

Monte Carlo Search

Tristan Cazenave

LAMSADE CNRS
Université Paris-Dauphine

PSL

Tristan.Cazenave@dauphine.fr

Outline

• Monte Carlo Tree Search
• Nested Monte Carlo Search
• Nested Rollout Policy Adaptation
• Playout Policy Adaptation
• Zero Learning (Deep RL)
• Imperfect Information Games

Monte Carlo Tree Search

Monte Carlo Tree Search
Monte Carlo Tree Search, a method so bold,
Exploring the tree, with its stories untold,
Simulating the future, with random rolls,
To find the path with the greatest goals.

It starts with a root, and expands the tree,
Each node a choice, a potential key,
To unlock the door, to the desired goal,
Monte Carlo guides, in finding the whole.

It's not always perfect, with a fixed plan,
But it adapts, to the situation at hand,
With each simulation, it learns and it grows,
To find the best move, with more and more those.

Monte Carlo Tree Search, a powerful tool,
To navigate the game, and be the cool,
So let's explore the tree, and see what we find,
And use Monte Carlo, to be one of a kind.

Monte Carlo Tree Search
Monte Carlo Tree Search, a method so grand,
A path to victory, with a strategic hand.

It starts with a tree, and a game to play,
Simulations to run, to find the best way.

Each node a move, and each branch a choice,
We explore them all, with a clear and steady voice.

With randomness guiding us, and statistics to aid,
We search for the path, that will surely lead the way.

Monte Carlo Tree Search, a brilliant mind,
With its power and wisdom, it will never be confined.

It's a strategy that's proven, and a method that's sound,
Monte Carlo Tree Search, will always be found.

In the game of life, and the game of chance,
Monte Carlo Tree Search, will always enhance,
Our ability to win, to be victorious,
It's a path to success, so mysterious.

Monte Carlo Go
• 1993 : first Monte Carlo Go program

– Gobble, Bernd Bruegmann.
– How nature would play Go ?
– Simulated annealing on two lists of moves.
– Statistics on moves.
– Only one rule : do not fill eyes.
– Result = average program for 9x9 Go.
– Advantage : much more simple than alternative

approaches.

Monte Carlo Go
• 1998 : first master course on Monte Carlo Go.
• 2000 : sampling based algorithm instead of

simulated annealing.
• 2001 : Computer Go an AI Oriented Survey.
• 2002 : Bernard Helmstetter.
• 2003 : Bernard Helmstetter, Bruno Bouzy,

Developments on Monte Carlo Go.

Monte Carlo Phantom Go
• Phantom Go is Go when you cannot see the

opponent's moves.
• A referee tells you illegal moves.
• 2005 : Monte Carlo Phantom Go program.
• Many Gold medals at computer Olympiad since

then using flat Monte Carlo.
• 2011 : Exhibition against human players at

European Go Congress.

UCT
• UCT : Exploration/Exploitation dilemma for trees

[Kocsis and Szepesvari 2006].
• Play random random games (playouts).
• Exploitation : choose the move that maximizes the

mean of the playouts starting with the move.
• Exploration : add a regret term (UCB).

• UCT : exploration/exploitation dilemma.
• Play the move that maximizes

UCT

UCT

RAVE
● A big improvement for Go, Hex and other

games is Rapid Action Value Estimation
(RAVE) [Gelly and Silver 2007].

● RAVE combines the mean of the playouts
that start with the move and the mean of
the playouts that contain the move (AMAF).

RAVE
● Parameter βm for move m is :

βm←pAMAFm / (pAMAFm + pm + bias × pAMAFm× pm)

● βm starts at 1 when no playouts and decreases as
more playouts are played.

● Selection of moves in the tree :
argmaxm((1.0 − βm) × meanm + βm × AMAFm)

GRAVE
● Generalized Rapid Action Value Estimation

(GRAVE) is a simple modification of RAVE.
● It consists in using the first ancestor node

with more than n playouts to compute the
RAVE values.

● It is a big improvement over RAVE for Go,
Atarigo, Knightthrough and Domineering
[Cazenave 2015].

Atarigo

Knightthrough

Domineering

Go

RAVE vs UCT

Game Score

Atarigo 8x8 94.2 %
Domineering 72.6 %
Go 9x9 73.2 %
Knightthrough 56.2 %
Three Color Go 9x9 70.8 %

GRAVE vs RAVE

Game Score

Atarigo 8x8 88.4 %
Domineering 62.4 %
Go 9x9 54.4 %
Knightthrough 67.2 %
Three Color Go 9x9 57.2 %

Parallelization of MCTS

• Root Parallelization.

• Tree Parallelization (virtual loss).

• Leaf Parallelization.

MCTS

• Great success for the game of Go since 2007.
• Much better than all previous approaches to

computer Go.

AlphaGo
Lee Sedol is among the strongest and most famous 9p Go

player :

AlphaGo has won 4-1 against Lee Sedol in March 2016
AlphaGo Master wins 3-0 against Ke Jie, 60-0 against pros.
AlphaGo Zero wins 89-11 against AlphaGo Master in 2017.

General Game Playing

• General Game Playing = play a new game just
given the rules.

• Competition organized every year by Stanford.
• Ary world champion in 2009 and 2010.
• All world champions since 2007 use MCTS.

Other two-player games
• Hex : 2009
• Amazons : 2009
• Lines of Action : 2009

MCTS Solver
● When a subtree has been completely

explored the exact result is known.
● MCTS can solve games.
● Score Bounded MCTS is the extension of

pruning to solving games with multiple
outcomes.

Breakthrough

● Write the Board and Move classes for Breakthrough 5x5.
● Write the function for the possible moves.
● Write a program to play random games at Breakthrough 5x5.

Breakthrough
● The Move class contains the color, the starting and arriving

locations of a pawn.
class Move(object):
 def __init__(self, color, x1, y1, x2, y2):
 self.color = color
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2

Breakthrough
● The Board class initializes the board with two rows of Black and two rows of White pawns:

Dx = 5
Dy = 5
Empty = 0
White = 1
Black = 2
class Board(object):
 def __init__(self):
 self.h = 0
 self.turn = White
 self.board = np.zeros ((Dx, Dy))
 for i in range (0, 2):
 for j in range (0, Dy):
 self.board [i] [j] = White
 for i in range (Dx - 2, Dx):
 for j in range (0, Dy):
 self.board [i] [j] = Black

Breakthrough
● Test, in the Move class, if a move is valid for a given board:

def valid (self, board):
 if self.x2 >= Dx or self.y2 >= Dy or self.x2 < 0 or self.y2 < 0:
 return False
 if self.color == White:
 if self.x2 != self.x1 + 1:
 return False
 if board.board [self.x2] [self.y2] == Black:
 if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1:
 return True
 return False
 elif board.board [self.x2] [self.y2] == Empty:
 if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1 or self.y2 == self.y1:
 return True
 return False
 ...

Breakthrough

 elif self.color == Black:
 if self.x2 != self.x1 - 1:
 return False
 if board.board [self.x2] [self.y2] == White:
 if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1:
 return True
 return False
 elif board.board [self.x2] [self.y2] == Empty:
 if self.y2 == self.y1 + 1 or self.y2 == self.y1 - 1 or self.y2 == self.y1:
 return True
 return False
 return False

Breakthrough
● Generate the legal moves in the Board class:

 def legalMoves(self):
 moves = []
 for i in range (0, Dx):
 for j in range (0, Dy):
 if self.board [i] [j] == self.turn:
 for k in [-1, 0, 1]:
 for l in [-1, 0, 1]:
 m = Move (self.turn, i, j, i + k, j + l)
 if m.valid (self):
 moves.append (m)
 return moves

• Write, in the Board class, a score function to score a
game (1.0 if White wins, 0.0 else) and a terminal
function to detect the end of the game.

• Write, in the Board class, a playout function that
plays a random game from the current state and
returns the result of the random game.

Playouts

 In the Board class :

 def score (self):
 for i in range (0, Dy):
 if (self.board [Dx - 1] [i] == White):
 return 1.0
 elif (self.board [0] [i] == Black):
 return 0.0
 l = self.legalMoves ()
 if len (l) == 0:
 if self.turn == Black:
 return 1.0
 else:
 return 0.0
 return 0.5

 def terminal (self):
 if self.score () == 0.5:
 return False
 return True

Playouts

In the Board class :

def play (self, move):
 self.board [move.x1] [move.y1] = Empty
 self.board [move.x2] [move.y2] = move.color
 if (self.turn == White):
 self.turn = Black
 else:
 self.turn = White

def playout (self):
 while (True):
 moves = self.legalMoves ()
 if self.terminal ():
 return self.score ()
 n = random.randint (0, len (moves) - 1)
 self.play (moves [n])

Playout

• For each move of the current state, do a fixed
number of playouts starting with the move.

• Calculate the number of playouts won after the
move.

• Play the move with the greatest number of playouts
won.

Flat Monte Carlo

def flat (board, n):
 moves = board.legalMoves ()
 bestScore = 0
 bestMove = 0
 for m in range (len(moves)):
 sum = 0
 for i in range (n // len (moves)):
 b = copy.deepcopy (board)
 b.play (moves [m])
 r = b.playout ()
 if board.turn == Black:
 r = 1 - r
 sum = sum + r
 if sum > bestScore:
 bestScore = sum
 bestMove = m
 return moves [bestMove]

Flat Monte Carlo

• Keep statistics for all the moves of the current state.

• For each move of the current state, keep the number
of playouts starting with the move and the number of
playouts starting with the move that have been won.

• Play the most simulated move when all the playouts
are finished.

UCB

Choose the first move at the root according to
UCB before each playout:

UCB

def UCB (board, n):
 moves = board.legalMoves ()
 sumScores = [0.0 for x in range (len (moves))]
 nbVisits = [0 for x in range (len(moves))]
 for i in range (n):
 bestScore = 0
 bestMove = 0
 for m in range (len(moves)):
 score = 1000000
 if nbVisits [m] > 0:
 score = sumScores [m] / nbVisits [m] + 0.4 * math.sqrt (math.log (i) / nbVisits [m])
 if score > bestScore:
 bestScore = score
 bestMove = m

UCB

 b = copy.deepcopy (board)
 b.play (moves [bestMove])
 r = b.playout ()
 if board.turn == Black:
 r = 1.0 - r
 sumScores [bestMove] += r
 nbVisits [bestMove] += 1
 bestNbVisits = 0
 bestMove = 0
 for m in range (len(moves)):
 if nbVisits [m] > bestNbVisits:
 bestNbVisits = nbVisits [m]
 bestMove = m
 return moves [bestMove]

UCB

 Transposition Table
● Each state is associated to a hash code.
● We use Zobrist hashing.
● Each piece for each cell is associated to a fixed

random number.
● The hashcode of a state is the XOR of the random

numbers of the pieces on the board.
● Why XOR ?
● How many random numbers for a chess board ?

 Transposition Table
● XOR is used because:
● XOR of uniformly distributed integers is an

uniformly distributed integer.
● XOR is fast.
● (b XOR a) XOR a = b
● To add or to remove a piece, just XOR with the

associated fixed random number: the new
hascode after a move is rapidly calculated.

 Transposition Table
● For chess:
● pieces * cells = 12 * 64 = 768
● Castling 4
● prise en passant 16
● turn 1

● total 789

● Breakthrough 5x5 : 50 + 1 for the turn

 Transposition Table
● Fixing the random numbers for Breakthrough 5x5 from 1 to 25 for

Black and 26 to 50 for White.
● The random number for the turn is 51 :

● Let h1 = 0 be the hashcode of the initial board ?
● What is the hashcode h2 of the board where the leftmost White

pawn moves forward?

 Transposition Table

 h1 = 0
 h2 = h1 ^ 41 ^ 36 ^ 51 = 62

 Transposition Table

● Code to generate the fixed random number
associated to the cells and the pawns.

● Modification of the play function so that a board
is always associated to a Zobrist hashcode.

