randint (0, len (moves) - 1)
self.play (moves [n])
t=t+1



Nested Discounted Playout

def nestedDiscountedPlayout (self, t):
while (True):
if self.terminal ():
return self.misereScore () / (t + 1)
moves = self.legalMoves ()
bestMove = moves [0]
best = -2
for i in range (len (moves)):
b = copy.deepcopy (self)
b.play (moves [i])
s = b.discountedPlayout (t + 1)
if self.turn == Black:
S=-5
if s > best:
best =s
bestMove = moves [i]
self.play (bestMove)
t=t+1



UCT Nested Discounted

def UCTNested (board, t1):
if board.terminal ():
return board.misereScore () / (t1 + 1)
t = look (board)
if t = None:
bestValue = -1000000.0
best =0
moves = board.legalMoves ()
for i in range (len (moves)):
val = 1000000.0
if t [1] [i] > O:
Q=t[2][il/t[1][i]
if board.turn == Black:
Q=-Q
val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
if val > bestValue:
bestValue = val
best =i



UCT Nested Discounted

board.play (moves [best])
res = UCTNested (board, t1 + 1)
t[0]+=1
t [1] [best] +=1
t [2] [best] +=res
return res
else:
add (board)

return board.nestedDiscountedPlayout (t1)



Nested Rollout Policy Adaptation



Nested Rollout Policy
Adaptation

NRPA [Rosin 2011] is NMCS with policy learning.

It uses sampling with a softmax of the move
weights as a playout policy.

t adapts the weights of the moves according to the
pest sequence of moves found so far.

During adaptation each weight of a move of the
pest sequence is incremented and all possible
moves In the same state are decreased
proportionally to theire probabilities.




Nested Rollout Policy
Adaptation

 Each move Is associated to a weight wi

* During a playout each move is played with
a probabillity:

exp (wi) / Zcexp (W)



Nested Rollout Policy
Adaptation

* For each move of the best sequence:
wi=w;+ 1

* For each possible move of each state of the
best sequence:

W= wWj— exp (w;) / Zkexp (W)



Morpion Solitaire
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World record [Rosin 2011]



Applications of NRPA

* 3D packing with object orientation.




Applications of NRPA

* Improvement of some alignments for
Multiple Sequence Alignment [Edelkamp &
al 2015].
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Applications of NRPA

* Traveling Salesman Problem with Time
Windows [Cazenave 2012].

2.2

* Physical traveling salesman problem.



Applications of NRPA

» State of the art results for Logistics
[Edelkamp & al. 2016].

&



ENEDIS Agents

e ENEDIS fleet of vehicles Is one of the
largest.

* They plan interventions every day.

* Monte Carlo Search is 5% better than the
specialized algorithms they use.

* Millions of kilometers saved each year
[Cazenave et al. 2021].



RNA Molecule Design

* Find a sequence that has a given folding
[Cazenave et al. 2020].




Network Traffic Engineering

* Provide routing configurations in networks that:

* Miminize ressources }@\ % /Q

1:1 ;4 ;L l;2

* Preserve QoS. Of \s@)<w

2;0‘ /1;0 1;% 1;%




Virtual Network Embedding

* MCTS for 5G network slicing [Elkael 2023]



Snake In the Box

* Find a long path in an hypercube :

110 111

Dimension | Meta-NRPA-fe | Best Known Score

7 50 50
8 97 98
100 101 9 188 190
10 373 370
11 721 712
12 1383 1373
570 011 13 2709 2687
Table 5: Comparison of Meta-NRPA with known lower
bounds on the Snake-in-the-Box

000 001

* Improved lower bounds [Dang & al. 2023]



Nested Rollout Policy Adaptation

* Morpion Solitaire [Rosin 2011]

* CrossWords [Rosin 2011]

* Traveling Salesman Problem with Time Windows [Cazenave et al. 2012]
* 3D Packing with Object Orientation [Edelkamp et al. 2014]

* Multiple Sequence Alignment [Edelkamp et al. 2015]

* SameGame [Cazenave et al. 2016]

* Vehicle Routing Problems [Edelkamp et al. 2016, Cazenave et al. 2020]
* Graph Coloring [Cazenave et al. 2020]

* RNA Inverse Folding [Cazenave & Fournier 2020]

* Network Traffic Engineering [Dang et al. 2021]

* Slicing 5G [Elkael et al. 2023]

* Snake in the Box [Dang et al. 2023]



Algorithm 1 The playout algorithm

playout (state, policy)
sequence < []
while true do
if state is terminal then
return (score (state), sequence)
end if
z <+ 0.0
for m in possible moves for state do
z < z + exp (policy [code(m)])
end for
choose a move with probability
state < play (state, move)
SEqUENCE $— SEqUENCE + Tove

end while

exp(policy[code(move)])

=




Algorithm 2 The Adapt algorithm

Adapt (policy, sequence)
polp < policy
state <— root
for move in sequence do
polp [code(move)] <— polp [code(move)] +
z + 0.0
for m in possible moves for state do
z < z + exp (policy [code(m)])
end for

for m in possible moves for state do
exp(policy[code(m)])

polp [code(m)] < polp [code(m)] - a *
end for
state < play (state, move)
end for
policy <— polp

<




Algorithm 3 The NRPA algorithm.

NRPA (level, policy)
if level == 0 then
return playout (root, policy)
end if
bestScore < —oc
for N iterations do
(result,new) <— NRPA(level — 1, policy)
if result > bestScore then
bestScore < result
seq ¢— new
end if
policy < Adapt (policy, seq)
end for
return (bestScore, seq)




Exercise

* Apply NRPA to the Left Move problem.

* Write a function playout (state) that plays a playout
using Gibbs sampling.

* The probability of playing a move is proportional to the
exponential of the weight of the move.

* weight is a dictionary that contains the weights of the
moves.

* Write the Adapt function
* Write the NRPA function



Exercise

def randomMove (state, policy):
moves = legalMoves (state)
z=0.0
for m in moves:
if policy.get (code(state,m)) == None:
policy [code(state,m)] = 0.0
z = z + math.exp (policy [code(state,m)])
stop = random.random () * z
sum = 0.0
for m in moves:
sum = sum + math.exp (policy [code(state,m)])
if (sum >= stop):
return m

def playout (state, policy):
while not terminal (state):
move = randomMove (state, policy)
play (state, move)
return score (state),sequence(state)



Exercise

def adapt (policy, sequence, alpha = 1.0):
s=1l
polp = copy.deepcopy (policy)
for best in sequence:
moves = legalMoves (S)
z=0.0
for m in moves:
if policy.get (code(s,m)) == None:
policy [code(s,m)] = 0.0
z = z + math.exp (policy [code(s,m)])
for m in moves:
if polp.get (code(s,m)) == None:
polp [code(s,m)] = 0.0
polp [code(s,m)] -= alpha * math.exp (policy [code(s,m)]) / z
polp [code(s,best)] += alpha
play (s, best)
return polp



Exercise

def NRPA (level, policy):
If level == 0:
return playout ([], policy)
best = -np.inf
seq = []
for i in range (100):
pol = copy.deepcopy (policy)
sc, s = NRPA (level - 1, pol)
If sc > best:
best = sc
seq=-s
policy = adapt (policy, seq)
return best, seq



def score (state):
return sum (state)

def play (state, move):
state.append (move)

def legalMoves (state):
return [0,1]

def terminal (state):
return len(state) >= 60

def sequence (state):
return state

def code (state, m):
return 2 * len (state) + m

sc,s =NRPA (1, {})
print (sc, s)
sc,s = NRPA (2, {})
print (sc, s)

Exercise



Selective Policles

Prune bad moves during playouts.
Modify the legal moves function.
Use rules to find bad moves.

Different domain specific rules for :

- Bus reqgulation,
- SameGame,
- Weak Schur numbers.



Bus Regulation

* At each stop a regulator can decide to make a bus
walt before continuing his route.

* Waiting at a stop can reduce the overall
passengers waiting time.

e The score of a simulation 1s the sum of all the
passengers waiting time.

e Optimizing a problem is finding a set of bus
stopping times that minimizes the score of the
simulation.



Bus Regulation

e Standard policy: between 1 and 5 minutes

* Selective policy : waiting time of 1 if there are
fewer than 0 stops before the next bus.

e Code for a move:

- the bus stop,
- the time of arrival to the bus stop,

- the number of minutes to wait before leaving the
stop.



Bus Regulation

Time No & 0=3
0.01 2,620 2,147
0.02 2,441 2,049
0.04 2,329 2,000
0.08 2,242 1,959
0.16 2,157 1,925
0.32 2,107 1,903
0.64 2,046 1,868
1.28 1,974 1,811
2.56 1,892 1,754
5.12 1,802 1,703
10.24 1,737 1,660
20.48 1,698 1,640
40.96 1,682 1,629
81.92 1,660 1,617

163.84 1,632 1,610



SameGame

39
54
41

51

40

Points possible:

Points total:

Presetting:

New Game




SameGame

* Code of a move = Zobrist hashing.

* Tabu color strategy = avoid moves of the
dominant color until there Is only one block
of the dominant color.

* Selective policy = allow moves of size two
of the tabu color when the number of

moves already played Is greater than t.



SameGame

Time No tabu tabu t>10
0.01 155.83 352.19 257.59
0.02 251.28 707.56 505.05
0.04 340.18 927.63 677.57
0.08 404.27 1,080.64 822.44
0.16 466.15 1,252.14 939.30
0.32 545.78 1,375.78 1,058.54
0.64 647.63 1,524.37 1,203.91
1.28 807.20 1,648.16 1,356.81
2.56 1,012.42 1,746.74 1,497.90
5.12 1,184.77 1,819.43 1,605.86

10.24 1,286.25 1,886.48 1,712.17
20.48 1,425.55 1,983.42 1,879.10
40.96 1,579.67 2,115.80 2,100.47
81.92 1,781.40 2,319.44 2,384.24

163.84 2,011.25 2,484.18 2,636.22



SameGame

Standard test set of 20 boards:

NMCS SP-MCTS NRPA web
77,934 78,012 80,030 87,858



Same Game

Hybrid Parallelization [Negrevergne 2017].

Root Parallelization for each computer. Leat
Parallelization of the playouts using threads.

New record of 83 050.

Parallelization for Morpion Solitaire [Nagorko 2019].



Weak Schur Numbers

* Find a partition of consecutive numbers that
contains as many consecutive numbers as possible

* A partition must not contain a number that is the
sum of two previous numbers in the same partition.

* Partition of size 3:
12481122
3567192123
9101213141516 17 18 20



Weak Schur Numbers

Often a good move to put the next number in the
same partition as the previous number.

fitis legal to put the next number in the same
partition as the previous number then it is the only
egal move considered.

Otherwise all legal moves are considered.

The code of a move for the Weak Schur problem
takes as input the partition of the move, the integer
to assign and the previous number In the partition.



Weak Schur Numbers

Time ws(9) ws-rule(9)
0.01 199 2,847
0.02 246 3,342
0.04 263 3,717
0.08 273 4,125
0.16 286 4,465
0.32 293 4,757
0.64 303 5,044
1.28 314 5,357
2.56 331 5,679
5.12 362 6,065
10.24 384 6,458
20.48 403 6,805
40.96 422 7,117
81.92 444 7,311

163.84 473 7,538



Selective Policles

* We have applied selective policies to three
quite different problems.

* For each problem selective policies
improve NRPA.

* We used only simple policy improvements.

* Better performance could be obtained
refining the proposed policies.



Exercise

* Apply NRPA to the Weak Schur problem.
* Write a class defining the Weak Schur problem.

Write a function that plays a playout using Gibbs sampling.

The probability of playing a move is proportional to the
exponential of the weight of the move.

weight is a dictionary that contains the weights associated
to the moves.

code (move) returns the integer associated to the move in
the weight dictionary.



Weak Schur

import random
import math
import numpy as np

N=3
MaxNumber = 10000
class WS (object):

def __init__ (self):
self.partitions = [[] for i in range (N)]
self.possible = np.full((N,MaxNumber),True))
self.next =1
self.sequence =]

def legalMoves (self):
I=1]
for i in range (N):
if self.possible [i] [self.next]:
l.append (i)
return |

def code (self, p):
return N * self.next + p



Weak Schur

def terminal (self):
| = self.legalMoves ()
if 1==1]:
return True
return False

def score (self):
return self.next - 1

def play (self, p):
for i in range (len (self.partitions [p])):
self.possible [p] [self.next + self.partitions [p] [i]] = False
self.partitions [p].append (self.next)
self.next = self.next + 1
self.sequence.append (p)



Weak Schur

class Policy (object):
def __init__ (self):
self.dict = {}

def get (self, code):
w=0
if code in self.dict:
w = self.dict [code]
return w

def put (self, code, w):
self.dict [code] = w



Weak Schur

def playout (state, policy):
while not state.terminal ():
| = state.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (state.code (I [i])))
stop = random.random () * z

move =0
z=0
while True:

z = z + math.exp (policy.get (state.code (I [move]))))
if z >= stop:
break
move = move + 1
state.play (I [move])



Exercise

* Write the adapt function that modifies the

weights of the moves according to the best
seguence of moves.

* Weights of the moves of the best sequence
are incremented.

* For each state of the best sequence,
weights of all the moves are reduced
proportional to their probabillities.



Weak Schur

def adapt (sequence, policy):
polp = copy.deepcopy (policy)
s=WS ()
while not s.terminal ():
| = s.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (s.code (I [i])))
move = sequence [len (s.sequence)]
polp.put (s.code (move), polp.get(s.code (move)) + 1)
for i in range (len (1)):
proba = math.exp (policy.get (s.code (I [i]))) / z
polp.put (s.code (I [i]), polp.get(s.code (I [i])) - proba)
s.play (move)
return polp



Exercise

* Write the multi level NRPA code that
retains a best sequence per level and

recursively calls

* Level zeroisap
sampling.

ower levels.

ayout with Gibbs



Weak Schur

def NRPA (level, policy):
state = WS ()
if level == 0:
playout (state, policy)
return state
pol = copy.deepcopy (policy)
for i in range (100):
ws = NRPA (level - 1, pol)
if ws.score () >= state.score ():
state = ws
pol = adapt (state.sequence, pol)
return state

ws = NRPA (2, Policy ()
print (ws.partitions)
[1, 2, 4, 8, 11, 16, 22], [3, 5, 6, 7, 19, 21, 23], [9, 10, 12, 13, 14, 15, 17, 18, 20]]



Analysis of Nested Rollout Policy Adaptation

The playouts use Gibbs sampling. Each move m;, is associated to a weight w;.
The probability p;;. of choosing the move m;j. in a playout is the softmax function:

eu"‘ik
), —
Pik Zj. Wi
The cross-entropy loss for learning to play move myy, is C; = —log(p;). In order
to apply the gradient we calculate the partial derivative of the loss: gph = _}% We

then calculate the partial derivative of the softmax with respect to the weights:

(Spi,b

()_’UJ@ j

= piv(0b; — Pij)
Where §,; = 1if b = j and 0 otherwise. Thus the gradient is:
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If we use « as a learning rate we update the weights with:
’UJz‘j = 'UJij — ()f(])?;j — ()bj)

This is the formula used in the NRPA algorithm to adapt weights.



Generalized Nested Rollout Policy
Adaptation

We propose to generalize the NRPA algorithm by generalizing the way the probability
is calculated using a temperature 7 and a bias [3;;:

W
f}Tﬂb ‘|'."jik

Pik = i
Zjﬁ T

Bij



Generalized Nested Rollout Policy
Adaptation

The formula for the derivative of f(x) = ICUEN

h(z)
o g@h() = W)yl
fla)= h?(x)

So the derivative of p;;, relative to wy, 1s:

wy Ty, wy
a}-}ib %e T?h+.-'3ih2je_:1+.-'3ij _ %e T:Eh‘l‘?t be ih+3

dw;p, ( Eje—:l+.ﬁi )2

a"})ib 1 e T.h‘l‘?th 2 e T-J-I_gt_j e :h-|-'31h

dw;p, T X, oL+, Ej—e —L 484




Generalized Nested Rollout Policy
Adaptation
The derivative of p;, relative to w;; with j # b is:

dPib 1 e +hije =" +biv
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We then derive the cross-entropy loss and the softmax to calculate the gradient:
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If we use « as a learning rate we update the weights with:
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Generalized Nested Rollout Policy
Adaptation

Let the weights and probabilities of playing moves be indexed by the iteration of the
GNRPA level. Let wy,;; be the weight w;; at iteration n, p,;; be the probability of
playing move j at step ¢ at iteration n, 0, the dy; at iteration n.

1 1A,
(_3 T T.UO;J +||31_J

IEr—
Poij Ekel%'tﬂnﬂc-l—,fﬁk
o i
Wiij = Woij = — (Poij — dob;)
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P1ij Ekeléwuk +Bik Eke%“’likJr-’Sik

@ ' @ . .
W2ij = Wrij — ;(plij — O1b5) = Woij — ;(p(]ij — dobj + P1ij — O1b;)

By recurrence we get:
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Generalized Nested Rollout Policy
Adaptation

From this equation we can deduce the equivalence between different algorithms.
For example GNRPA; with o = (:—;)ng and 7 is equivalent to GNRPA, with «y
and 75 provided we set wp;; in GNRPA; to :—;*u_rmj. It means we can always use 7 = 1
provided we correspondingly set v and wyp;;.

Another deduction we can make is we can set 3;; = (0 provided we set wp;; =
Wo;j + T X [3;;. We can also set wy;; = 0 and use only /3;; which is easier.

The equivalences mean that GNRPA 1is equivalent to NRPA with the appropriate «
and wo,;. However it can be more convenient to use J;; than to initialize the weights
wp;; as we will see for SameGame.



SameGame

—— NRPA
—— GNRPA.beta
—— GNRPA.beta.opt
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Fig. 1: Evolution of the average scores of the three algorithms at SameGame.
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TSPTW
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Fig. 2: Evolution of the average scores of the three algorithms for TSPTW.




TSPTW

Table 2: Results for the TSPTW rc204.1 problem

Time NRPA  GNRPA.beta GNRPA beta.t.1.4 GNRPA beta.t.1.4.0pt
40.96 -3745986.46 (245766.53 ) -897.60 (1.32)  -892.89 (0.96 ) -892.17 (1.04)
81.92 -1750959.11 (243210.68 ) -891.04 (1.05)  -886.97 (0.87) -886.52 (0.83)
163.84 -1030946.86 (212092.35 ) -888.44 (0.98 )  -883.87 (0.71 ) -884.07 (0.70 )
327.68 -285933.63 (108975.99 ) -883.61 (0.63 )  -880.76 (0.40 ) -880.83 (0.32)
655.36  -45918.97 (38203.97 ) -880.42 (0.30 )  -879.35(0.16) -879.45 (0.17)



GNRPA

* NRPA with a bias.
* Equivalent to the initialization of the weights.
* More convenient to use a bias.

* We can always set the temperature to 1 without a
loss of generality.

* Good results for SameGame and TSPTW.



GNRPA

* Exercise:
* Apply GNRPA to the Weak Schur problem.