 Transposition Table

hashTable = []
for k in range (3):
 l = []
 for i in range (Dx):
 l1 = []
 for j in range (Dy):
 l1.append (random.randint (0, 2 ** 64))
 l.append (l1)
 hashTable.append (l)
hashTurn = random.randint (0, 2 ** 64)

Transposition Table

 def play (self, move):
 col = int (self.board [move.x2] [move.y2])
 if col != Empty:
 self.h = self.h ^ hashTable [col] [move.x2] [move.y2]
 self.h = self.h ^ hashTable [move.color] [move.x2] [move.y2]
 self.h = self.h ^ hashTable [move.color] [move.x1] [move.y1]
 self.h = self.h ^ hashTurn
 self.board [move.x2] [move.y2] = move.color
 self.board [move.x1] [move.y1] = Empty
 if (move.color == White):
 self.turn = Black
 else:
 self.turn = White

• An entry of a state in the transposition table
contains :

• The hashcode of the stored state.
• The total number of playouts of the state.
• The number of playouts for each possible move.
• The number of wins for each possible move.

Transposition Table

• First Option (C++ like) :
– Write a class TranspoMonteCarlo containing the data

associated to a state.
– Write a class TableMonteCarlo that contains a table of

list of entries.
– Each entry is an instance of TranspoMonteCarlo. The

size of the table is 65535. The index in the table of a
hashcode h is h & 65535.

– The TableMonteCarlo class also contains the functions :
• look (self, board) which returns the entry of board.
• add (self, t) which adds en entry in the table.

Transposition Table

• Alternative : use a Python dictionary with the hash as a
key and lists as elements.

• Each list contains 3 elements :
– the total numbers of playouts,
– the list of the number of playouts for each move,
– the list of the number of wins for each move.

• Write a function that returns the entry of the
transposition table if it exists or else None.

• Write a function that adds an entry in the transposition
table.

Transposition Table

MaxLegalMoves = 6 * Dx
Table = {}

def add (board):
 nplayouts = [0.0 for x in range (MaxLegalMoves)]
 nwins = [0.0 for x in range (MaxLegalMoves)]
 Table [board.h] = [0, nplayouts, nwins]

def look (board):
 return Table.get (board.h, None)

Transposition Table

UCT

UCT

UCT

UCT

• Exercise : write the Python code for UCT.
• The available functions are:
• board.playout () that returns the result of a playout.
• board.legalMoves () that returns the list of legal moves for

the board.
• board.play (move) that plays the move on board.
• look (board) that returns the entry of the board in the

transposition table.
• add (board) that adds an empty entry for the board in the

transposition table.

UCT

def UCT (board):
 if board.terminal ():
 return board.score ()
 t = look (board)
 if t != None:
 bestValue = 0
 best = 0
 moves = board.legalMoves ()
 for i in range (0, len (moves)):
 val = 1000000.0
 n = t [0]
 ni = t [1] [i]
 wi = t [2] [i]
 if ni > 0:
 Q = wi / ni
 if board.turn == Black:
 Q = 1 - Q
 val = Q + 0.4 * sqrt (log (n) / ni)

UCT

 if val > bestValue:
 bestValue = val
 best = i
 board.play (moves [best])
 res = UCT (board)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 return res
 else:
 add (board)
 return board.playout ()

UCT

def BestMoveUCT (board, n):
 global Table
 Table = {}
 for i in range (n):
 b1 = copy.deepcopy (board)
 res = UCT (b1)
 t = look (board)
 moves = board.legalMoves ()
 best = moves [0]
 bestValue = t [1] [0]
 for i in range (1, len(moves)):
 if (t [1] [i] > bestValue):
 bestValue = t [1] [i]
 best = moves [i]
 return best

UCT

• Make UCT with 200 playouts play 100 games
against Flat with 200 playouts.

• Winrate ?
• Tune the UCT constant (hint 0.4).

UCT vs Flat

• UCT is the fundamental algorithm for MCTS.
• In order to be sure you have understood how UCT works,

write the code for the sequential version of UCT.
• Use the pseudo code of Silver and Gelly that performs the

four phases sequentially to write the corresponding
Python code.

• Test it to verify it does the same thing as the recursive
version and that it plays on par with the recursive version.

Sequential UCT

AMAF
● All Moves As First (AMAF).
● AMAF calculates for each possible move of

a state the average of the playouts that
contain this move.

• Exercise :

• Write a playout function memorizing the played moves.

• Add an integer code for moves in the Move class.

• Add AMAF statistics to the Transposition Table entries.

• Update the AMAF statistics of the Transposition Table.

AMAF

def playoutAMAF (board, played):
 while (True):
 moves = board.legalMoves ()
 if len (moves) == 0 or board.terminal ():
 return board.score ()
 n = random.randint (0, len (moves) - 1)
 played.append (moves [n].code (board))
 board.play (moves [n])

AMAF

In the Move class:

 def code (self, board):
 direction = 0
 if self.y2 > self.y1:
 if board.board [self.x2] [self.y2] == Empty:
 direction = 1
 else:
 direction = 2
 if self.y2 < self.y1:
 if board.board [self.x2] [self.y2] == Empty:
 direction = 3
 else:
 direction = 4
 if self.color == White:
 return 5 * (Dy * self.x1 + self.y1) + direction
 else:
 return 5 * Dx * Dy + 5 * (Dy * self.x1 + self.y1) + direction

AMAF

MaxCodeLegalMoves = 2 * Dx * Dy * 5

def addAMAF (board):
 nplayouts = [0.0 for x in range (MaxLegalMoves)]
 nwins = [0.0 for x in range (MaxLegalMoves)]
 nplayoutsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
 nwinsAMAF = [0.0 for x in range (MaxCodeLegalMoves)]
 Table [board.h] = [0, nplayouts, nwins, nplayoutsAMAF, nwinsAMAF]

AMAF

AMAF
def updateAMAF (t, played, res):
 for i in range (len (played)):
 if played [:i].count (played [i]) == 0:
 t [3] [played [i]] += 1
 t [4] [played [i]] += res

• Exercise :
• Write the Flat AMAF player that computes AMAF

statistics for the Flat Monte Carlo algorithm.
• The Flat AMAF player plays the move that has the

best AMAF statistics instead of the move that has
the best statistics.

• Make Flat AMAF play against Flat Monte Carlo
with 30 playouts for both algorithms.

AMAF

RAVE

RAVE

RAVE

RAVE

RAVE

RAVE

RAVE

• Exercise :

• Compute the AMAF statistics for each node.

• Modify the UCT code to implement RAVE.

RAVE

def RAVE (board, played):
 if (board.terminal ()):
 return board.score ()
 t = look (board)
 if t != None:
 bestValue = 0
 best = 0
 moves = board.legalMoves ()
 bestcode = moves [0].code (board)
 for i in range (0, len (moves)):
 val = 1000000.0
 code = moves [i].code (board)
 if t [3] [code] > 0:
 beta = t [3] [code] / (t [1] [i] + t [3] [code] + 1e-5 * t [1] [i] * t [3] [code])
 Q = 1
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = 1 - Q

RAVE

 AMAF = t [4] [code] / t [3] [code]
 if board.turn == Black:
 AMAF = 1 - AMAF
 val = (1.0 - beta) * Q + beta * AMAF
 if val > bestValue:
 bestValue = val
 best = i
 bestcode = code
 board.play (moves [best])
 played.append (bestcode)
 res = RAVE (board, played)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 updateAMAF (t, played, res)
 return res
 else:
 addAMAF (board)
 return playoutAMAF (board, played)

RAVE

def BestMoveRAVE (board, n):
 global Table
 Table = {}
 for i in range (n):
 b1 = copy.deepcopy (board)
 res = RAVE (b1, [])
 t = look (board)
 moves = board.legalMoves ()
 best = moves [0]
 bestValue = t [1] [0]
 for i in range (1, len(moves)):
 if (t [1] [i] > bestValue):
 bestValue = t [1] [i]
 best = moves [i]
 return best

RAVE

• State of the art in General Game Playing (GGP)
• Best AI of the Ludii system (https://ludii.games/)
• Simple modification of RAVE
• Uses statistics both for Black and White at all nodes
• “In principle it is also possible to incorporate the

AMAF values, from ancestor subtrees. However, in
our experiments, combining ancestor AMAF values
did not appear to confer any advantage.”

GRAVE

• Use the AMAF statistics of the last ancestor with
more than n playouts instead of the AMAF statistics
of the current node.

• More accurate when few playouts.
• Published at IJCAI 2015.
• GRAVE is a generalization of RAVE since GRAVE

with n=0 is RAVE.

GRAVE

• Exercise :

• Modify the RAVE code to implement GRAVE.

GRAVE

def GRAVE (board, played, tref):
 if (board.terminal ()):
 return board.score ()
 t = look (board)
 if t != None:
 tr = tref
 if t [0] > 50:
 tr = t
 bestValue = 0
 best = 0
 moves = board.legalMoves ()
 bestcode = moves [0].code (board)
 for i in range (0, len (moves)):
 val = 1000000.0
 code = moves [i].code (board)
 if tr [3] [code] > 0:
 beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
 Q = 1
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = 1 - Q

GRAVE

 AMAF = tr [4] [code] / tr [3] [code]
 if board.turn == Black:
 AMAF = 1 - AMAF
 val = (1.0 - beta) * Q + beta * AMAF
 if val > bestValue:
 bestValue = val
 best = i
 bestcode = code
 board.play (moves [best])
 played.append (bestcode)
 res = GRAVE (board, played, tr)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 updateAMAF (t, played, res)
 return res
 else:
 addAMAF (board)
 return playoutAMAF (board, played)

GRAVE

def BestMoveGRAVE (board, n):
 global Table
 Table = {}
 addAMAF (board)
 for i in range (n):
 root = look (board)
 b1 = copy.deepcopy (board)
 res = GRAVE (b1, [], root)
 root = look (board)
 moves = board.legalMoves ()
 best = moves [0]
 bestValue = root [1] [0]
 for i in range (1, len(moves)):
 if (root [1] [i] > bestValue):
 bestValue = root [1] [i]
 best = moves [i]
 return best

GRAVE

• Infinite number of moves
• Progressive Widening
• Action Decomposition (AD)
• Constraints-based Selective Policy (CSP)
• cRAVE and cGRAVE
• Application : Biology

Continuous MCTS

• A new child state is sampled from state s every time the
visitation count of s (n(s)) to the power of pw is greater than or
equal to its number of children :
n(s)pw ≥ s.children∣ ∣

• pw is a problem dependent parameter that controls the number
of actions allowed in s.

• While UCT ensures that the tree grows deeper in the
promising regions of the search space by balancing exploration
and exploitation, the PW strategy guarantees that it grows
wider in those regions.

Progressive Widening

cRAVE

cGRAVE

Action Decomposition

Hybrid Gene Regulatory Networks

cGRAVE

cGRAVE

cGRAVE

Mujoco : Humanoid

• Open the Humanoid notebook on the course page
• Test UCT with 10 randomly chosen actions as the

possible moves
• Progressive widening for UCT
• Action Decomposition (AD)
• cGRAVE

Continuous MCTS

PUCT

PUCT

● MCTS used in AlphaGo and AlphaZero.
● A neural network gives a policy and a value.
● No playouts, evaluation with the value at the leaves.
● P(s,a) = probability for move a of being the best.
● Bandit for the tree descent:

• Exercise :
Modify the UCT code into PUCT.
Suppose a random policy and a random value.

PUCT

def PUCT (board):
 if board.terminal ():
 return board.score ()
 t = look (board)
 if t != None:
 bestValue = -1000000.0
 best = 0
 moves = board.legalMoves ()
 for i in range (0, len (moves)):
 # t [4] = value from the neural network
 Q = t [4]
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = 1 - Q
 # t [3] = policy from the neural network
 val = Q + 0.4 * t [3] [i] * sqrt (t [0]) / (1 + t [1] [i])
 if val > bestValue:
 bestValue = val
 best = i

PUCT

 board.play (moves [best])
 res = PUCT (board)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 return res
 else:
 t = add (board)
 return t [4]

PUCT

Zero Learning

Zero Learning

• AlphaGo
• Golois
• AlphaGo Zero
• Alpha Zero
• Mu Zero
• Polygames
• Athénan

 David Silver Aja Huang

AlphaGo
Fan Hui is the european Go champion and a 2p
 professional Go player :

AlphaGo Fan won 5-0
against Fan Hui in
November 2015.

Nature, January 2016.

AlphaGo
Lee Sedol is among the strongest and most famous
9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march
2016.

AlphaGo

Ke Jie is the world champion of Go according to
Elo ratings :

AlphaGo Master
won 3-0 against
Ke Jie in
may 2017.

AlphaGo
• AlphaGo combines MCTS and Deep Learning.
• There are four phases to the development of

AlphaGo :
• Learn strong players moves => policy network.
• Play against itself and improve the policy network

=> reinforcement learning.
• Learn a value network to evaluate states from

millions of games played against itself.
• Combine MCTS, policy and value network.

AlphaGo

AlphaGo

AlphaGo
• The policy network is a 13 layers network.
• It uses either 128 or 256 feature planes.
• It is fully convolutional.
• It learns to predict moves from hundreds of

thousands of strong players games.
• Once it has learned, it finds the strong player

move 57.0 % of the time.
• It takes 3 ms to run.

AlphaGo
• The value network is also a deep convolutional

neural network.
• AlphaGo played a lot of games and kept for each

game a state and the corresponding terminal state.
• It learns to evaluate states with the result of the

terminal state.
• The value network has learned an evaluation

function that gives the probability of winning.

AlphaGo

AlphaGo

AlphaGo
• The policy network is used as a prior to consider

good moves at first.
• Playouts are used to evaluate moves
• The value network is combined with the statistics

of the moves coming from the playouts.
• PUCT :

AlphaGo

AlphaGo
• AlphaGo has been parallelized using a distributed

version.
• 40 search threads, 1,202 CPUs and 176 GPU.

AlphaGo

AlphaGo

AlphaGo

AlphaGo

AlphaGo

Golois

Golois
• I replicated the AlphaGo experiments with the policy

and value networks.

• Golois policy network scores 58.54% on the test set
(57.0% for AlphaGo).

• Golois plays on the kgs internet Go server.

• It has a strong 4d ranking just with the learned policy
network (AlphaGo policy network is 3d).

Data
● Learning set = games played on the KGS Go server

by players being 6d or more between 2000 and 2014.
● No handicap games.
● Each position is rotated to eight possible symmetric

positions.
● 160 000 000 positions in the learning set.
● Test set = games played in 2015.
● 100 000 different positions not mirrored.

Residual Nets

• Residual Nets :

Evolution of the error

Evolution of the accuracy

Golois Policy Network

• Using residual network enables to train deeper network.

• It enables better accuracy than AlphaGo policy
network.

• It has a 4 dan level on kgs, playing moves instantly.

AlphaGo Zero

AlphaGo Zero

 AlphaGo Zero learns to play Go from scratch playing against itself.

After 40 days of self play it surpasses AlphaGo Master.

Nature, 18 october 2017.

It uses the raw representation of the board as input, even liberties are
not used.

It has 15 input planes, 7 for the previous Black stones, 7 for the
previous White Stones and 1 plane for the color to play.

AlphaGo Zero
● It plays against itself using PUCT and 1,600 tree

descents per move.

● It uses a residual neural network with two heads.

● One head is the policy, the other head is the value.

AlphaGo Zero

AlphaGo Zero
● After 4.9 million games against itself a 20 residual

blocks neural network reaches the level of AlphaGo
Lee (100-0).

● 3 days of self play on the machines of DeepMind.
● Comparison : Golois searches 1,600 nodes in 10

seconds on a 4 GPU machine.
● It would take Golois 466 years to play 4.9 million such

games.

AlphaGo Zero

AlphaGo Zero

AlphaGo Zero

● They used a longer experiment with a deeper network.
● 40 residual blocks.
● 40 days of self play on the machines of DeepMind.
● In the end it beats Master 89-11.

AlphaGo Zero

AlphaGo Zero

AlphaGo Zero

● AlphaGo Zero uses 40 residual blocks instead of 20
blocks for AlphaGo Master.

● With 20 blocks learning stalls after 3 days.
● Master with 40 blocks better than AlphaGo Zero?

Alpha Zero

Alpha Zero
● Arxiv, 5 december 2017.

● Deep reinforcement learning similar to AlphaGo Zero.

● Same algorithm applied to two other games :
Chess and Shogi.

● Learning from scratch without prior knowledge.

Alpha Zero
● Alpha Zero surpasse Stockfish at Chess after 4 hours of

self-play.

● Alpha Zero surpasses Elmo at shogi after 2 hours of self
play.

Alpha Zero
● 5 000 first generation TPU for training.

●4 TPU for playing.

Mu Zero

Mu Zero
● Arxiv, december 2019.

● Similar to Alpha Zero without knowing the rules of the
games.

● Atari, Go, Chess and Shogi.

● Learning from scratch without prior knowledge.

Polygames

Polygames
● Alpha Zero approach for many games.

● A common interface to all the games.

● Fully convolutional network, average pooling…

● Pytorch and C++.

● Open source !

Mathematics

• The state space is an AND/OR tree as in games.
• Algorithms for solving games can be used to prove

theorems.
• MCTS has been used in some theorem provers.
• Holophrasm [Daniel Whalen 2016].
• Tactictoe [Gauthier et al. 2021].

Automated Theorem Proving

Automated Theorem Proving

Code Generation

MCTS and Deep RL
Monte Carlo Tree Search and Deep Reinforcement
Learning to discover new fast matrix multiplication
algorithms:

MCTS and Deep RL
AlphaDev improves sorting algorithms:

Athénan and the Computer
Olympiad

Athénan

● 48 gold medals at the Computer Olympiads!
● Amazons, Arimaa, Ataxx, Breakthrough, Canadian Draughts, Chinese Chess,

Clobber, Havannah (8×8), Havannah (10×10), Hex (11×11), Hex (13×13),
Hex (19×19), Lines of Action, Othello (10×10), Santorini, Surakarta.

Unbounded Minimax

● Principle = Extend the most promising leaf.

● Asymmetric growing of the search tree.

Descent

● Only uses a value network.

● Self play without prior knowledge.

● Learns the scores inside the trees developed by the
Unbounded MiniMax.

● Minimax Strikes Back [Cohen-Solal & Cazenave 2023].

Descent

Athénan

Athénan

Athénan

Athénan

Athénan

Athénan

Athénan

Conclusion
● AlphaGo : supervised learning and self play.
● Golois : residual networks and Spatial Batch

Normalization improve learning.
● AlphaGo Zero : reinforcement learning from self play

with MCTS. Raw inputs. Residual networks and
combined policy and value network. Better than Master.

● AlphaZero : Go, Chess and Shogi.
● MuZero : Atari, Go, Chess and Shogi.
● Polygames : many games.
● Athénan: Minimax Strikes Back.

Alpha Zero Project

Alpha Zero
● Define a network that takes as input the

Breakthrough board and gives as output the policy
and the value for the board.

● Bias the MCTS with policy and value using PUCT.
● Make the network play games and record the results

of the Monte Carlo and the result of the games.
● Train the network on the results of the games.
● Iterate.

Alpha Zero
● The network takes 41 inputs with values 0 or 1, 20 inputs

for black pawns, 20 inputs for white pawns and one input
for the color to play.

● Option: also use previous boards as inputs.
● The network has 60 outputs for the policy head (3 possible

moves for each cell), and 1 output for the value head.
● The architecture of the network can be completely

connected as a starting point.
● Option : convolutional network, residual network.

Alpha Zero
1) Define the network
2) Implement the PUCT algorithm using the network.
Use the same network for black and white, rotate the
board for white so that moves are always forward.
3) Make the algorithm play against itself.
4) Record the Monte Carlo distributions and the
result of self played games.
5) Train the network on the recorded data.

Monte Carlo Search with
Imperfect Information

• The moves of the other players are not known
• Application : Auctions

Simultaneous Moves MCTS

Information Set MCTS
● Flat Monte Carlo Search gives good results

for Phantom Go.
● Information Set MCTS.
● Card games.

Counter Factual Regret
Minimization

● Poker : Libratus (CMU), DeepStack (UofA).
● Approximation of the Nash Equilibrium.
● There are about 320 trillion “information sets” in heads-

up limit hold’em.
● What the algorithm does is look at all strategies that do

not include a move, and count how much we “regret”
having excluded the move from our mix.

● Combination with neural networks.
● Better than top professional players.

αμ
● Bridge
● Generate a set of possible worlds.
● Solve each world exactly
● Search multiple moves ahead
● Strategy Fusion => joint search
● Non Locality => Pareto fronts

PIMC

For all possible moves
 For all possible worlds
 Exactly solve the world

Play the move winning in the most worlds

Strategy Fusion

● Problem = PIMC can play different
moves in different worlds.

● Whereas the player cannot
distinguish between the different
worlds.

Non Locality

Pareto Fronts
● A Pareto Front is a set of vectors.
● It maintains the set of vectors that are not dominated by other vectors.

● Consider the Pareto front {[1 0 0], [0 1 1]}.
● If the vector [0 0 1] is a candidate for entering the front, then the front stays

unchanged since [0 0 1] is dominated by [0 1 1].

● If we add the vector [1 1 0] then the vector [1 0 0] is removed from the front since it is
dominated by [1 1 0], and then [1 1 0] is inserted in the front. The new front becomes
{[1 1 0], [0 1 1]}.

● It is useful to compare Pareto fronts.
● A Pareto front P1 dominates or is equal to a Pareto front P2 iff v P2 , v’ P1 ∀ ∈ ∃ ∈

such that (v’ dominates v) or v’=v.

AlphaMu

● At Max nodes each possible move returns a
Pareto front.

● The overall Pareto front is the union of all the
Pareto fronts of the moves.

● The idea is to keep all the possible options
for Max, i.e. Max has the choice between all
the vectors of the overall Pareto front.

AlphaMu

● At Min nodes, the Min players can choose
different moves in different possible worlds.

● They take the minimum outcome over all the
possible moves for a possible world.

● When they can choose between two vectors
they take for each index the minimum
between the two values at this index of the
two vectors.

AlphaMu
● When Min moves lead to Pareto fronts, the Max player can

choose any member of the Pareto front.
● For two possible moves of Min, the Max player can also choose

any combination of a vector in the Pareto front of the first move
and of a vector in the Pareto front of the second move.

● Compute all the combinations of the vectors in the Pareto fronts
of all the Min moves.

● For each combination the minimum outcome is kept so as to
produce a unique vector.

● Then this vector is inserted in the Pareto front of the Min node.

Product of Pareto Fronts at Min
nodes

The Early Cut

The Root Cut
● If a move at the root of αμ for M Max moves gives the same

probability of winning than the best move of the previous
iteration of iterative deepening for M-1 Max moves, the search
can safely be stopped since it is not possible to find a better
move.

● A deeper search will always return a worse probability than the
previous search because of strategy fusion.

● Therefore if the probability is equal to the one of the best move
of the previous shallower search the probability cannot be
improved and a better move cannot be found so it is safe to cut.

Experimental Results
● Comparison of the average time per move of different

configurations of αμ on deals with 52 cards for the 3NT
contract.

Experimental Results
● Comparison of αμ versus PIMC for the 7NT contract,
 playing 10 000 games.

AlphaMu

● AlphaMu solves de strategy fusion and the non
locality problems of PIMC up to a given depth.

● It maintains Pareto Fronts in its search tree.
● It improves on PIMC for the 7NT contract of

Bridge.

Nook and Bridge

PIMC

For all possible moves
 For all possible worlds
 Exactly solve the world

Play the move winning in the most worlds

Strategy Fusion

● Problem = PIMC can play different
moves in different worlds.

● Whereas the player cannot
distinguish between the different
worlds.