Weak Schur

def playout (state, policy):
while not state.terminal ():
| = state.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (state.code (I [i])) + state.beta (I [i]))
stop = random.random () * z

move =0
z=0
while True:

z = z + math.exp (policy.get (state.code (I [move])) + state.beta (I [move]))
if z >= stop:
break
move = move + 1
state.play (I [move])



Weak Schur

def adapt (sequence, policy):
polp = copy.deepcopy (policy)
s=WS ()
while not s.terminal ():
| = s.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (s.code (I [i])) + s.beta (I [i]))
move = sequence [len (s.sequence)]
polp.put (s.code (move), polp.get(s.code (move)) + 1)
for i in range (len (1)):
proba = math.exp (policy.get (s.code (I [i])) + s.beta (1 [i])) / z
polp.put (s.code (I [i]), polp.get(s.code (I [i])) - proba)
s.play (move)
return polp



Weak Schur

def beta (self, p):
last = len (self.sequence)
If last == O:
return O
If p == self.sequence [last — 1]:
return 10
return O
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Abstract

Nested Rollout Policy Adaptation (NRPA) is an approach
using online learning policies in a nested structure. It has
achieved a great result in a variety of difficult combinato-
rial optimization problems. In this paper, we propose Meta-
NRPA, which combines optimal stopping theory with NRPA
for warm-starting and significantly improves the performance
of NRPA. We also present several exploratory techniques for
NRPA which enable it to perform better exploration. We es-
tablish this for three notoriously difficult problems ranging
from telecommunication, transportation and coding theory,
namely Minimum Congestion Shortest Path Routing, Trav-
eling Salesman Problem with Time Windows and Snake-in-
the-Box. We also improve the lower bounds of the Snake-in-
the-Box problem for multiple dimensions.

Introduction

Search algorithms can be used to solve many difficult com-
binatorial optimization problems. Monte Carlo Search algo-
rithms rely on randomness to discover good sequences of
decisions for difficult problems. Following their success in
games (Coulom 2007; Kocsis and Szepesvari 2006; Browne
etal. 2012; Silver et al. 2016, 2017, 2018), they were applied
with success to multiple combinatorial optimization prob-
lems (Cazenave 2009; Rosin 2011). They work particularly
well when combined with machine learning.

We propose new general techniques to Monte Carlo
Search algorithms that improve the algorithms for multiple
applications. Using these techniques we get better results
than the previous ones for three difficult combinatorial opti-
mization problems from varied fields, namely telecommuni-
cation, transportation and coding theory.

The problems we address were already successfully ad-
dressed using Nested Rollout Policy Adaptation (NRPA).
They are the Minimum Congestion Shortest Path Routing
problem (Dang et al. 2021), the Traveling Salesman Prob-
lem with Time Windows (Edelkamp et al. 2013) and the
Snake-in-the-Box problem (Edelkamp and Cazenave 2016).
For these three problems we improve the results compared to
standard NRPA. In particular for the Snake-in-the-Box prob-
lem, we provide new lower bounds for several dimensions.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our contributions deal with the initialization of NRPA us-
ing the optimal stopping theory and with better exploration
avoiding already scored sequences of decisions. More pre-
cisely, we observed that whenever NRPA gets unsatisfactory
solutions from the beginning it is highly unlikely that it will
find significantly better solutions in subsequent iterations.
To remedy this problem, we cast the initialization step of
NRPA as an instance of the secretary problem, a well-known
optimal stopping problem: a decision maker (DM) wants to
recruit a secretary for a job position, n candidate secretaries
are thus interviewed one after the other in a random order,
which can be ranked among the examined candidates. The
DM can decide whether to terminate the recruitment process
by accepting the last interviewed candidate. The decision of
DM about recruiting a candidate needs to be just after the
interview of the candidate and it is irrevocable. In addition,
DM has no knowledge of the quality of the upcoming can-
didates. The goal is to maximize the probability of selecting
the best candidate. In our case, we are interested in a variant
of this problem, where candidates are NRPA runs and we
aim at minimizing the expected rank of the chosen candi-
date. To our knowledge, this is the first time that the optimal
stopping theory is used in the context of Monte Carlo search.

The paper is organized in five sections. The second sec-
tion deals with related works. The third section details our
contributions. The fourth section gives experimental results
for the Minimum Congestion Shortest Path Routing prob-
lem, the Traveling Salesman Problem with Time Windows
and the Snake-in-the-Box problem. Conclusions and future
works are given in section five.

Related Works
Monte Carlo Search

Monte Carlo Search has many applications in games and
difficult combinatorial optimization problems. When com-
bined with deep learning it surpasses the level of the best
human players in games such as Go, Chess and Shogi (Silver
etal. 2018). The combination has been applied to many other
games with success (Cazenave et al. 2020). It is also the
best general algorithm to solve a problem when given only
the raw description of the problem as is the case in General
Game Playing. Since 2007, all the world champions of the
General Game Playing competition have used Monte Carlo



Force Explore

* When a policy has been reinforced a lot, for example in
the end of the iterations loop, the playouts are almost
deterministic.

* NRPA very often replays the same playout.

* Force Explore detects when a terminal state has already
been evaluated before.

* In this case it randomly chooses a move in the playout,
modifies it and performs another playout.

* "Warm-Starting Nested Rollout Policy Adaptation with
Optimal Stopping", Dang et al. AAAIT 2023.



Force Explore

* Exercise:

* Apply Force Explore to the Weak Schur
problem.



Force Explore

* First thing is to compute a hascode for states :

def play (self, p):
for i in range (len (self.partitions [p])):
self.possible [p] [self.next + self.partitions [p] [i]] = False
self.h = self.h A randomNumber [self.code (p)]
self.partitions [p].append (self.next)
self.next = self.next + 1

self.sequence.append (p)



Force Explore

* Modification of the playout function to force explore :

def playout (state, policy):

while not terminal (state):
move = randomMove (state, policy)
state = play (state, move)

s = TT.get (state.h, None)

if s I= None:
index = random.randint (0, len (state.sequence) — 1)
statel = WS ()
for i in range (index):

statel = play (statel, state.sequence [i])

1 = statel.legalMoves ()
move = int(random.random () * len(l))

statel.play (I [move])

state = statel
while not terminal (state):
move = randomMaove (state, policy)
state = play (state, move)
TT.add (state.h, 1)
return state



Warm Starting

* Warm starting performs multiple recursive calls before
starting to adapt.

* The optimal stopping criterion is the one of the secretary
problem :

Ri<i*c/(n+1-1i)

with Ri relative rank of the ith item,
n the total number of items,

C a constant.

* "Warm-Starting Nested Rollout Policy Adaptation with
Optimal Stopping", Dang et al. AAAI 2023.



Warm Starting

* World records for the Snake-in-the-Box.



Warm Starting

* Exercise:

* Apply Warm Starting to the Weak Schur
problem.



Warm Starting

def MetaNRPA (level, policy):
state = WS ()
if level == 0:
playout (state, policy)

return state

pol = copy.deepcopy (policy)

1=1]

startLearning = False
c=23

for i in range (100):

ws = MetaNRPA (level - 1, pol)
score = ws.score ()
if score >= state.score ():
state = ws
l.append (score)
Lsort (reverse=True)
index = Lindex (score)
ifindex +1<=(@{+1) *c/ (100 —1i):
startLearning = True
if startLearning:
pol = adapt (state.sequence, pol)

return state



Limited Repetitions

* Stops the iterations at a level when the best sequence is found again.

* Enables to avoid deterministic policies that find the same sequence
again and again and waste time.

* Simple to code.
* Generalized Nested Rollout Policy Adaptation with Limited Repetitions
* Applications :

* TSPTW,

* RNA Design,
* Weak Schur.

*"Generalized Nested Rollout Policy Adaptation with Limited
Repetitions", Tristan Cazenave. Arxiv 2024.



Generalized Nested Rollout Policy Adaptation with
Limited Repetitions

Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. Generalized Nested Rollout Policy Adaptation (GNRPA) is a Monte
Carlo search algorithm for optimizing a sequence of choices. We propose to im-
prove on GNRPA by avoiding too deterministic policies that find again and again
the same sequence of choices. We do so by limiting the number of repetitions of
the best sequence found at a given level. Experiments show that it improves the
algorithm for three different combinatorial problems: Inverse RNA Folding, the
Traveling Salesman Problem with Time Windows and the Weak Schur problem.

1 Introduction

Monte Carlo Tree Search (MCTS) [28,17] has been successtully applied to many games
and problems [5]. It originates from the computer game of Go [4] with a method based
on simulated annealing [6]. The principle underlying MCTS is to learn the move to play
using statistics on random games. In the early times of MCTS, random games were
played with a uniform policy. Computer Go program soon used non uniform playout
policies, learning the policy with optimization algorithms [18]. Playout policies were
replaced with neural network evaluations for computer Go with the AlphaGo program
[37], and then for other games such as Chess and Shogi with the Alpha Zero program
[38]. There have been numerous applications of MCTS following the notorious success
in Computer Go, ranging from predicting the structure of large protein complexes [7]
to wind farm layout optimization [2].

Nested Monte Carlo Search (NMCS) [8] is a recursive algorithm which uses lower
level playouts to bias its playouts, memorizing the best sequence at each level. After the
searches following each possible move have been run, the move of the best sequence
at the current level is played. At the lowest level, playouts are performed. They can
be uniformly random playouts [8] or they can be biased using heuristic probabilities
for possible moves [31]. Each playout returns the sequence of moves being made and
the score of the terminal position. NMCS has given good results on many combinatorial
problems such as puzzle solving and single player games [30], the Inverse RNA Folding
problem [31] or chemical retrosynthesis [35].

Nested Rollout Policy Adaptation (NRPA) [34]. combines nested search, memoriz-
ing the best sequence of moves found at each level, and the online learning of a playout
policy using this sequence. NRPA has world records in Morpion Solitaire and cross-
word puzzles and has also been applied to many other combinatorial problems such as
the Traveling Salesman Problem with Time Windows [16,21], 3D Packing with Object
Orientation [23], the physical traveling salesman problem [24], the Multiple Sequence



Limited Repetitions

* Exercise:

* Apply Limited Repetitions to the Weak Schur
Problem.