Nook

● Opponent Modeling
● Alpha-Beta on each possible world
● AlphaMu
● Rule based opening lead
● Contract : 1NT 2NT 3NT
● Declarer

Nook

Nook

Nook

Sequential Halving

Sequential Halving
Sequential Halving, a method so wise
Dividing tasks with great precision and size
Starting from many, it reduces the few
Towards a solution that's both true and true

With each iteration, the choices do narrow
Till the answer shines bright like a beacon so sparrow
No guesses, no chances, no luck needed here
Just a systematic approach, crystal clear

From the simplest problems to the hardest of quest
Sequential Halving never fails to impress
A friend to all seekers, a guide in the night
Bringing order to chaos, and making things right

So let us embrace it, in all we embark
With Sequential Halving, success is just a mark.

Sequential Halving
● Sequential Halving [Karnin & al. 2013] is a

bandit algorithm that minimizes the simple
regret.

● It has a fixed budget of arm pulls.
● It gives the same number of playouts to all the

arms.
● It selects the best half.
● Repeat until only one move is left

Sequential Halving

SHOT
● SHOT is the acronym for Sequential

Halving Applied to Trees [Cazenave 2015].
● When the search comes back to a node it

considers the spent budget and the new
budget as a whole.

● It distributes the overall budget with
Sequential Halving.

SHOT

SHOT

SHOT
● SHOT gives good results for Nogo.
● Combining SHOT and UCT :

SHOT near the root
UCT deeper in the tree

● The combination gives good results for
Atarigo, Breakthrough, Amazons and
partially observable games.

• Exercise:

• Write the code to perform Sequential Halving at the
root on top of UCT.

Sequential Halving

Sequential Halving
def SequentialHalving (state, budget):
 global Table
 Table = {}
 add (state)
 moves = state.legalMoves ()
 total = len (moves)
 nplayouts = [0.0 for x in range (MaxCodeLegalMoves)]
 nwins = [0.0 for x in range (MaxCodeLegalMoves)]
 while (len (moves) > 1):
 for m in moves:
 for i in range (int (budget // (len (moves) * np.log2 (total)))):
 s = copy.deepcopy (state)
 s.play (m)
 res = UCT (s)
 nplayouts [m.code (state)] += 1
 if state.turn == White:
 nwins [m.code (state)] += res
 else:
 nwins [m.code (state)] += 1.0 - res
 moves = bestHalf (state, moves, nwins, nplayouts)
 return moves [0]

Sequential Halving
def bestHalf (state, moves, nwins, nplayouts):
 half = []
 notused = list(np.full(MaxCodeLegalMoves,True))
 for i in range (int(np.ceil(len (moves) / 2))):
 best = -1.0
 bestMove = moves [0]
 for m in moves:
 code = m.code (state)
 if notused [code]:
 mu = nwins [code] / nplayouts [code]
 if mu > best:
 best = mu
 bestMove = m
 notused [bestMove.code (state)] = False
 half.append (bestMove)
 return half

Sequential Halving Using Scores,
A method to find the best of many,
It starts with many choices,
And narrows them down, through many voices.

It divides the options in groups,
And test them with different scores,
Eliminating the ones that lag,
Until the best one, it ensures.

This method is efficient and fast,
It saves time and resources,
And finds the best solution, at last,
Among many possible courses.

Sequential Halving Using Scores,
A powerful tool for decision,
It helps us to find the right doors,
And make the best decision.

SHUSS

• Sequential Halving combined with other statistics such as AMAF
statistics.

• Instead of selecting the best half with the mean (mui), use:

 mui + c * AMAFi / pi

with pi the number of playouts of move i and c ≥ 128.

• Combining SH with AMAF = SHUSS (Sequential Halving Using
Scores) [Fabiano et al. 2021]

SHUSS

SHUSS

SHUSS

• Exercise:

Write the code to perform SHUSS at the root on top
of GRAVE.

SHUSS

SHUSS
def SHUSS (state, budget):
 global Table
 Table = {}
 addAMAF (state)
 root = look (state)
 moves = state.legalMoves ()
 total = len (moves)
 nplayouts = np.zeros(MaxCodeLegalMoves)
 nwins = np.zeros(MaxCodeLegalMoves)
 while (len (moves) > 1):
 for m in moves:
 for i in range (int(budget // (len (moves) * np.log2 (total)))):
 s = copy.deepcopy (state)
 s.play (m)
 code = m.code (state)
 played = [code]
 res = GRAVE (s, played, root)
 updateAMAF (root, played, res)
 nplayouts [code] += 1
 if state.turn == White:
 nwins [code] += res
 else:
 nwins [code] += 1.0 - res
 moves = bestHalfSHUSS (root, state, moves, nwins, nplayouts)
 return moves [0]

SHUSS
def bestHalfSHUSS (t, state, moves, nwins, nplayouts):
 half = []
 notused = list(np.full(MaxCodeLegalMoves,True))
 c = 128
 for i in range (int(np.ceil(len (moves) / 2))):
 best = -1.0
 bestMove = moves [0]
 for m in moves:
 code = m.code (state)
 if notused [code]:
 AMAF = t [4] [code] / t [3] [code]
 if state.turn == Black:
 AMAF = 1 - AMAF
 mu = nwins [code] / nplayouts [code] + c * AMAF / nplayouts [code]
 if mu > best:
 best = mu
 bestMove = m
 notused [bestMove.code (state)] = False
 half.append (bestMove)
 return half

Nested Monte Carlo Search

Nested Monte Carlo Search
Nested Monte Carlo Search, a complex game,
A method to find the best move, it can claim,
It looks deeper, it goes beyond,
To find the winning move, it has fond.

It takes the Monte Carlo Tree Search,
And adds another layer, to research,
It explores the branches, with great care,
To find the best outcome, with much flair.

It simulates the game, again and again,
And analyzes the data, to win.
It's like a Russian doll, inside and out,
Nested Monte Carlo Search, without a doubt.

It's a powerful tool, for AI,
To make machines better, that's its aim high,
It's a step towards true intelligence,
Nested Monte Carlo Search, a true excellence.

Single Agent Monte Carlo
 UCT can be used for single-agent problems.
 Nested Monte Carlo Search often gives better
 results.
 Nested Rollout Policy Adaptation is an
 online learning variation that has beaten
 world records.

Nested Monte-Carlo Search

• Play random games at level 0
• For each move at level n+1, play the move then

play a game at level n
• Choose to play the move with the greatest

associated score
• Important : memorize and follow the best

sequence found at each level

Nested Monte-Carlo Search

Analysis

• Analysis on two very simple abstract
problems.

• Search tree = binary tree.
• In each state there are only two possible

moves: going to the left or going to the
right.

Analysis
• The scoring function of the leftmost path

problem consists in counting the number of
moves on the leftmost path of the tree.

Analysis
• Sample search : probability 2-n of finding the

best score of a depth n problem.
• Depth-first search : one chance out of two of

choosing the wrong move at the root, so the
mean complexity > 2n-2.

• A level 1 Nested Monte-Carlo Search will
always find the best score, complexity is n(n-1).

• Nested Monte-Carlo Search is appropriate for
the leftmost path problem because the scores
at the leaves are extremely correlated with the
structure of the search tree.

Analysis
• The scoring function of the left move

problem consists in counting the number of
moves on the left.

Analysis
• The probability distribution can be

computed exactly with a recursive formula
and dynamic programming.

• A program that plays the left move
problems has also been written and
results with 100,000 runs are within 1% of
the exact probability distribution.

Analysis
• Distributions of the scores for a depth 60

problem.

Analysis
• Mean score in real time

Morpion Solitaire

• Morpion Solitaire is an NP-hard puzzle and the
high score is inapproximable within n1-epsilon

• A move consists in adding a circle such that a
line containing five circles can be drawn.

• In the disjoint version a circle cannot be a part
of two lines that have the same direction.

• Best human score is 68 moves.
• Level 4 Search => 80 moves, after 5 hours of

computation on a 64 cores cluster.

Morpion Solitaire
• 80 moves :

Morpion Solitaire
• Distribution of the scores

Morpion Solitaire
• Mean scores in real-time

SameGame

• NP-complete puzzle.
• It consists in a grid composed of cells of different

colors. Adjacent cells of the same color can be
removed together, there is a bonus of 1,000 points
for removing all the cells.

• TabuColorRandom strategy: the color that has the
most cells is set as the tabu color.

• During the playouts, moves of the tabu color are
played only if there are no moves of the others
colors or it removes all the cells of the tabu color.

Same Game

Same Game

• SP-MCTS = restarts of the UCT algorithm
• SP-MCTS scored 73,998 on a standard test

set.
• IDA* : 22,354
• Darse Billings program : 72,816.
• Level 2 without memorization : 44,731
• Nested level 2 with memorization : 65,937
• Nested level 3 : 77,934

Application to Constraint
Satisfaction

• A nested search of level 0 is a playout.
• A nested search of level 1 uses a playout

to choose a value.
• A nested search of level 2 uses nested

search of level 1 to choose a value.
• etc.
• The score is always the number of free

variables.

Sudoku

• Sudoku is a popular NP-complete puzzle.
• 16x16 grids with 66% of empty cells.
• Easy-Hard-Easy distribution of problems.
• Forward Checking (FC) is stopped when

the search time for a problem exceeds
20,000 s.

Sudoku

• FC : > 446,771.09 s.
• Iterative Sampling : 61.83 s.
• Nested level 1 : 1.34 s.
• Nested level 2 : 1.64 s.

Kakuro
 24 25 20 26 24
18
26
28
26
21

A 5x5 grid

Kakuro
 24 25 20 26 24
18 1 7 5 3 2
26 4 5 3 8 6
28 5 6 7 2 8
26 8 4 1 6 7
21 6 3 4 7 1

Solution

Kakuro

Algorithme Solved problems Time

Forward Checking 8/100 92,131.18 s.
Iterative Sampling 10/100 94,605.16 s.
Monte-Carlo level 1 100/100 78.30 s.
Monte-Carlo level 2 100/100 17.85 s.

8x8 Grids, 9 values, stop at 1,000 s.

Bus Regulation
• Goal : minimize passengers waiting

times by making buses wait at a stop.

• Evaluation of an algorithm : sum of the
waiting times for all passengers.

Regulation Algorithms
• Rule-based regulation: The waiting time

depends on the number of stop with the next
bus

• Monte-Carlo regulation : Choose the waiting
time that has the best mean of random
playouts

• Nested Monte-Carlo regulation : Use
multiple levels of playouts

Rule-based regulation
• : number of stop

before the next bus.
• w : waiting time if the

next bus is at more
than .

• No regulation : 171
• Wait during 4 if more

than 7 stops : 164

Monte-Carlo Regulation
• 165 for N = 100
• 154 for N = 1000
• 147 for N = 10000

better than rule-based regulation (164).

Parallel Nested Monte-Carlo
Search

• Play the highest level sequentially
• Play the lowest levels in parallel
• Speedup = 56 for 64 cores at Morpion

Solitaire
• A more simple parallelization : play

completely different searches in parallel
(i.e. use a different seed for each search).

Monte Carlo Beam Search

Single-Agent General Game
Playing

• Nested Monte-Carlo search gives better
results than UCT on average.

• For some problems UCT is better.
• Ary searches with both UCT and Nested

Monte-Carlo search and plays the move that
has the best score.

Snake in the box

• A path such that for every node only two
neighbors are in the path.

• Applications: Electrical engineering, coding
theory, computer network topologies.

• World records with NMCS [Kinny 2012].

Multi-agent pathfinding

• Find routes for the agents avoiding
collisions.

• Monte Carlo Fork Search enables to branch
in the playouts.

• It solves difficult problems faster than other
algorithms [Bouzy 2013].

The Pancake Problem

• Nested Monte Carlo Search has beaten
world records using specialized playout
policies [Bouzy 2015].

Software Engineering

• Search based software testing [Feldt and
Poulding 2015].

• Heuristic Model Checking [Poulding and
Feldt 2015].

• Generating structured test data with specific
properties [Poulding and Feldt 2014].

Inverse RNA Folding

● Find a sequence that has a given folding

Inverse RNA Folding

• Molecule Design as a Search Problem
• Find the sequence of nucleotides that gives

a predefined structure.
• A biochimist applied Nested Monte Carlo

Search to this problem [Portela 2018].
• Better than the state of the art.
• Transformers improve the policy

Refutation of Spectral Graph
Theory Conjectures

● Monte Carlo Search better than Deep RL
[Roucairol & Cazenave 2022]

Coalition Structure Generation

● Lazy Nested Monte Carlo Search with clever
state space :

• Find a set of chemical reactions that enable to
synthetize a given molecule.