Limited Repetitions

def GNRPALR (level, policy):
state = WS ()
if level == 0:
playout (state, policy)
return state
pol = copy.deepcopy (policy)
while True:
ws = GNRPALR (level - 1, pol)
score = ws.score ()
if score > state.score ():
state = ws
if score == state.score ():
return state

pol = adapt (state.sequence, pol)



Learning a Prior by Replaying Solutions

* Generate solved problems.
* Compute statistics on moves for the generated solved problems.

* Use the logarithm of the statistics of a move as a prior for the
move.

* Applications :
* Kakuro
* Latin Square Completion
* RNA Design

* "Learning a Prior for Monte Carlo Search by Replaying Solutions
to Combinatorial Problems", Tristan Cazenave. Arxiv 2024.



Learning a Prior for Monte Carlo Search by Replaying
Solutions to Combinatorial Problems

Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. Monte Carlo Search gives excellent results in multiple difficult com-
binatorial problems. Using a prior to perform non uniform playouts during the
search improves a lot the results compared to uniform playouts. Handmade heuris-
tics tailored to the combinatorial problem are often used as priors. We propose a
method to automatically compute a prior. [t uses statistics on solved problems.
It is a simple and general method that incurs no computational cost at playout
time and that brings large performance gains. The method is applied to three
difficult combinatorial problems: Latin Square Completion, Kakuro, and Inverse
RNA Folding.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and
problems [4]. It has superhuman performances in two player complete information
games such as Go and Chess [32].

Nested Monte Carlo Search (NMCS) [6] is an algorithm that works well for puzzles
and combinatorial problems. It biases its playouts using lower level playouts. At level
zero NMCS adopts a uniform random playout policy. Learning of playout strategies
combined with NMCS has given good results on combinatorial problems [28]. Other
applications of NMCS include Single Player General Game Playing [24], Coopera-
tive Pathfinding [2], Software testing [26], heuristic Model-Checking [27], the Pancake
problem [3], Games [10], the Inverse RNA Folding problem [25] and retrosynthesis
[30].

Online learning of a playout policy in the context of nested searches has been further
developed for puzzles and combinatorial problems with Nested Rollout Policy Adapta-
tion (NRPA) [29]. NRPA has found new world records in Morpion Solitaire and cross-
words puzzles. NRPA has been applied to multiple problems: the Traveling Salesman
Problem with Time Windows (TSPTW) [11,13], 3D Packing with Object Orientation
[15], the physical traveling salesman problem [16], the Multiple Sequence Alignment
problem [17] or Logistics [14]. The principle of NRPA is to adapt the playout policy so
as to reinforce the best sequence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree Search dates back to the general
game player Cadia Player and its MAST playout policy [19].

Monte Carlo Search for combinatorial problems can be much improved using a
prior. A prior is a heuristic that is used in playouts to sample in a non uniform way. It
favors some moves in the playout according to the heuristic. The use of a bias or the
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Fig. 4: The distribution of the priors for Inverse RNA Folding. The y-axis gives the number of
priors in each range of values. There are 6 possible moves for a (" and 4 possible moves for
a ’.’ in the target structure. This makes 10 possibilities for the previous move in the NGRAM
and again 10 possibilities for the current move. Therefore there are 100 different priors. On the
contrary of LSC and Kakuro the distribution of the priors is mainly on small values. The smallest
prior is equal to 0.010083 and the greatest prior is equal to 0.437825.



Table 3: Number of Eternal 00 problems solved by ditferent algorithms and various search time
limits in seconds. GNRPA is much better than NRPA. The NGRAM prior is better than the
NEMO prior. The temperature for the NGRAM prior is 7 = 6. Sampling with the NGRAM prior
is better than sampling with the NEMO prior. Sampling with a prior is much better than uniform
sampling.

Algorithm 32s 64s 1285 256s 5125 1,024s 2.048s 4.096s
Sampling 11 11 11 12 14 16 16 17
Sampling NEMO prior 51 55 57 60 61 61 62 64
Sampling NGRAM prior 57 65 68 69 69 69 69 69
NRPA 28 33 41 48 57 59 61 65
GNRPA NEMO prior 68 69 74 77 78 79 81 81

GNRPA NGRAM prior 70 75 78 79 80 81 82 85



Learning a Prior by Replaying Solutions

A Kakuro puzzle is played on a rectangular grid. The objective is to fill numbers
into the blank cells, according to the following rules:

— A sum is associated with every horizontal or vertical sequence of blank cells.

— Each horizontal (respectively vertical) sequence has a cell left of (respectively
above) its first cell, and that cell contains the sum that is associated with the se-
quence.

— In each horizontal/vertical sequence of cells, every number may occur at most once.

— The sum of the numbers of a sequence must equal the number that is denoted in the

corresponding hint.



Learning a Prior by Replaying Solutions

The generation of a Kakuro problem and its solution is almost as easy as the gener-
ation of a LSC problem. First generate a valid square with sampling. A single playout
is usually enough. Then calculate the sums for each row and for each column. Then re-
move all the values and keep the generated valid square as the solution to the problem.
Here is an example of a solved Kakuro problem of size 10 with values ranging from 1
to 11 generated with this method:

65 60 58 62 59 59 62 60 56 55
5 3 5 4 110 8 2 9 6 7
62 9 11 10 5 3 6 7 1 8 2
60 8 2 510 9 411 3 7 1
56 2 4 9 8 1 5 3 7 11 6
56 4 7 3 6 2 10 1 11 5 9
60 7 1 2 3 8 11 5 10 9 4
59 5 3 611 4 1 9 8 2 10
62 11 9 7 2 6 3 10 5 1 8
65 6 10 11 7 5 9 8 2 4 3
59 10 8 1 911 2 6 4 3 5
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Fig. 3: The distribution of the priors for Kakuro. The y-axis gives the number of priors in each
range of values. For example there are 15,410 priors that have the value 1.0 and 20,353 priors that
have a value between (.0 and 0.1. The priors associated to codes that have never been seen during
replay (e.g. nb [code] = 0) have been removed. We can observe the peak at (.0 which mainly
corresponds to the numbers that are impossible given the row and the column sums. We can also
observe the smaller peak at 1.0 which corresponds to the numbers that are forced. Note that apart
from these two cases there are many cases where the prior is between (.0 and 1.0 which does not
correspond to a hard constraint.



Learning a Prior by Replaying Solutions

Table 2: Number of Kakuro problems of size 10, with 11 possible values, solved by different
algorithms out of 100 problems and for various numbers of playouts. The temperature of the
prior is set to 7 = 4. Using the prior usually solves the problem in 1 playout.

Algorithm 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131.072
Sampling 0 0 0 0 0 0 0 0
Sampling Prior 100 100 100 100 100 100 100 100
NRPA 0 0 0 23 35 65 86 98

GNRPA Prior 100 100 100 100 100 100 100 100



Learning a Prior by Replaying Solutions

* Exercise:

* Apply Learning a Prior by Replaying Solutions
to Kakuro.

* Generate Kakuro problems of size 10 with 11
possible values.

* Compute statistics on moves.
* Use the statistics as a prior for GNRPA.



Learning a Prior by Replaying Solutions

double playoutFirstVariable () {
Move listeCoups [MaxLegalMoves];
while (true) {
int nb = legalMovesFirstVariable (listeCoups);
if ((nb == 0) || terminal ())
return score ();
int n = rand () % nb;
play (listeCoups [n]);
if (length >= MaxPlayoutLength - 1) {
return score ();
}
}
}



int legalMovesFirstVariable (Move mvs [MaxLegalMoves]) {
int nb =

Move m;
for Cint 1 =0 §{ L < Dxi 1#4+)
for (int j = 0; j < Dy; j++)
if (damier [i] [j] == -1) {
for (int k = 0; k < Max; k++) {
X =L
m.y = 3J;
m.val = k;

bool present = false;
Tor {(int L. =80; L < Dx; L)
i el =13
if (damier [1] [j] == k) {
present = true;
break;

if (!present)
for (int 1L = 0; 1 < Dy; 1++)
it tL.i="))
if (damier [i] [1] == k) {
present = true;
break;
}
if (!present) {
mvs [nb] = m;
nb++;
}
}

return nb;

}

return nb;

}



bool terminal () {
int nbVar = 0;
for (int v =0 7 1 < Dx: 1¥+)
for (int j = 0; j < Dy; j++)
if (damier [1] []] -1)
nbVar++;

return true;
h
if (nbVar == 0)
return true;
return false;

}




void play (Move move) {
chooseVariable = false;
rollout [length] = move;

length++;
if (chooseVariable) {
V = move;
chooseVariable = false;
}
else {

chooseVariable = true;
damier [move.x] [move.y] = move.val;
hash ~= HashArray [move.x] [move.y] [move.val];
for (int 1 = 0; 1 < Dx; 1++)
if (1 !'= move.x)
if (possible [1] [move.y] [move.val]) {
nbValues [1] [move.y]--;
possible [l] [move.y] [move.val] = false;
}
for (int 1 = 0; 1 < Dy; Ul++)
if (L !'= move.y)
if (possible [move.x] [1] [move.val]) {
nbValues [move.x] [1]--;
possible [move.x] [1] [move.val] = false;

}




for (int 1 = 0; 1 < 100000; i++) {

Board b;
while (!b.complete ()) {
Bt )]

b.playout ();

}
//b.print (stderr);
Board bl = b;
bl.ini1tSums ();
bl.replay (b);
fprintf (stderr, "+");
}
fprintf (stderr, "\n");
FILE * fp = fopen ("kakuro.code.txt", "w");
for (int 1 = 0; 1 < MaxCode; i++) {
if <nb [1] == 8) {
fprintf (stderr, "0 ");
fprintf (fp, "0.0 ");
}
else {
fprintf (stderr, "(%d) %d/%d=%f ", i, countBest [i1], nb[1], ((float)countBest [1])/nb[1]);
fprintf (fp, "%f ", ((float)countBest [1])/nb[1]);
}
}

fprintf (stderr, "\n");
fclose (fp);
exit (0);




Bias Weights Learning

* Bias Learning dynamically learns the weight to
associate to a bias in GNRPA.

* "Learning the Bias Weights for Generalized

Nested Rollout Policy Adaptation”, Sentuc et al.
LION 2023.



Learning the Bias Weights for Generalized Nested
Rollout Policy Adaptation

Julien Sentuc!, Farah Ellouze!, Jean-Yves Lucas?, and Tristan Cazenave!
! LAMSADE, Université Paris Dauphine - PSL, CNRS, Pans, France
2 OSIRIS department, EDF Lab Paris-Saclay, Electricité de France, France

Abstract. Generalized Nested Rollout Policy Adaptation (GNRPA) is a Monte
Carlo search algorithm for single player games and optimization problems. In
this paper we propose to modify GNRPA in order to automatically learn the bias
weights. The goal is both to obtain better results on sets of dissimilar instances,
and also to avoid some hyperparameters settings. Experiments show that it im-
provesthe algorithm for two different optimization problems: the Vehicle Routing
Problem and 3D Bin Packing.

1 Introduction

Monte Carlo Tree Search (MCTS) [20, 12] has been successfully applied to many games
and problems [3]. It originates from the computer game of Go [2] with a method based
on simulated annealing [4]. The principle underlying MCTS is learning the best move
using statistics on random games.

Nested Monte Carlo Search (NMCS) [5] is a recursive algorithm which uses lower
level playouts to bias its playouts, memorizing the best sequence at each level. At each
stage of the search, the move with the highest score at the lower level is played by the
current level. At each step, a lower-level search is launched for all possible moves and
the move with the best score is memorized. At level (), a Monte Carlo simulation is
performed, random decisions are made until a terminal state is reached. At the end, the
score for the position is returned. NMCS has given good results on many problems like
puzzle solving, single player games [22], cooperative path finding or the inverse folding
problem [23].

Based on the latter, the Nested Rollout Policy Adaptation (NRPA) algorithm was in-
troduced [26]. NRPA combines nested search, memorizing the best sequence of moves
found, and the online learning of a playout policy using this sequence. NRPA achieved
world records in Morpion Solitaire and crossword puzzles and has been applied to many
problems such as object wrapping [17], traveling salesman with time window [10, 15].
vehicle routing problems [ 16, 8] or network traffic engineering [13].

GNRPA (Generalized Nested Rollout Policy Adaptation) [6] generalizes the way
the probability is calculated using a temperature and a bias. It has been applied to some
problems like [nverse Folding [7] and Vehicle Routing Problem (VRP) [27].

This work presents an extension of GNRPA using bias learning. The idea is to learn
the parameters of the bias along with the policy. We demonstrate that learning the bias
parameters improves the results of GNRPA for Solomon instances of the VRP and for
3D Bin Packing.



The probability of choosing the move c at the index ¢ with this bias is:
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So the derivative of p;. relative to w is:

(Spic o .BlicAic X Zk Aik - Aic X Zk .’falikAik

(S'U."_]_ N (Zk Aik)z
OPic Aie ) >k BrinAik
- X (.dlic - )
dwy Zk A Zk Ak
(Spic , 3 ik Aik
5 = Pic X (.ﬁlic - Z:k;)
w1 Dok Aik
The cross-entropy loss for learning to play a move is C; = —log(p;.). In order to
apply the gradient, we calculate the partial derivative of the loss: g;?i = — ; . We then
calculate the partial derivative of the softmax with respect to the weight:
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Bias Weights Learning

If we use a1 and a» as learning rates, we update the weight with (line 16 of algo-
rithm 2):

> 1 BrikAik
Zk Aik

Similarly, the formula for ws is (line 17 of algorithm 2):

)

wy +— wp + oy (ﬁlic -

Z;{. BaikAik
ch A

)

Wo $— Wo + (o (,Hﬂif: _



Algorithm 2 The new generalized adapt algorithm

1: Adapt (policy, sequence)
2:  polp + policy
3 Witemp — wy
4 Watemp — wa
5: state <— root
6: for move € sequence do
¥
7 polp|code(move)| < polp|code(move)| + <
8 ?-Ultewap — ?-Ultewap + ;81 (TTLO“UE)
9

: W2temnp — Watemp + ,82 (mm;e)
10: z4+0

11: for m € possible moves for state do
12: Z 4 z+ epmmy[{fdﬁ(m”—kwlﬁl (m)4w2Fs(m)
13: end for
14: for m € possible moves for state do
policy[code(m]] .
+wldy(m)+w2ds(m)
. _ = € T

15: polp|code(m)] < polp|code(m)] -7 X .

e pahcy[r;ade(:n)] +wld)(m)+w2dqim)
16: Witemp — Witemp — (1 }Bl (m) _ P

e pah-::y[r;ade(:m)] +wlfy(m)+w2dg(m)
17 W2temnp — Watemp — ﬂgﬁg(m) -
18: end for
19: state « play(state,b)
20:  end for

21:  policy < polp




Table 1: Results of LSAH, HM, NRPA,GNRPA and BLGNRPA on the 3D Packing

problem
Method/Set  wy Wo Setl Set2 Set3 Setd Set5 Set6
Ut N Ut N Uti. N Ut N Ut. N Ut N
LSAH 0.502 39 0527 15 0623 27 0675 24 0431 15 0641 30
Heightmap 0502 39 0463 14 0.623 27 0.738 27 0836 31 0565 27
NRPA 0.743 46 0.836 27 0.843 38 0852 31 0868 33 0.807 37

GNRPA 1.00 1.00 | 0796 48 0.836 27 0.887 41 0852 31 0.868 33 0807 37
BLGNRPA 1.00 1.00 | 0.808 50 0916 28 0.887 41 0913 33 0.868 33 0807 37
GNRPA 268 1084 | 0.808 50 0836 27 0887 41 0852 31 0868 33 0807 37
BLGNRPA 268 1084 | 0.808 50 0916 28 0.887 41 0913 33 0.868 33 0.892 39