• The state space is an AND/OR tree as in games.
• DF-PN and MCTS have been used to find

retrosynthesis pathways.
• Alphachem [Segler et al. 2017].
• AiZynthFinder [Genheden et al. 2020].

Retrosynthesis

Retrosynthesis

DrugSynthMC

• Atom-Based Generation of Drug-like Molecules with
Monte Carlo Search

DrugSynthMC

•

Nested Monte Carlo Search :
● Morpion Solitaire [Cazenave 2009]
● SameGame [Cazenave 2009]
● Sudoku [Cazenave 2009]
● Expression Discovery [Cazenave 2010]
● The Snake in the Box [Kinny 2012]
● Cooperative Pathfinding [Bouzy 2013]
● Software Testing [Poulding et al. 2014]
● Heuristic Model-Checking [Poulding et al. 2015]
● Pancake problem [Bouzy 2015]
● Games [Cazenave et al. 2016]
● Cryptography [Dwivedi et al. 2018]
● Inverse RNA folding [Portela 2019]
● Refutation of Spectral Graph Theory Conjectures [Roucairol & Cazenave 2022]
● Retrosynthesis [Roucairol & Cazenave 2024]
● De Novo Drug Design [Roucairol & Cazenave 2024]
● …

Applications

• Write a Nested Monte Carlo Search for the left move problem.
• Functions to write :

legalMoves (state)
play (state, move)
terminal (state)
score (state)
playout (state)

• Then write a Nested Monte Carlo Search using these functions.

Exercise

import random
import copy

def legalMoves (state):
 return [0, 1]

def play (state, move):
 state.append (move)
 return state

def terminal (state):
 return len (state) >= 60

def score (state):
 return sum (state)

Left Move Problem

Left Move Problem

def playout (state):
 while not terminal (state):
 moves = legalMoves (state)
 move = moves [int(random.random () * len (moves))]
 state = play (state, move)
 return state

Left Move Problem
def nested (state, n):
 if (n == 0):
 return playout (state)
 bestSequence = []
 while not terminal (state):
 moves = legalMoves (state)
 for m in moves:
 s1 = copy.deepcopy (state)
 s1 = play (s1, m)
 s1 = nested (s1, n - 1)
 if score (s1) >= score (bestSequence):
 bestSequence = s1
 state = play (state, bestSequence [len (state)])
 return state

Monte-Carlo Discovery of
Expressions

• Possible moves are pushing atoms.
• Evaluation of a complete expression.
• Better than Genetic Programming for some

problems [Cazenave 2010, 2013].

Monte-Carlo Discovery of
Expressions

Prime Generating Polynomials:
The score of an expression is the number of
different primes it generates in a row for
integer values of x starting at zero and
increasing by one at each step.
Nested Monte-Carlo search is better than
UCT and Iterative Deepening search.

Monte-Carlo Discovery of
Expressions

Monte-Carlo Discovery of
Expressions

Monte-Carlo Discovery of
Expressions

Monte-Carlo Discovery of
Expressions

 N prisoners are assigned with either a 0 or a 1.
 A prisoner can see the number assigned to the other prisoners but
cannot see his own number.
 Each prisoner is asked independently to guess if he is 0 or 1 or to
pass.
 The prisoners can formulate a strategy before beginning the game.
 All the prisoners are free if at least one guesses correctly and none
guess incorrectly.
 A possible strategy is for example that one of the prisoners says 1
and the others pass, this strategy has fifty percent chances of
winning.

Monte-Carlo Discovery of
Expressions

Monte-Carlo Discovery of
Expressions

Monte-Carlo Discovery of
Expressions

Application to financial data
● Data used to perform our empirical analysis

are daily prices of European S&P500 index
call options.

● The sample period is from January 02,
2003 to August 29, 2003.

● S&P500 index options are among the most
actively traded financial derivatives in the
world.

Atom Set
+ Addition C/K Call Price/Strike Price

- Subtraction S/K Index Price/Strike Price

* Multiplication tau Time to Maturity

% Protected Division

ln Protected Natural Log

Exp Exponential function

Sqrt Protected Square Root

cos Cosinus

sin Sinus

Ncfd Normal cumulative distribution

Fitness function
● Each formula found by NMCS or GP is

evaluated to test whether it can accurately
forecast the implied volatility for all entries
in the training set.

● Fitness = Mean Squared Error (MSE)
between the estimated volatility and the
target volatility.

Mean Square Error

Poor Fitted Observations

Exercise :
• Possible atoms : 1, 2, 3, +, -
• Goal : find expressions containing less than 11

atoms that have great evaluations.
• Generate random expressions (i.e. list of atoms).
• Evaluate an expression given as a list of atoms.
• Use NMCS to generate expressions

Expression Discovery

Expression Discovery

+

+

+2

1 3

1

+ + 2 + 1 3 1

import random
import copy

atoms = [1, 2, 3, '+', '-']
children = [0, 0, 0, 2, 2]
MaxLength = 11

def legalMoves (state, leaves):
 l = []
 for a in range (len (atoms)):
 if len (state) + leaves + children [a] <= MaxLength:
 l.append (a)
 return l

def play (state, move, leaves):
 state.append (move)
 return [state, leaves - 1 + children [move]]

def terminal (state, leaves):
 return leaves == 0

Expression Discovery

Expression Discovery

def playout (state, leaves):
 while not terminal (state, leaves):
 moves = legalMoves (state, leaves)
 move = moves [int(random.random () * len (moves))]
 [state, leaves] = play (state, move, leaves)
 return state

Expression Discovery
def score (state, i):
 if children [state [i]] == 0:
 return [atoms [state [i]], i + 1]
 if children [state [i]] == 2:
 a = atoms [state [i]]
 [s1,i1] = score (state, i + 1)
 [s2,i2] = score (state, i1)
 if a == '+':
 return [s1 + s2, i2]
 if a == '-':
 return [s1 - s2, i2]

Expression Discovery
def nested (state, leaves, n):
 bestSequence = []
 bestScore = -10e9
 while not terminal (state, leaves):
 moves = legalMoves (state, leaves)
 for m in moves:
 s1 = copy.deepcopy (state)
 [s1, leaves1] = play (s1, m, leaves)
 if (n == 1):
 s1 = playout (s1, leaves1)
 else:
 s1 = nested (s1, leaves1, n - 1)
 [score1, i] = score (s1, 0)
 if score1 > bestScore:
 bestScore = score1
 bestSequence = s1
 [state, leaves] = play (state, bestSequence [len (state)], leaves)
 return state

Expression Discovery
import sys

def printExpression (state):
 for i in state:
 sys.stdout.write (str (atoms [i]) + ' ')
 sys.stdout.write ('\n')

def test ():
 for i in range (10):
 s = playout ([], 1)
 printExpression (s)
 print (score (s, 0) [0])
 for i in range (10):
 s = nested ([], 1, 2)
 printExpression (s)
 print (score (s, 0) [0])

test ()

Outline

• Algorithm Discovery
• Discovery of MCTS Algorithms
• Discovery of SHUSS Exploration Terms
• Conclusion

Algorithm Discovery

Algorithm Discovery

● Using an algorithm to discover an algorithm
● AlphaZero or MuZero can be used to play the game of

algorithm discovery.

Algorithm Discovery
Monte Carlo Tree Search and Deep Reinforcement
Learning to discover new fast matrix multiplication
algorithms [Fawzi & al. 2022]

Algorithm Discovery
● AlphaDev [Mankowitz & al. 2023]:

Faster sorting algorithms discovered using deep
reinforcement learning

LION
Automated discovery of optimization algorithms

Discovery of MCTS Algorithms

Discovery of MCTS Algorithms

• Evolving Monte-Carlo Tree Search Algorithms
[Cazenave 2007]

• Inventing new exploration terms for MCTS with
Genetic Programming.

Discovery of MCTS Algorithms

• Nested Monte Carlo Search can be used to
discover mathematical expressions and algorithms
[Cazenave 2010]

• It can replace Genetic Programming to discover
new Monte Carlo Search algorithms with a Monte
Carlo Search algorithm

Discovery of SHUSS Exploration Terms

SHUSS

SHUSS

• SHUSS with a policy network
• Select the n best moves according to the policy
• Perform Sequential Halving on this set of moves
• Game : Go
• Neural Network : Transformer trained on Katago

games

SHUSS

Discovery of Exploration Terms

Discovery of Exploration Terms

Discovery of Exploration Terms

Conclusion

• Sampling of Exploration Terms
• The SHUSS dataset for evaluating exploration

terms
• SHUSS is improved using the automatically found

exploration term
• SHUSS using the discovered exploration term

becomes competitive with PUCT for small budgets

• The quality of information propagated during the search
can be increased via a discounting heuristic, leading to a
better move selection for the overall algorithm.

• Improving the cost-effectiveness of the algorithm
without changing the resulting policy by using safe
pruning criteria.

• Long-term convergence to an optimal strategy can be
guaranteed by wrapping NMCS inside a UCT-like
algorithm.

Nested Monte-Carlo Search for
Two-player Games

• The discounting heuristic turns a win/loss game into
a game with a wide range of outcomes by having the
max player preferring short wins to long wins, and
long losses to short losses.

• A playout returns v(st) / (t + 1) with v(st) in {-1,1}

Nested Monte-Carlo Search for
Two-player Games

Nested Monte-Carlo Search for
Two-player Games

Nested Monte-Carlo Search for
Two-player Games

• Modify Breakthrough to play Misere Breakthrough.
• Modify playouts for discounted rewards.
• Nested playouts.
• UCT with nested discounted playouts.
• Compare to standard UCT.

Exercise

def misereScore (self):
 s = self.score ()
 if s == 1:
 return -1
 if s == 0:
 return 1
 return s

Discounted Playout

def discountedPlayout (self, t):
 while (True):
 moves = self.legalMoves ()
 if self.terminal ():
 return self.misereScore () / (t + 1)
 n = random.randint (0, len (moves) - 1)
 self.play (moves [n])
 t = t + 1

Discounted Playout

def nestedDiscountedPlayout (self, t):
 while (True):
 if self.terminal ():
 return self.misereScore () / (t + 1)
 moves = self.legalMoves ()
 bestMove = moves [0]
 best = -2
 for i in range (len (moves)):
 b = copy.deepcopy (self)
 b.play (moves [i])
 s = b.discountedPlayout (t + 1)
 if self.turn == Black:
 s = -s
 if s > best:
 best = s
 bestMove = moves [i]
 self.play (bestMove)
 t = t + 1

Nested Discounted Playout

def UCTNested (board, t1):
 if board.terminal ():
 return board.misereScore () / (t1 + 1)
 t = look (board)
 if t != None:
 bestValue = -1000000.0
 best = 0
 moves = board.legalMoves ()
 for i in range (len (moves)):
 val = 1000000.0
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = -Q
 val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
 if val > bestValue:
 bestValue = val
 best = i

UCT Nested Discounted

 board.play (moves [best])
 res = UCTNested (board, t1 + 1)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 return res
 else:
 add (board)
 return board.nestedDiscountedPlayout (t1)

UCT Nested Discounted

Nested Rollout Policy Adaptation

Nested Rollout Policy
Adaptation

● NRPA [Rosin 2011] is NMCS with policy learning.
● It uses sampling with a softmax of the move

weights as a playout policy.
● It adapts the weights of the moves according to the

best sequence of moves found so far.
● During adaptation each weight of a move of the

best sequence is incremented and all possible
moves in the same state are decreased
proportionally to theire probabilities.

Nested Rollout Policy
Adaptation

● Each move is associated to a weight wi

● During a playout each move is played with
a probability:

exp (wi) / Sk exp (wk)

Nested Rollout Policy
Adaptation

● For each move of the best sequence:
wi = wi + 1

● For each possible move of each state of the
best sequence:
wj = wj – exp (wj) / Sk exp (wk)

Morpion Solitaire

 World record [Rosin 2011]

Applications of NRPA

● 3D packing with object orientation.