Table 2: The different algorithms tested on the 56 standard instances

NRPA BLGNRPA(0) | GNRPA BLGNRPA(w) | OR-Tools Best Known
Instances | NV Km | NV Km | NV Km | NV Km | NV Km | NV Km
cl01 10% 828.94 | 10%* 828.94 | 10% 828.94 | 10* 828.94 | 10* 828.94 | 10 828.94
cl02 10 1,011.40 | 10 843.57 | 10 843.57 | 10 843.57 | 10% 828.94 | 10 828.94
cl03 10 1,105.10 | 10 844.86 | 10 843.02 | 10 828.94 | 10%* 828.06 | 10 828.06
cl04 10 1,112.66 | 10 831.88 | 10 839.96 | 10 828.94 | 10 846.83 | 10 824.78
cl03 10 896.93 | 10%* 828.94 | 10* 828.94 | 10* 828.94 | 10* 828.94 | 10 828.94
cl06 10 853.76 | 10%* 828.94 | 10* 828.94 | 10* 828.94 | 10* 828.94 | 10 828.94
cl07 10 891.22 | 10%* 828.94 | 10* 82894 | 10* 828.94 | 10* 828.94 | 10 828.94
c108 10 1006.69 | 10* 828.94 | 10% 828.94 | 10* 828.94 | 10* 828.94 | 10 828.94
cl09 10 962.35 | 10 834.85 | 10 834.85 | 10 836.60 | 10 857.34 | 10 828.94
201 4 709.75 | 3% 591.56 | 3* 591.56 | 3* 591.56 | 3* 591.56 | 3 591.56
202 4 92993 | 3 609.23 | 3 611.08 | 3 611.08 | 3* 591.56 | 3 591.56
¢203 4 976.00 | 3 59933 | 3 61179 | 3 60558 | 3 59423 | 3 591.17
204 4 995.19 | 3 595.65 | 3 61450 | 3 59774 | 3 59382 | 3 590.60
¢205 3 702.05 | 3* 588.88 | 3% 588.88 | 3* 588.88 | 3* 588.88 | 3 588.88
206 4 773.28 | 3% 588.49 | 3% 58849 | 3% 588.49 | 3* 588.49 | 3 588.49
207 4 762.73 | 3 592.50 | 3 59250 | 3 592.50 | 3* 588.29 | 3 588.29
208 3 74198 | 3* 588.32 | 3* 588.32 | 3* 588.32 | 3* 58832 | 3 588.32
rl01 19 1,660.01 | 19% 1,650.80 | 19* 1,650.80 | 19 1,654.67 | 19 1,653.15 | 19 1,650.80
rl02 17 1,593.73 | 17 1,499.20 | 17 1,508.83 | 17 1.501.11 | 17 1489.51 | 17 1,486.12
r103 14 1,281.89 | 14 1,235.31 | 13 1,336.86 | 13 1,321.17 | 13 1,317.87 | 13 1,292.68
rl04 11 1,098.30 | 10 1,000.52 | 10 1,013.62 | 10 996.61 | 10 1,013.23 | 9 1,007.31
r105 15 1,436.75 | 14 1,386.07 | 14 1,378.36 | 14 1385.76 | 14 1,393.14 | 14 1,377.11
r106 12 1,364.09 | 12 1,269.82 | 12 1,27447 | 12 1,265.97 | 13 1,243.0 | 12 1,252.03
rl07 11 1,241.15 | 11 1,079.96 | 10 L13L19 | 10 1,132.95 | 10 1,130.97 | 10 1,104.66
rl08 11 1,106.14 | 10 953.15 | 10 990.18 | 10 941.74 | 10 963.4 | 9 960.88
rl09 12 1,271.13 | 12 1,173.57 | 12 1,180.09 | 12 1L,171.70 | 12 1,17548 | 11 1,194.73
rl10 12 1,232.03 | 11 1,116.64 | 11 1,140.22 | 11 1,094.84 | 11 1,L125.13 | 10 1,118.84
rl11 12 1,200.37 | 11 1,071.84 | 11 1,104.42 | 11 1,073.74 | 11 1,088.01 | 10 1,096.72
rl12 10 1,162.47 | 10 965.43 | 10 1,013.50 | 10 974.56 | 10 974.65 | 9 982.14
201 5 1,449.95 | 5 1,250.16 | 4 1,316.27 | 4 1,203.38 | 4 1,260.67 | 4 1,252.37
202 4 1,335.96 | 4 1,12491 | 4 1,129.89 | 4 1,122.80 | 4 1L,091.66 | 3 1,191.70
1203 4 1,255.78 | 4 930.58 | 3 1,004.49 | 3 97045 | 3 95385 | 3 939.50
204 3 1,074.37 | 3 76547 | 3 787.69 | 3 77222 | 3 755.01 | 2 852.52
205 4 1,299.84 | 3 1,047.53 | 3 1,043.81 | 3 1,052.15 | 3 1,028.6 | 3 094.43
206 3 1,270.89 | 3 982.50 | 3 990.88 | 3 959.89 | 3 923.1 | 3 906.14
1207 3 1,21547 | 3 871.66 | 3 900.17 | 3 87891 | 3 832.82 | 2 890.61
208 3 1,027.12 | 3 726.34 | 2 77925 | 2 737.50 | 2 734.08 | 2 726.82
209 4 1,226.67 | 3 954.02 | 3 981.82 | 3 960.40 | 3 92407 | 3 909.16
210 4 1,278.61 | 3 970.30 | 3 995.50 | 3 991.87 | 3 963.4 | 3 039.37
211 3 1,068.35 | 3 821.79 | 3 850.33 | 3 798.84 | 3 786.28 | 2 885.71
rcl01 15 1,745.99 | 15 1,636.50 | 14 1,702.68 | 15 1.636.50 | 15 1,639.54 | 14 1,696.95
rc102 14 1,571.50 | 13 1.497.11 | 13 1,509.86 | 13 1,496.16 | 13 1,522.89 | 12 1,554.75
rc103 12 1,400.54 | 11 1,265.80 | 11 1,287.33 | 11 1,273.28 | 12 1,322.84 | 11 1,261.67
rcl04 11 1,264.53 | 10 1.147.69 | 10 1,160.55 | 10 1,146.36 | 10 1,155.33 | 10 1,135.48
rcl05 15 1,620.43 | 14 1,553.43 | 14 1,58741 | 14 1,563.18 | 14 1,614.98 | 13 1,629.44
c106 13 1,486.81 | 12 1,385.21 | 12 1,397.55 | 12 1,388.80 | 13 1.401.73 | 11 1,424.73
107 12 1,338.18 | 11 1,238.04 | 11 1,247.80 | 11 1,233.76 | 11 1,255.62 | 11 1,230.48
rc108 11 1,286.88 | 10 1,150.68 | 10 1,213.00 | 10 1152.61 | 11 1,148.16 | 10 1,139.82
rc201 5 1,638.08 | 5 1,354.84 | 4 1,469.50 | 4 1.469.16 | 4 1,424.01 | 4 1,406.94
rc202 4 1,593.54 | 4 1.260.11 | 4 1,26291 | 4 1,203.10 | 4 1,161.82 | 3 1,365.65
rc203 4 1,431.32 | 4 1,010.99 | 3 1,12345 | 3 1,141.27 | 3 1,09556 | 3 1,049.62
rc204 3 1,260.05 | 3 841.48 | 3 864.24 | 3 82239 [ 3 803.06 | 3 789.46
205 5 1,578.73 | 4 1,359.74 | 4 1,347.86 | 4 1,333.95 | 4 1,31572 | 4 1,297.65
206 4 1,412.26 | 3 1,294.77 | 3 1,208.52 | 3 1,246.48 | 3 1,157.2 | 3 1,146.32
207 4 1,395.02 | 4 1,066.06 | 3 1,164.99 | 3 1,124.15 | 3 1,098.61 | 3 1,061.14
rc208 3 1,182.55 | 3 911.34 | 3 948.82 | 3 906.01 | 3 843.02 | 3 828.14




Bias Weights Learning

Exercise:
Apply Bias Weights Learning to the Weak Schur
problem.



Bias Weights Learning

def playout (state, policy,w1):
while not state.terminal ():
| = state.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (state.code (I [i])) + w1 * state.beta (I [i]))
stop = random.random () * z
move =0
z=0
while True:
z = z + math.exp (policy.get (state.code (I [move])) + w1l * state.beta (I [move]))
if z >= stop:
break
move = move + 1
state.play (I [move])



Bias Weights Learning

def adapt (sequence, policy, wl):
polp = copy.deepcopy (policy)
w=wl
s=WS ()
while not s.terminal ():
1 = s.legalMoves ()
z=0
b=0
for i in range (len (1)):
z =z + math.exp (policy.get (s.code (1 [i])) + w1 * s.beta (I [i]))
b =b + s.beta (I [i]) * math.exp (policy.get (s.code (1 [i])) + w1 * s.beta (I [i]))
move = sequence [len (s.sequence)]
w = w + s.beta (move) —b/z
polp.put (s.code (move), polp.get(s.code (move)) + 1)
for i in range (len (1)):
proba = math.exp (policy.get (s.code (1 [i])) + w1 * s.beta (1 [i])) / z
polp.put (s.code (1 [i]), polp.get(s.code (I [i])) - proba)
s.play (move)
return (polp,w)



Bias Weights Learning

def BLGNRPA (level, policy, w):
state = WS ()
if level == 0:
playout (state, policy, w)
return state
pol = copy.deepcopy (policy)
wl=w
for i in range (100):
ws = BLGNRPA (level - 1, pol, wl)
score = ws.score ()
if score >= state.score ():
state = ws
(pol, wl) = adapt (state.sequence, pol, w1)

return state



Eterna 100

* Find a sequence that has a given folding




Eterna 100

* Human experts have managed to solve the

100 problems of the benc

* No program has so far ac
score.

nmark

nieved such a

* The best score so far is 95/100 by NEMO:
NEsted MOnte Carlo RNA Puzzle Solver




NEMO

* NEMO uses two sets of heuristics

* General ones that give probabilities to
pairs of bases.

* More specific ones that are tailored to
puzzle solving.



GNRPA

Let w;p, be the weight associated to move b at index 1 in the sequence. In NRPA the
probability of choosing move b at index 11s:

Pwib

2 eWik
We propose to try Generalized NRPA (GNRPA) [9] for Inverse Folding and to re-
place it with:

Piv =

ewib‘|‘6ib

Pib = S eWiktBik
where we use for (;; the logarithm of the probabilities used in NEMO.



Other Improvements

 Stabilized GNRPA
* Beam GNRPA

* Zobrist Hashing

* Restarts

e Parallelization



Experimental Results

Level o N B P Beam H Solved

I 10 100 no I LLI 0 3
I 10 100 yes 1 LLI 0 30
I 10 100 yes I LLI 1 32
I 10 100 yes I 411 1 42
I 10 100 yes 1 811 1 53
I 10 100 yes I 1611 1 54
I 10 100 yes 4 811 1 69
I 10 100 yes 4 811 2 69
2 10 100 no I LLI 0 49
2 10 100 yes I LLI 0 73
2 10 100 yes 1 LLI 1 75
2 10 100 yes 2 LLI O 73
2 10 100 yes 3 LLI 0 74
2 10 100 yes 4 LLI 0 80
2 10 100 yes 5 LLI 0 77
2 10 100 yes 6 LLI 0 75
2 10 100 yes 7 LLI 0 80
2 10 100 yes 8 LLI 0 79
2 10 100 yes 9 LLI 0 81
2 10 100 yes 10 LLI 0 80
2 10 100 yes 4 811 1 85
310 100 yes I LLI 0 85



Experimental Results

 Leaf Parallelization

Table 2: Parallelization efficiency.
Algorithm | 2 “ 6 § 12

GNRPA(level=1,N=100,P=4,Beam=8) 11.916 6.889 4.526 3.657 3.169 3.359



Experimental Results

Table 3: Number of problems solved by GNRPA using different parameters and a fixed
time limit.
Bip PBeam / R N Start H Im 2m 4m 8m [6m 32m 64m

no I.I 1.1 n n 100100 00 0 30 33 41 50 61 67 69
yes . 1.I n n 100100 00 0 58 64 68 72 74 75 79
yesdl 41 n n 100100 00 0 71 75 78 79 81 83 84
yes4.l 81 n n 100100 00 0 75 75 79 80 81 83 84
yesdl 81 n n 100100 00 1 75 78 80 82 83 85 &7
yesdl 81 n n 100100 44 1 76 80 81 &2 34 85 87
yesdl 81 y n 100100 44 1 78 84 83 8 387 87 88
yesdl 81 y 3 ococ 44 1 80 84 8 & 88 89 92



Experimental Results

e Root Parallelization

Table 6: Number of problems solved with root parallel GNRPA.

Process Im 2m 4m 8m 16m 32m 64m

20 82 %4 & 8 & 8 &



Conclusion

* 95/100 problems solved, same as NEMO.
* Less domain knowledge.
* Various improvements of NRPA.




Playout Policy Adaptation



Offline learning of a playout
policy

* Offline learning of playout policies has
given good results in Go [Coulom 2007,
Huang 2010] and Hex [Huang 2013],
learning fixed pattern weights so as to bias
the playouts.

* Patterns are also used to do progressive
widening in the UCT tree.



Online learning of a playout
policy

 The RAVE algorithm [Gelly 2011] performs online
learning of moves values in order to bias the choice of
moves in the UCT tree.

* RAVE has been very successful in Go and Hex.

* A development of RAVE is to use the RAVE values to
choose moves in the playouts using Pool RAVE
[Rimmel 2010].

* Pool RAVE improves slightly on random playouts in
Havannah and reaches 62.7% against random playouts
In Go.



Online learning of a playout
policy

* Move-Average Sampling Technigue (MAST)
IS a technique used in the GGP program

Cadia Player so as to bias the playouts with
statistics on moves [Finnsson 2010].

* |t consists of choosing a move In the playout
proportionally to the exponential of its mean.

* MAST keeps the average result of each
action over all simulations.



Online learning of a playout
policy

* Later improvements of Cadia Player are N-
Grams and the last good reply policy [Tak 2012].

* They have been applied to GGP so as to
Improve playouts by learning move sequences.

* Arecent development in GGP is to have
multiple playout strategies and to choose the
one which is the most adapted to the problem at
hand [Swiechowski 2014].



Online learning of a playout
policy

* Playout Policy Adaptation (PPA) also uses
Gibbs sampling.

e The evaluation of an action for PPA Is not
Its mean over all simulations such as In
MAST.

* Instead the value of an action Is learned
comparing it to the other available actions
for the state where it has been played.



Playout Policy learning

o Start with a uniform policy.
* Use the policy for the playouts.

* Adapt the policy for the winner of each
playout.



Playout Policy learning

 Each move Is associated to a weight w;.

* During a playout each move is played with
a probabillity :

exp (wi) / Zcexp (W)



Playout Policy learning

* Online learning :
e For each move of the winner :
wi=w;+ 1

* For each possible move of each state of
the winner :

Wi= wWi—exp (W) / Zxexp (W)



Breakthrough
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(a) Starting position on size 5 x 5. (b) Possible movements,

* The first player to reach the opposite line has won



Misere Breakthrough

TTTTT
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(a) Starting position on size 5 x 5. (b) Possible movements.

* The first player to reach the opposite line has lost



Knightthrough

AAAA4a44a
Aaaaaa4a
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* The first to put a knight on the opposite side has won.




Misere Knightthrough

AAAA4a44a
Aaaaaa4a
H B B B
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NADADADEY
ADANDANDEA S

* The first to put a knight on the opposite side has lost.
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* The first to capture has won



A B C D E

* The first to capture has lost



Domineering
Misere Domineering
* The last to play has won / lost.




Experimental results
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Playout Policy learning with
Move Features

e Associate features to the move.
A move and its features are associated to a code.

* The algorithm learns the weights of codes instead
of simply the weights of moves.



Playout Policy learning with
Move Features

Atarigo : four adjacent intersections
Breakthrough : capture in the move code
Misere Breakthrough : same as Breakthrough
Domineering : cells next to the domino played
Misere Domineering : same as Domineering
Knightthrough : capture in the move code
Misere Knighthrough : same as Knighthrough
Nogo : same as Atarigo



Experimental results

* Each result is the outcome of a 500 games
match, 250 with White and 250 with Black.

 UCT with an adaptive policy (PPAF) is
played against UCT with a random policy.

* Tests are done for 10,000 playouts.
* For each game we test size 8x8.
* We tested 8 different games.



Experimental results

Size Winning %

Atarigo 8 x 8 94.4 %
Breakthrough 8 x 8 8l1.4 %
Misere Breakthrough 8 x 8 100.0 %
Domineering 8 x 8 80.4 %
Misere Domineering 8 x 8 93.0 %
Knightthrough 8 x 8 84.0 %
Misere Knightthrough 8 x 8 100.0 %
Nogo 8 x 8 95.4 %



PPAF and Memorization

« Start a game with an uniform policy.
* Adapt at each move of the game.

» Start at each move with the policy of the
previous move.



PPAF and Memorization

* A nice property of PPAF is that the move played
after the algorithm has been run is the most
simulated move.

* The memorized policy is related to the state after the
move played by the algorithm since it is the most
simulated move.

* When starting with the memorized policy for the next
state, this state has already been partially learned



PPAFM versus PPAF uniform

Game Score
Atarigo 66.0%
Breakthrough 87.4%
Domineering 58.0%
Knightthrough 84.6%
Misere Breakthrough 97.2%
Misere Domineering 56.8%
Misere Knightthrough 99.2%

Nogo 49.4%



PPAFM versus UCT

Game Score
Atarigo 95.4%
Breakthrough 94.2%
Domineering 81 .8%
Knightthrough 96.6%
Misere Breakthrough 100.0%
Misere Domineering 95.8%
Misere Knightthrough 100.0%

Nogo 91.6%



PPA Adapt Algorithm

Algorithm 4 The PPA adapt algorithm

adapt (winner, board, player, playout, policy)
polp < policy
for move in playout do
if winner = player then
polp |code(move)| < polp |code(move)| + «
z < 0.0
for m in possible moves on board do
z < z + exp (policy [code(m)|)
end for
for m in possible moves on board do
polp |code(m)| < polp |code(m)| - a *
end for
end if
play (board, move)
player < opponent (player)
end for
policy <— polp

exp(policy|code(m)])




Exercise

Try PPA for Misere Breakthrough.

— The playout function
— The adapt function
— Combination with UCT

Take capture into account (PPAF).
Memorize the policy (PPAFM).
Compare to UCT.



PPAF

def code (self, move):
direction = 1
if move.y2 > move.y1:
direction = 0
if move.y2 < move.y1:
direction = 2
capture = 0
if self.board [move.x2] [move.y2] != Empty:
capture = 1
if move.color == White:
return 6 * (Dy * move.x1 + move.y1) + 2 * direction + capture
else:

return 6 * Dx * Dy + 6 * (Dy * move.x1 + move.yl) + 2 * direction + capture



PPAF

def playout (state, policy):
while not state.terminal ():
1 = state.legalMoves ()
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (state.code (1 [i])))
stop = random.random () * z

move =0
z=0
while True:

z = z + math.exp (policy.get (state.code (I [move])))
if z >= stop:
break
move = move + 1
state.play (I [move])
return state.score ()



PPAF

def adapt (s, winner, state, policy):
polp = copy.deepcopy (policy)
alpha = 0.32
while not s.terminal ():
1 = s.legalMoves ()
move = state.rollout [len (s.rollout)]
if s.turn == winner:
z=0
for i in range (len (1)):
z = z + math.exp (policy.get (s.code (I [i])))
polp.put (s.code (move), polp.get(s.code (move)) + alpha)
for i in range (len (1)):
proba = math.exp (policy.get (s.code (1 [i])))/ z
polp.put (s.code (1 [i]), polp.get(s.code (1 [i])) - alpha * proba)
s.play (move)
return polp



PPAF

def PPAF (board, policy):
if board.terminal ():
return board.score ()
t = look (board)
if t = None:
bestValue = -1000000.0
best =0
moves = board.legalMoves()
for i in range (0, len (moves)):
val = 1000000.0
if t [1] [i] > O:
Q=t[2][i]/t[1][i]
if board.turn == Black:
Q=1-Q
val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
if val > bestValue:
bestValue = val
best =i



board.play (moves [best])
res = PPAF (board, policy)
t[0] +=1
t[1] [best] +=1
t [2] [best] += res
return res
else:
add (board)
return playout (board, policy)

PPAF



PPAF

def BestMovePPAF (board, n):
global Table
Table = {}
policy = Policy ()
for i in range (n):
b1 = copy.deepcopy (board)
res = PPAF (b1, policy)
b2 = copy.deepcopy (board)
if res == 1:
policy = adapt (b2, White, b1, policy)
else:
policy = adapt (b2, Black, b1, policy)
t = look (board)
moves = board.legalMoves ()
best = moves [0]
bestValue =t [1] [0]
for i in range (1, len(moves)):
if (t [1] [i] > bestValue):
bestValue =t [1] [i]
best = moves [i]

return best



Exercise

Modify GRAVE to incorporate a policy and a bias.

Use the AMAF statistics of the root node of GRAVE
to bias the playouts as in GNRPA.

Update the Adapt to take the bias into account.

Write the main function that calls
GRAVEPolicyBias and updates the policy.



GRAVE with Policy and Bias

def GRAVEPolicyBias (board, played, tref, root, policy):
if (board.terminal ()):
return board.score ()
t = look (board)
if t = None:
tr = tref
if t [0] > 50:
tr=t
bestValue = -1000000.0
best =0
moves = board.legalMoves ()
bestcode = board.code (moves [0])
for i in range (0, len (moves)):
val = 1000000.0
code = board.code (moves [i])
if tr [3] [code] > O:
beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
Q=1
if t [1] [i] > O:
Q=t[2][i]/t[1][i]
if board.turn == Black:
Q=1-Q



GRAVE with Policy and Bias

AMAF =tr [4] [code] / tr [3] [code]
if board.turn == Black:
AMAF =1 - AMAF
val = (1.0 - beta) * Q + beta * AMAF
if val > bestValue:
bestValue = val
best =i
bestcode = code
board.play (moves [best])
played.append (bestcode)
res = GRAVEPolicyBias (board, played, tr, root, policy)
t[0] +=1
t[1] [best] +=1
t [2] [best] +=res
updateAMAF (t, played, res)
return res
else:
addAMAF (board)
return playoutBias (board, played, root, policy)



Playout AMAF Policy

def playoutBias (state, played, root, policy):
while not state.terminal ():
1 = state.legalMoves ()
z=0
for i in range (len (1)):
code = board.code (1 [i])
AMAF =1
if root [3] [code] > O:
AMAF =root [4] [code] / root [3] [code]
if board.turn == Black:
AMAF =1 - AMAF
if AMAF > 0:
z = z + math.exp (policy.get (state.code (I [i])) + math.log (AMAF))

stop = random.random () * z



Playout AMAF Policy

move = 0
z=0
while True:
code = board.code (I [move])
AMAF =1
if root [3] [code] > O:
AMAF =root [4] [code] / root [3] [code]
if board.turn == Black:
AMAF =1 - AMAF
if AMAF > 0:
z = z + math.exp (policy.get (state.code (1 [move])) + math.log(AMAF))
if z >= stop or move == len (1) — 1:
break
move = move + 1
played.append (state.code(l [move]))
state.play (I [move])
return state.score ()