Applications of NRPA

● Improvement of some alignments for
Multiple Sequence Alignment [Edelkamp &
al 2015].

Applications of NRPA

● Traveling Salesman Problem with Time
Windows [Cazenave 2012].

● Physical traveling salesman problem.

Applications of NRPA

● State of the art results for Logistics
[Edelkamp & al. 2016].

ENEDIS Agents

● ENEDIS fleet of vehicles is one of the
largest.

● They plan interventions every day.
● Monte Carlo Search is 5% better than the

specialized algorithms they use.
● Millions of kilometers saved each year

[Cazenave et al. 2021].

RNA Molecule Design

● Find a sequence that has a given folding
[Cazenave et al. 2020].

Network Traffic Engineering
● Provide routing configurations in networks that:

● Miminize ressources
● Preserve QoS.

● Better than local search [Dang et al. 2021]:

Virtual Network Embedding

● MCTS for 5G network slicing [Elkael 2023]

Snake in the Box
● Find a long path in an hypercube :

● Improved lower bounds [Dang & al. 2023]

● Morpion Solitaire [Rosin 2011]
● CrossWords [Rosin 2011]
● Traveling Salesman Problem with Time Windows [Cazenave et al. 2012]
● 3D Packing with Object Orientation [Edelkamp et al. 2014]
● Multiple Sequence Alignment [Edelkamp et al. 2015]
● SameGame [Cazenave et al. 2016]
● Vehicle Routing Problems [Edelkamp et al. 2016, Cazenave et al. 2020]
● Graph Coloring [Cazenave et al. 2020]
● RNA Inverse Folding [Cazenave & Fournier 2020]
● Network Traffic Engineering [Dang et al. 2021]
● Slicing 5G [Elkael et al. 2023]
● Snake in the Box [Dang et al. 2023]
● …

Nested Rollout Policy Adaptation

Exercise
● Apply NRPA to the Left Move problem.
● Write a function playout (state) that plays a playout

using Gibbs sampling.
● The probability of playing a move is proportional to the

exponential of the weight of the move.
● weight is a dictionary that contains the weights of the

moves.
● Write the Adapt function
● Write the NRPA function

Exercise
def randomMove (state, policy):
 moves = legalMoves (state)
 z = 0.0
 for m in moves:
 if policy.get (code(state,m)) == None:
 policy [code(state,m)] = 0.0
 z = z + math.exp (policy [code(state,m)])
 stop = random.random () * z
 sum = 0.0
 for m in moves:
 sum = sum + math.exp (policy [code(state,m)])
 if (sum >= stop):
 return m

def playout (state, policy):
 while not terminal (state):
 move = randomMove (state, policy)
 play (state, move)
 return score (state),sequence(state)

Exercise

def adapt (policy, sequence, alpha = 1.0):
 s = []
 polp = copy.deepcopy (policy)
 for best in sequence:
 moves = legalMoves (s)
 z = 0.0
 for m in moves:
 if policy.get (code(s,m)) == None:
 policy [code(s,m)] = 0.0
 z = z + math.exp (policy [code(s,m)])
 for m in moves:
 if polp.get (code(s,m)) == None:
 polp [code(s,m)] = 0.0
 polp [code(s,m)] -= alpha * math.exp (policy [code(s,m)]) / z
 polp [code(s,best)] += alpha
 play (s, best)
 return polp

Exercise
def NRPA (level, policy):
 if level == 0:
 return playout ([], policy)
 best = -np.inf
 seq = []
 for i in range (100):
 pol = copy.deepcopy (policy)
 sc, s = NRPA (level - 1, pol)
 if sc > best:
 best = sc
 seq = s
 policy = adapt (policy, seq)
 return best, seq

Exercise
def score (state):
 return sum (state)

def play (state, move):
 state.append (move)

def legalMoves (state):
 return [0,1]

def terminal (state):
 return len(state) >= 60

def sequence (state):
 return state

def code (state, m):
 return 2 * len (state) + m

sc,s = NRPA (1, {})
print (sc, s)
sc,s = NRPA (2, {})
print (sc, s)

Selective Policies
● Prune bad moves during playouts.
● Modify the legal moves function.
● Use rules to find bad moves.
● Different domain specific rules for :

– Bus regulation,
– SameGame,
– Weak Schur numbers.

Bus Regulation
● At each stop a regulator can decide to make a bus

wait before continuing his route.
● Waiting at a stop can reduce the overall

passengers waiting time.
● The score of a simulation is the sum of all the

passengers waiting time.
● Optimizing a problem is finding a set of bus

stopping times that minimizes the score of the
simulation.

Bus Regulation
● Standard policy: between 1 and 5 minutes
● Selective policy : waiting time of 1 if there are

fewer than δ stops before the next bus.
● Code for a move:

– the bus stop,
– the time of arrival to the bus stop,
– the number of minutes to wait before leaving the

stop.

Bus Regulation
 Time No δ δ = 3

 0.01 2,620 2,147
 0.02 2,441 2,049
 0.04 2,329 2,000
 0.08 2,242 1,959
 0.16 2,157 1,925
 0.32 2,107 1,903
 0.64 2,046 1,868
 1.28 1,974 1,811
 2.56 1,892 1,754
 5.12 1,802 1,703
 10.24 1,737 1,660
 20.48 1,698 1,640
 40.96 1,682 1,629
 81.92 1,660 1,617
 163.84 1,632 1,610

SameGame

SameGame
● Code of a move = Zobrist hashing.
● Tabu color strategy = avoid moves of the

dominant color until there is only one block
of the dominant color.

● Selective policy = allow moves of size two
of the tabu color when the number of
moves already played is greater than t.

SameGame
 Time No tabu tabu t > 10

 0.01 155.83 352.19 257.59
 0.02 251.28 707.56 505.05
 0.04 340.18 927.63 677.57
 0.08 404.27 1,080.64 822.44
 0.16 466.15 1,252.14 939.30
 0.32 545.78 1,375.78 1,058.54
 0.64 647.63 1,524.37 1,203.91
 1.28 807.20 1,648.16 1,356.81
 2.56 1,012.42 1,746.74 1,497.90
 5.12 1,184.77 1,819.43 1,605.86
 10.24 1,286.25 1,886.48 1,712.17
 20.48 1,425.55 1,983.42 1,879.10
 40.96 1,579.67 2,115.80 2,100.47
 81.92 1,781.40 2,319.44 2,384.24
 163.84 2,011.25 2,484.18 2,636.22

SameGame

Standard test set of 20 boards:

NMCS SP-MCTS NRPA web
77,934 78,012 80,030 87,858

Same Game

• Hybrid Parallelization [Negrevergne 2017].

• Root Parallelization for each computer. Leaf
Parallelization of the playouts using threads.

• New record of 83 050.

• Parallelization for Morpion Solitaire [Nagorko 2019].

Weak Schur Numbers
● Find a partition of consecutive numbers that

contains as many consecutive numbers as possible
● A partition must not contain a number that is the

sum of two previous numbers in the same partition.
● Partition of size 3 :

1 2 4 8 11 22
3 5 6 7 19 21 23
9 10 12 13 14 15 16 17 18 20

Weak Schur Numbers
● Often a good move to put the next number in the

same partition as the previous number.
● If it is legal to put the next number in the same

partition as the previous number then it is the only
legal move considered.

● Otherwise all legal moves are considered.
● The code of a move for the Weak Schur problem

takes as input the partition of the move, the integer
to assign and the previous number in the partition.

Weak Schur Numbers
 Time ws(9) ws-rule(9)

 0.01 199 2,847
 0.02 246 3,342
 0.04 263 3,717
 0.08 273 4,125
 0.16 286 4,465
 0.32 293 4,757
 0.64 303 5,044
 1.28 314 5,357
 2.56 331 5,679
 5.12 362 6,065
 10.24 384 6,458
 20.48 403 6,805
 40.96 422 7,117
 81.92 444 7,311
 163.84 473 7,538

Selective Policies
● We have applied selective policies to three

quite different problems.
● For each problem selective policies

improve NRPA.
● We used only simple policy improvements.
● Better performance could be obtained

refining the proposed policies.

Exercise
● Apply NRPA to the Weak Schur problem.
● Write a class defining the Weak Schur problem.
● Write a function that plays a playout using Gibbs sampling.
● The probability of playing a move is proportional to the

exponential of the weight of the move.
● weight is a dictionary that contains the weights associated

to the moves.
● code (move) returns the integer associated to the move in

the weight dictionary.

Weak Schur
import random
import math
import numpy as np
N = 3
MaxNumber = 10000
class WS (object):
 def __init__ (self):
 self.partitions = [[] for i in range (N)]
 self.possible = np.full((N,MaxNumber),True))
 self.next = 1
 self.sequence = []

 def legalMoves (self):
 l = []
 for i in range (N):
 if self.possible [i] [self.next]:
 l.append (i)
 return l

 def code (self, p):
 return N * self.next + p

Weak Schur
 def terminal (self):
 l = self.legalMoves ()
 if l == []:
 return True
 return False

 def score (self):
 return self.next - 1

 def play (self, p):
 for i in range (len (self.partitions [p])):
 self.possible [p] [self.next + self.partitions [p] [i]] = False
 self.partitions [p].append (self.next)
 self.next = self.next + 1
 self.sequence.append (p)

Weak Schur
class Policy (object):
 def __init__ (self):
 self.dict = {}

 def get (self, code):
 w = 0
 if code in self.dict:
 w = self.dict [code]
 return w

 def put (self, code, w):
 self.dict [code] = w

Weak Schur
def playout (state, policy):
 while not state.terminal ():
 l = state.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (state.code (l [i])))
 stop = random.random () * z
 move = 0
 z = 0
 while True:
 z = z + math.exp (policy.get (state.code (l [move])))
 if z >= stop:
 break
 move = move + 1
 state.play (l [move])

Exercise
● Write the adapt function that modifies the

weights of the moves according to the best
sequence of moves.

● Weights of the moves of the best sequence
are incremented.

● For each state of the best sequence,
weights of all the moves are reduced
proportional to their probabilities.

Weak Schur
def adapt (sequence, policy):
 polp = copy.deepcopy (policy)
 s = WS ()
 while not s.terminal ():
 l = s.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (s.code (l [i])))
 move = sequence [len (s.sequence)]
 polp.put (s.code (move), polp.get(s.code (move)) + 1)
 for i in range (len (l)):
 proba = math.exp (policy.get (s.code (l [i]))) / z
 polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
 s.play (move)
 return polp

Exercise
● Write the multi level NRPA code that

retains a best sequence per level and
recursively calls lower levels.

● Level zero is a playout with Gibbs
sampling.

Weak Schur
def NRPA (level, policy):
 state = WS ()
 if level == 0:
 playout (state, policy)
 return state
 pol = copy.deepcopy (policy)
 for i in range (100):
 ws = NRPA (level - 1, pol)
 if ws.score () >= state.score ():
 state = ws
 pol = adapt (state.sequence, pol)
 return state

ws = NRPA (2, Policy ())
print (ws.partitions)
[[1, 2, 4, 8, 11, 16, 22], [3, 5, 6, 7, 19, 21, 23], [9, 10, 12, 13, 14, 15, 17, 18, 20]]

Analysis of Nested Rollout Policy Adaptation

Generalized Nested Rollout Policy
Adaptation

Generalized Nested Rollout Policy
Adaptation

Generalized Nested Rollout Policy
Adaptation

Generalized Nested Rollout Policy
Adaptation

Generalized Nested Rollout Policy
Adaptation

SameGame

TSPTW

TSPTW

GNRPA

● NRPA with a bias.
● Equivalent to the initialization of the weights.
● More convenient to use a bias.
● We can always set the temperature to 1 without a

loss of generality.
● Good results for SameGame and TSPTW.

GNRPA

● Exercise:
● Apply GNRPA to the Weak Schur problem.

Weak Schur
def playout (state, policy):
 while not state.terminal ():
 l = state.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (state.code (l [i])) + state.beta (l [i]))
 stop = random.random () * z
 move = 0
 z = 0
 while True:
 z = z + math.exp (policy.get (state.code (l [move])) + state.beta (l [move]))
 if z >= stop:
 break
 move = move + 1
 state.play (l [move])

Weak Schur
def adapt (sequence, policy):
 polp = copy.deepcopy (policy)
 s = WS ()
 while not s.terminal ():
 l = s.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (s.code (l [i])) + s.beta (l [i]))
 move = sequence [len (s.sequence)]
 polp.put (s.code (move), polp.get(s.code (move)) + 1)
 for i in range (len (l)):
 proba = math.exp (policy.get (s.code (l [i])) + s.beta (l [i])) / z
 polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
 s.play (move)
 return polp

Weak Schur
 def beta (self, p):
 last = len (self.sequence)
 if last == 0:
 return 0
 if p == self.sequence [last – 1]:
 return 10
 return 0

Force Explore

● When a policy has been reinforced a lot, for example in
the end of the iterations loop, the playouts are almost
deterministic.

● NRPA very often replays the same playout.
● Force Explore detects when a terminal state has already

been evaluated before.
● In this case it randomly chooses a move in the playout,

modifies it and performs another playout.
● "Warm-Starting Nested Rollout Policy Adaptation with

Optimal Stopping", Dang et al. AAAI 2023.

Force Explore

● Exercise:
● Apply Force Explore to the Weak Schur

problem.

Force Explore

● First thing is to compute a hascode for states :

 def play (self, p):

 for i in range (len (self.partitions [p])):

 self.possible [p] [self.next + self.partitions [p] [i]] = False

 self.h = self.h ^ randomNumber [self.code (p)]

 self.partitions [p].append (self.next)

 self.next = self.next + 1

 self.sequence.append (p)

Force Explore

● Modification of the playout function to force explore :

def playout (state, policy):
 while not terminal (state):
 move = randomMove (state, policy)
 state = play (state, move)
 s = TT.get (state.h, None)
 if s != None:
 index = random.randint (0, len (state.sequence) – 1)
 state1 = WS ()
 for i in range (index):
 state1 = play (state1, state.sequence [i])

 l = state1.legalMoves ()

 move = int(random.random () * len(l))

 state1.play (l [move])

 state = state1
 while not terminal (state):
 move = randomMove (state, policy)
 state = play (state, move)
 TT.add (state.h, 1)
 return state

Warm Starting

● Warm starting performs multiple recursive calls before
starting to adapt.

● The optimal stopping criterion is the one of the secretary
problem :

 Ri ≤ i * c / (n + 1 – i)
 with Ri relative rank of the ith item,
 n the total number of items,
 c a constant.

● "Warm-Starting Nested Rollout Policy Adaptation with
Optimal Stopping", Dang et al. AAAI 2023.

Warm Starting

● World records for the Snake-in-the-Box.

Warm Starting

● Exercise:
● Apply Warm Starting to the Weak Schur

problem.

Warm Starting
def MetaNRPA (level, policy):

 state = WS ()

 if level == 0:

 playout (state, policy)

 return state

 pol = copy.deepcopy (policy)

 l = []

 startLearning = False

 c = 2.3

 for i in range (100):

 ws = MetaNRPA (level - 1, pol)

 score = ws.score ()

 if score >= state.score ():

 state = ws

 l.append (score)

 l.sort (reverse=True)

 index = l.index (score)

 if index + 1 <= (i + 1) * c / (100 – i):

 startLearning = True

 if startLearning:

 pol = adapt (state.sequence, pol)

 return state

Limited Repetitions

● Stops the iterations at a level when the best sequence is found again.
● Enables to avoid deterministic policies that find the same sequence

again and again and waste time.
● Simple to code.
● Generalized Nested Rollout Policy Adaptation with Limited Repetitions
● Applications :

● TSPTW,
● RNA Design,
● Weak Schur.

● "Generalized Nested Rollout Policy Adaptation with Limited
Repetitions", Tristan Cazenave. Arxiv 2024.

Limited Repetitions

● Exercise:
● Apply Limited Repetitions to the Weak Schur

Problem.

Limited Repetitions
def GNRPALR (level, policy):

 state = WS ()

 if level == 0:

 playout (state, policy)

 return state

 pol = copy.deepcopy (policy)

 while True:

 ws = GNRPALR (level - 1, pol)

 score = ws.score ()

 if score > state.score ():

 state = ws

 if score == state.score ():

 return state

 pol = adapt (state.sequence, pol)

Learning a Prior by Replaying Solutions

● Generate solved problems.
● Compute statistics on moves for the generated solved problems.
● Use the logarithm of the statistics of a move as a prior for the

move.
● Applications :

● Kakuro
● Latin Square Completion
● RNA Design

● "Learning a Prior for Monte Carlo Search by Replaying Solutions
to Combinatorial Problems", Tristan Cazenave. Arxiv 2024.

Learning a Prior by Replaying Solutions

Learning a Prior by Replaying Solutions

Limited Repetitions

Learning a Prior by Replaying Solutions

Learning a Prior by Replaying Solutions

● Exercise:
● Apply Learning a Prior by Replaying Solutions

to Kakuro.
● Generate Kakuro problems of size 10 with 11

possible values.
● Compute statistics on moves.
● Use the statistics as a prior for GNRPA.

Learning a Prior by Replaying Solutions

Bias Weights Learning

● Bias Learning dynamically learns the weight to
associate to a bias in GNRPA.

● "Learning the Bias Weights for Generalized
Nested Rollout Policy Adaptation", Sentuc et al.
LION 2023.

Bias Weights Learning

Bias Weights Learning

Exercise:
Apply Bias Weights Learning to the Weak Schur
problem.

Bias Weights Learning
def playout (state, policy,w1):
 while not state.terminal ():
 l = state.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (state.code (l [i])) + w1 * state.beta (l [i]))
 stop = random.random () * z
 move = 0
 z = 0
 while True:
 z = z + math.exp (policy.get (state.code (l [move])) + w1 * state.beta (l [move]))
 if z >= stop:
 break
 move = move + 1
 state.play (l [move])

Bias Weights Learning
def adapt (sequence, policy, w1):
 polp = copy.deepcopy (policy)
 w = w1
 s = WS ()
 while not s.terminal ():
 l = s.legalMoves ()
 z = 0
 b = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i]))
 b = b + s.beta (l [i]) * math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i]))
 move = sequence [len (s.sequence)]
 w = w + s.beta (move) – b / z
 polp.put (s.code (move), polp.get(s.code (move)) + 1)
 for i in range (len (l)):
 proba = math.exp (policy.get (s.code (l [i])) + w1 * s.beta (l [i])) / z
 polp.put (s.code (l [i]), polp.get(s.code (l [i])) - proba)
 s.play (move)
 return (polp,w)

Bias Weights Learning
def BLGNRPA (level, policy, w):

 state = WS ()

 if level == 0:

 playout (state, policy, w)

 return state

 pol = copy.deepcopy (policy)

 w1 = w

 for i in range (100):

 ws = BLGNRPA (level - 1, pol, w1)

 score = ws.score ()

 if score >= state.score ():

 state = ws

 (pol, w1) = adapt (state.sequence, pol, w1)

 return state

Eterna 100

● Find a sequence that has a given folding

Eterna 100

● Human experts have managed to solve the
 100 problems of the benchmark
● No program has so far achieved such a
 score.
● The best score so far is 95/100 by NEMO:
 NEsted MOnte Carlo RNA Puzzle Solver

NEMO

● NEMO uses two sets of heuristics
● General ones that give probabilities to
pairs of bases.
● More specific ones that are tailored to
puzzle solving.

GNRPA

Other Improvements

● Stabilized GNRPA
● Beam GNRPA
● Zobrist Hashing
● Restarts
● Parallelization

Experimental Results

Experimental Results

● Leaf Parallelization

Experimental Results

Experimental Results

● Root Parallelization

Conclusion

● 95/100 problems solved, same as NEMO.
● Less domain knowledge.
● Various improvements of NRPA.

Playout Policy Adaptation

Offline learning of a playout
policy

● Offline learning of playout policies has
given good results in Go [Coulom 2007,
Huang 2010] and Hex [Huang 2013],
learning fixed pattern weights so as to bias
the playouts.

● Patterns are also used to do progressive
widening in the UCT tree.

Online learning of a playout
policy

● The RAVE algorithm [Gelly 2011] performs online
learning of moves values in order to bias the choice of
moves in the UCT tree.

● RAVE has been very successful in Go and Hex.
● A development of RAVE is to use the RAVE values to

choose moves in the playouts using Pool RAVE
[Rimmel 2010].

● Pool RAVE improves slightly on random playouts in
Havannah and reaches 62.7% against random playouts
in Go.

Online learning of a playout
policy

● Move-Average Sampling Technique (MAST)
is a technique used in the GGP program
Cadia Player so as to bias the playouts with
statistics on moves [Finnsson 2010].

● It consists of choosing a move in the playout
proportionally to the exponential of its mean.

● MAST keeps the average result of each
action over all simulations.

Online learning of a playout
policy

● Later improvements of Cadia Player are N-
Grams and the last good reply policy [Tak 2012].

● They have been applied to GGP so as to
improve playouts by learning move sequences.

● A recent development in GGP is to have
multiple playout strategies and to choose the
one which is the most adapted to the problem at
hand [Swiechowski 2014].

Online learning of a playout
policy

● Playout Policy Adaptation (PPA) also uses
Gibbs sampling.

● The evaluation of an action for PPA is not
its mean over all simulations such as in
MAST.

● Instead the value of an action is learned
comparing it to the other available actions
for the state where it has been played.

Playout Policy learning

● Start with a uniform policy.

● Use the policy for the playouts.

● Adapt the policy for the winner of each
playout.

Playout Policy learning
● Each move is associated to a weight wi.

● During a playout each move is played with
a probability :

exp (wi) / Sk exp (wk)

Playout Policy learning
● Online learning :
● For each move of the winner :

wi = wi + 1
● For each possible move of each state of

the winner :
wi = wi – exp (wi) / Sk exp (wk)

Breakthrough

● The first player to reach the opposite line has won

Misère Breakthrough

● The first player to reach the opposite line has lost

Knightthrough

● The first to put a knight on the opposite side has won.

Misère Knightthrough

● The first to put a knight on the opposite side has lost.

Atarigo

● The first to capture has won

Nogo

● The first to capture has lost

Domineering
Misère Domineering

● The last to play has won / lost.

Experimental results
 Size Playouts
 1,000 10,000

Atarigo 8 x 8 72.2 94.4
Breakthrough 8 x 8 55.2 54.4
Misere Breakthrough 8 x 8 99.2 97.8
Domineering 8 x 8 48.4 58.0
Misere Domineering 8 x 8 76.4 83.4
Go 8 x 8 23.0 1.2
Knightthrough 8 x 8 64.2 64.6
Misere Knightthrough 8 x 8 99.8 100.0
Nogo 8 x 8 64.8 46.4
Misere Nogo 8 x 8 80.6 89.4

Playout Policy learning with
Move Features

● Associate features to the move.

● A move and its features are associated to a code.

● The algorithm learns the weights of codes instead
of simply the weights of moves.

Playout Policy learning with
Move Features

● Atarigo : four adjacent intersections
● Breakthrough : capture in the move code
● Misère Breakthrough : same as Breakthrough
● Domineering : cells next to the domino played
● Misère Domineering : same as Domineering
● Knightthrough : capture in the move code
● Misère Knighthrough : same as Knighthrough
● Nogo : same as Atarigo

Experimental results
● Each result is the outcome of a 500 games

match, 250 with White and 250 with Black.
● UCT with an adaptive policy (PPAF) is

played against UCT with a random policy.
● Tests are done for 10,000 playouts.
● For each game we test size 8x8.
● We tested 8 different games.

Experimental results
 Size Winning %

 Atarigo 8 x 8 94.4 %

 Breakthrough 8 x 8 81.4 %

 Misere Breakthrough 8 x 8 100.0 %

 Domineering 8 x 8 80.4 %

 Misere Domineering 8 x 8 93.0 %

 Knightthrough 8 x 8 84.0 %

 Misere Knightthrough 8 x 8 100.0 %

 Nogo 8 x 8 95.4 %

PPAF and Memorization

● Start a game with an uniform policy.