Adapt with a Bias

def adaptBias (s, winner, state, policy, root):
polp = copy.deepcopy (policy)
alpha = 0.32
while not s.terminal ():
1 = s.legalMoves ()
move = state.rollout [len (s.rollout)]
if s.turn == winner:
z=0
for i in range (len (1)):
code = s.code (1 [i])
AMAF =1
if root [3] [code] > O:
AMAF =root [4] [code] / root [3] [code]
if board.turn == Black:
AMAF =1- AMAF
if AMAF > 0:
z = z + math.exp (policy.get (code) + math.log(AMAF))



Adapt with a Bias

polp.put (s.code (move), polp.get (s.code (move)) + alpha)
for i in range (len (1)):
code = s.code (1 [i])
AMAF =1
if root [3] [code] > O:
AMAF =root [4] [code] / root [3] [code]
if board.turn == Black:
AMAF =1- AMAF
proba = 0
if AMAF > 0:
proba = math.exp (policy.get (code) + math.log(AMAF)) / z
polp.put (code, polp.get (code) - alpha * proba)
s.play (move)
return polp



GRAVE with Policy and Bias

def BestMoveGRAVEPolicyBias (board, n):
Table = {}
policy = Policy ()
addAMATF (board)
for i in range (n):
root = look (board)
b1 = copy.deepcopy (board)
res = GRAVEPolicyBias (b1, [], root, root, policy)
b2 = copy.deepcopy (board)
if res == 1:
policy = adaptBias (b2, White, b1, policy, root)
else:
policy = adaptBias (b2, Black, b1, policy, root)
root = look (board)
moves = board.legalMoves ()
best = moves [0]
bestValue = root [1] [0]
for i in range (1, len(moves)):
if (root [1] [i] > bestValue):
bestValue = root [1] [i]
best = moves [i]
return best
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Solving Games

Proof-Number Search (PN)
:)NZ

Alpha-Beta

terative Deepening Alpha-Beta

Retrograde Analysis



UCT

Selection Expansion Sampling Backpropagation

Tree Policy Default Policy



RAVE

* A big improvement for Go, Hex and
other games is Rapid Action Value
Estimation (RAVE) [Gelly and Silver

2007].

* RAVE combines the mean of the
playouts that start with the move and
the mean of the playouts that contain
the move (AMAF).



RAVE

 Parameter 3,for move mis :

Bm — PAMAF. / (PAMAF, + pm+ bias x
DAMAF X Pm)

* B starts at 1 when no playouts and
decreases as more playouts are played.

e Selection of moves In the tree :
argmaxm((1.0 — Bm) X meanm + Bm x AMAF)



GRAVE

* Generalized Rapid Action Value
Estimation (GRAVE) Is a simple
modification of RAVE.

* |t consists In using the first ancestor
node with more than n playouts to
compute the RAVE values.

* |t Is a big improvement over RAVE for
Go, Atarigo, Knightthrough and
Domineering [Cazenave 2015].



Playout Policy learning

e Start with a uniform policy.
* Use the policy for the playouts.

* Adapt the policy for the winner of each
playout.



Playout Policy learning

 Each move Is associated to a weight
Wi.

* During a playout each move is played
with a probability :

exp (wi) / Zxexp (W)



Playout Policy learning

* Online learning :
* For each move of the winner :
wi=wi+1

* For each possible move of each state
of the winner :

Wi= wWi—exp (W) / Zxexp (W)



Monte Carlo Game Solver

e Use the order of moves of GRAVE
when the state Is in the GRAVE tree.

* Use the order of moves of Playout
Policy Adaptation when the state Is
outside the GRAVE tree.



Table 1: Different algorithms for solving Atarigo.

Size D XD
Result Won

Move count Time
PN? 14784 088 742 37901.56 5.

[Daf TT > 35540000 000 > 86 400.00 s.
af TT > 37 660 000 000 > 86 400.00 s.
D af TTMC 62 800 334 126.84 s.

af TTMC 3956 049 12.79 s.
Size 6 X5
Result Won

Move count Time
PN? > 33 150 000 000 > 86 400.00 s.
[Daf TT > 37190 000 000 > 86 400.00 s.
af TT > 7090 000 000 > 44 50591 s.

[Daf TTMC 12713931627 27298.35s.
af TTMC 329 780 434 187.17 s.



Table 2: Different algorithms for solving Nogo.

Size 7x3
Result Won

Move count Time
PN? > 80 390 000 000 > 86 400.00 s.
[Daf TT 10921 978 839  12261.64s.
af TT 3742927598 441221 s.
[Daf TTMC 192763585 264891 s.
af TTMC 35178 886 49.72 s.
Size 5 x4
Result Won

Move count Time
PN? > 101 140 000 000 > 86 400.00 s.
[Daf TT 1394182870  1573.72s.
af TT 1446922704  1675.64s.
D af TTMC 73 387 083 134.26 s.

af TTMC 33 850 535 14.77 s.



Fig. 1: Solution of Nogo 5 x 5.

A B C D E

A B C D E
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Table 3: Winner for Nogo boards of various sizes



Table 4: Different algorithms for solving Go.

Size 3x3
Result Won

Move count Time
PN? 246394 3.72s.
[Daf TT 840707 11.34s.
af TT 420265 11.50s.
[Daf TTMC 375414  5.62s.
af TTMC 6104 0.16s.
Size 4x3
Result Won

Move count Time
PN? 43202038 619.98 s.

Dap TT 39590950 515.71s.
af TT 107 815563 1977.86 s.
[Daf TTMC 22382730 348.08s.
af TTMC 4296893  96.63 .



Table 5: Different algorithms for solving Breakthrough.

Size HXDH
Result Lost

Move count Time
PN? > 38 780 000 000 > 86 400.00 s.
[Dap TT 13083392799 33 590.59 s.
af TT 19163 127770 43 406.79 s.

[Daf TTMC 3866853361 11319.39s.
af TTMC 3499173137  9243.66s.



Table 6: Different algorithms for solving Misere Breakthrough.

Size 4 x5
Result Lost

Move count Time
PN* > 42 630 000 000 > 86 400 s.

DapTT  >43350000 000 > 86 400 s.
af TT > 42910 000 000 > 86 400 s.
[Dag TTMC 1540 153 635 3661.50s.
af TTMC 447879 697 1055.32s.



Table 7: Different algorithms for solving Knightthrough.

Size 6 X6
Result Won

Move count Time
PN? >33 110000000 > 86400 s.
[Daf TT 1153730169 4 894.69 s.
af TT 2284038427 6541.08s.
D af TT MC 17747503  102.60s.
af TTMC 528 783 129 1699.01 s.
Size 7x6
Result Won

Move count Time
PN? > 30090000000 > 86400s.

[Dag TT > 17500000000 > 86400 s.
af TT > 29980000000 > 86400s.
[Daf TTMC 2540383012 13 716.36s.
af TTMC 6650 804 159 23 958.04 s.



Table 8: Different algorithms for solving Misere Knightthrough.

Size HXH
Result Lost

Move count Time
PN? > 45290000000 > 86400 s.

Daf TT  >52640000000 > 86400 s.
af TT > 56230000000 > 86400 s.
D aff TT MC > 41840000 000 > 86 400 s.
af TTMC 20 375 687 163 42 425.41 s.



Table 9: Different algorithms for solving Domineering.

Size X7
Result Won

Move count Time
PN? > 41270000000 > 86400 s.
[Dap TT 18958 604 687 35 196.62 s.
af TT 197471137  376.23s.

[Daf TTMC 2342641133 5282.065.
af TTMC 29803373  123.76s.



Table 10: Different algorithms for solving Misere Domineering.

Size TxT
Result Won

Move count Time
PN? > 44 560 000 000 > 86400 s.

Dag TT  >49290000000 > 86400 s.
af TT > 49580000000 > 86400s.
Daf TTMC 7013298932 14 936.03 s.
af TTMC 712728678  212.25s.



Conclusion

* For the games we solved, Misere Games are more difficult to solve
than normal games.

*In Misere Games the player waits and tries to force the opponent to
play a losing move.

* This makes the game longer and reduces the number of winning
sequences and winning moves.

* Monte Carlo Move Ordering improves much the speed of off with
transposition table compare to depth first aff and Iterative Deepening
af3 with transposition table but without Monte Carlo Move Ordering.

* The experimental results show significant improvements for nine
different games.



Conclusion

Monte Carlo Search is a simple algorithm that gives
state of the art results for multiple problems:

— Games

— Puzzles

— Discovery of formulas

— RNA Inverse Folding

— Snake in the box

— Pancake

— Logistics

— Multiple Sequence Alignement



Projet Python

Transformer une position de breakthrough 5x5 en trois matrices 5x5 de 0
et de 1 (Noir/Blanc/Vide).

Faire deux réseaux convolutifs (blanc et noir) avec 76 sorties (75
coups possibles + évaluation) et ces trois matrices en entrée.

Utiliser les reseaux dans PUCT pour politique et evaluation.
Faire jouer a PUCT >100 parties contre lui méme.

Memoriser pour chaque position un vecteur de 76 réels entre 0 et 1 (une
fréquence pour chaque code de coup entre 0 et 75, code =3 *(5 * x +y) +
0, 1 ou 2) et un réel (1.0 si blanc a gagné, 0.0 sinon).

Entrainer les deux réseaux convolutifs pour retrouver les fréquences
et le résultat de la partie en sortie pour chaque position en entrée.

Itérer.