● Adapt at each move of the game.

● Start at each move with the policy of the
previous move.

PPAF and Memorization

● A nice property of PPAF is that the move played
after the algorithm has been run is the most
simulated move.

● The memorized policy is related to the state after the
move played by the algorithm since it is the most
simulated move.

● When starting with the memorized policy for the next
state, this state has already been partially learned

PPAFM versus PPAF uniform
Game Score

Atarigo 66.0%
Breakthrough 87.4%
Domineering 58.0%
Knightthrough 84.6%
Misere Breakthrough 97.2%
Misere Domineering 56.8%
Misere Knightthrough 99.2%
Nogo 49.4%

PPAFM versus UCT
Game Score

Atarigo 95.4%
Breakthrough 94.2%
Domineering 81 .8%
Knightthrough 96.6%
Misere Breakthrough 100.0%
Misere Domineering 95.8%
Misere Knightthrough 100.0%
Nogo 91.6%

PPA Adapt Algorithm

• Try PPA for Misere Breakthrough.
– The playout function
– The adapt function
– Combination with UCT

• Take capture into account (PPAF).
• Memorize the policy (PPAFM).
• Compare to UCT.

Exercise

 def code (self, move):
 direction = 1
 if move.y2 > move.y1:
 direction = 0
 if move.y2 < move.y1:
 direction = 2
 capture = 0
 if self.board [move.x2] [move.y2] != Empty:
 capture = 1
 if move.color == White:
 return 6 * (Dy * move.x1 + move.y1) + 2 * direction + capture
 else:
 return 6 * Dx * Dy + 6 * (Dy * move.x1 + move.y1) + 2 * direction + capture

PPAF

def playout (state, policy):
 while not state.terminal ():
 l = state.legalMoves ()
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (state.code (l [i])))
 stop = random.random () * z
 move = 0
 z = 0
 while True:
 z = z + math.exp (policy.get (state.code (l [move])))
 if z >= stop:
 break
 move = move + 1
 state.play (l [move])
 return state.score ()

PPAF

def adapt (s, winner, state, policy):
 polp = copy.deepcopy (policy)
 alpha = 0.32
 while not s.terminal ():
 l = s.legalMoves ()
 move = state.rollout [len (s.rollout)]
 if s.turn == winner:
 z = 0
 for i in range (len (l)):
 z = z + math.exp (policy.get (s.code (l [i])))
 polp.put (s.code (move), polp.get(s.code (move)) + alpha)
 for i in range (len (l)):
 proba = math.exp (policy.get (s.code (l [i]))) / z
 polp.put (s.code (l [i]), polp.get(s.code (l [i])) - alpha * proba)
 s.play (move)
 return polp

PPAF

def PPAF (board, policy):
 if board.terminal ():
 return board.score ()
 t = look (board)
 if t != None:
 bestValue = -1000000.0
 best = 0
 moves = board.legalMoves()
 for i in range (0, len (moves)):
 val = 1000000.0
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = 1 - Q
 val = Q + 0.4 * sqrt (log (t [0]) / t [1] [i])
 if val > bestValue:
 bestValue = val
 best = i

PPAF

 board.play (moves [best])
 res = PPAF (board, policy)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 return res
 else:
 add (board)
 return playout (board, policy)

PPAF

def BestMovePPAF (board, n):
 global Table
 Table = {}
 policy = Policy ()
 for i in range (n):
 b1 = copy.deepcopy (board)
 res = PPAF (b1, policy)
 b2 = copy.deepcopy (board)
 if res == 1:
 policy = adapt (b2, White, b1, policy)
 else:
 policy = adapt (b2, Black, b1, policy)
 t = look (board)
 moves = board.legalMoves ()
 best = moves [0]
 bestValue = t [1] [0]
 for i in range (1, len(moves)):
 if (t [1] [i] > bestValue):
 bestValue = t [1] [i]
 best = moves [i]
 return best

PPAF

• Modify GRAVE to incorporate a policy and a bias.
• Use the AMAF statistics of the root node of GRAVE

to bias the playouts as in GNRPA.
• Update the Adapt to take the bias into account.
• Write the main function that calls

GRAVEPolicyBias and updates the policy.

Exercise

def GRAVEPolicyBias (board, played, tref, root, policy):
 if (board.terminal ()):
 return board.score ()
 t = look (board)
 if t != None:
 tr = tref
 if t [0] > 50:
 tr = t
 bestValue = -1000000.0
 best = 0
 moves = board.legalMoves ()
 bestcode = board.code (moves [0])
 for i in range (0, len (moves)):
 val = 1000000.0
 code = board.code (moves [i])
 if tr [3] [code] > 0:
 beta = tr [3] [code] / (t [1] [i] + tr [3] [code] + 1e-5 * t [1] [i] * tr [3] [code])
 Q = 1
 if t [1] [i] > 0:
 Q = t [2] [i] / t [1] [i]
 if board.turn == Black:
 Q = 1 - Q

GRAVE with Policy and Bias

 AMAF = tr [4] [code] / tr [3] [code]
 if board.turn == Black:
 AMAF = 1 - AMAF
 val = (1.0 - beta) * Q + beta * AMAF
 if val > bestValue:
 bestValue = val
 best = i
 bestcode = code
 board.play (moves [best])
 played.append (bestcode)
 res = GRAVEPolicyBias (board, played, tr, root, policy)
 t [0] += 1
 t [1] [best] += 1
 t [2] [best] += res
 updateAMAF (t, played, res)
 return res
 else:
 addAMAF (board)
 return playoutBias (board, played, root, policy)

GRAVE with Policy and Bias

def playoutBias (state, played, root, policy):
 while not state.terminal ():
 l = state.legalMoves ()
 z = 0
 for i in range (len (l)):
 code = board.code (l [i])
 AMAF = 1
 if root [3] [code] > 0:
 AMAF = root [4] [code] / root [3] [code]
 if board.turn == Black:
 AMAF = 1 – AMAF
 if AMAF > 0:
 z = z + math.exp (policy.get (state.code (l [i])) + math.log (AMAF))
 stop = random.random () * z

Playout AMAF Policy

 move = 0
 z = 0
 while True:
 code = board.code (l [move])
 AMAF = 1
 if root [3] [code] > 0:
 AMAF = root [4] [code] / root [3] [code]
 if board.turn == Black:
 AMAF = 1 - AMAF
 if AMAF > 0:
 z = z + math.exp (policy.get (state.code (l [move])) + math.log(AMAF))
 if z >= stop or move == len (l) – 1:
 break
 move = move + 1
 played.append (state.code(l [move]))
 state.play (l [move])
 return state.score ()

Playout AMAF Policy

def adaptBias (s, winner, state, policy, root):
 polp = copy.deepcopy (policy)
 alpha = 0.32
 while not s.terminal ():
 l = s.legalMoves ()
 move = state.rollout [len (s.rollout)]
 if s.turn == winner:
 z = 0
 for i in range (len (l)):
 code = s.code (l [i])
 AMAF = 1
 if root [3] [code] > 0:
 AMAF = root [4] [code] / root [3] [code]
 if board.turn == Black:
 AMAF = 1 – AMAF
 if AMAF > 0:
 z = z + math.exp (policy.get (code) + math.log(AMAF))

Adapt with a Bias

 polp.put (s.code (move), polp.get (s.code (move)) + alpha)
 for i in range (len (l)):
 code = s.code (l [i])
 AMAF = 1
 if root [3] [code] > 0:
 AMAF = root [4] [code] / root [3] [code]
 if board.turn == Black:
 AMAF = 1 – AMAF
 proba = 0
 if AMAF > 0:
 proba = math.exp (policy.get (code) + math.log(AMAF)) / z
 polp.put (code, polp.get (code) - alpha * proba)
 s.play (move)
 return polp

Adapt with a Bias

def BestMoveGRAVEPolicyBias (board, n):
 Table = {}
 policy = Policy ()
 addAMAF (board)
 for i in range (n):
 root = look (board)
 b1 = copy.deepcopy (board)
 res = GRAVEPolicyBias (b1, [], root, root, policy)
 b2 = copy.deepcopy (board)
 if res == 1:
 policy = adaptBias (b2, White, b1, policy, root)
 else:
 policy = adaptBias (b2, Black, b1, policy, root)
 root = look (board)
 moves = board.legalMoves ()
 best = moves [0]
 bestValue = root [1] [0]
 for i in range (1, len(moves)):
 if (root [1] [i] > bestValue):
 bestValue = root [1] [i]
 best = moves [i]
 return best

GRAVE with Policy and Bias

Outline
● Algorithm for solving games
● GRAVE and PPAF
● Monte Carlo move ordering
● Experiments
● Conclusion

Solving Games
● Proof-Number Search (PN)
● PN2

● Alpha-Beta
● Iterative Deepening Alpha-Beta
● Retrograde Analysis

UCT

RAVE

● A big improvement for Go, Hex and
other games is Rapid Action Value
Estimation (RAVE) [Gelly and Silver
2007].

● RAVE combines the mean of the
playouts that start with the move and
the mean of the playouts that contain
the move (AMAF).

RAVE
● Parameter βm for move m is :

βm←pAMAFm / (pAMAFm + pm + bias ×
pAMAFm× pm)

● βm starts at 1 when no playouts and
decreases as more playouts are played.

● Selection of moves in the tree :
argmaxm((1.0 − βm) × meanm + βm × AMAFm)

GRAVE
● Generalized Rapid Action Value

Estimation (GRAVE) is a simple
modification of RAVE.

● It consists in using the first ancestor
node with more than n playouts to
compute the RAVE values.

● It is a big improvement over RAVE for
Go, Atarigo, Knightthrough and
Domineering [Cazenave 2015].

Playout Policy learning

● Start with a uniform policy.

● Use the policy for the playouts.

● Adapt the policy for the winner of each
playout.

Playout Policy learning

● Each move is associated to a weight
wi.

● During a playout each move is played
with a probability :

exp (wi) / Sk exp (wk)

Playout Policy learning

● Online learning :
● For each move of the winner :

wi = wi + 1
● For each possible move of each state

of the winner :
wi = wi – exp (wi) / Sk exp (wk)

Monte Carlo Game Solver

● Use the order of moves of GRAVE
when the state is in the GRAVE tree.

● Use the order of moves of Playout
Policy Adaptation when the state is
outside the GRAVE tree.

Conclusion
● For the games we solved, Misere Games are more difficult to solve

than normal games.
● In Misere Games the player waits and tries to force the opponent to

play a losing move.
● This makes the game longer and reduces the number of winning

sequences and winning moves.
● Monte Carlo Move Ordering improves much the speed of αβ with

transposition table compare to depth first αβ and Iterative Deepening
αβ with transposition table but without Monte Carlo Move Ordering.

● The experimental results show significant improvements for nine
different games.

Conclusion
 Monte Carlo Search is a simple algorithm that gives

state of the art results for multiple problems:
– Games
– Puzzles
– Discovery of formulas
– RNA Inverse Folding
– Snake in the box
– Pancake
– Logistics
– Multiple Sequence Alignement

• Transformer une position de breakthrough 5x5 en trois matrices 5x5 de 0
et de 1 (Noir/Blanc/Vide).

• Faire deux réseaux convolutifs (blanc et noir) avec 76 sorties (75
coups possibles + évaluation) et ces trois matrices en entrée.

• Utiliser les réseaux dans PUCT pour politique et évaluation.
• Faire jouer à PUCT >100 parties contre lui même.
• Mémoriser pour chaque position un vecteur de 76 réels entre 0 et 1 (une

fréquence pour chaque code de coup entre 0 et 75, code = 3 *(5 * x + y) +
0, 1 ou 2) et un réel (1.0 si blanc a gagné, 0.0 sinon).

• Entraîner les deux réseaux convolutifs pour retrouver les fréquences
et le résultat de la partie en sortie pour chaque position en entrée.

• Itérer.

Projet Python

