Monte Carlo Search

Tristan Cazenave

LAMSADE

Université Paris-Dauphine PSL CNRS Tristan.Cazenave@dauphine.fr 16 Novembre 2023

Outline

- Monte Carlo Tree Search
- Nested Monte Carlo Search
- Nested Rollout Policy Adaptation
- AlphaGo and AlphaGo Zero
- Athénan
- AlphaMu

Monte Carlo Tree Search

Monte Carlo Tree Search

- Best search algorithm for many games since 2007
- All the winners of the General Game Playing competition since 2007 use MCTS
- AlphaGo, AlphaGo Zero and Alpha Zero use a MCTS variant named PUCT
- It can be combined with deep learning in deep reinforcement learning systems so as to learn to play games at a superhuman level from scratch

UCT

- UCT : Exploration/Exploitation dilemma for trees [Kocsis and Szepesvari 2006].
- Play random random games (playouts).
- Exploitation : choose the move that maximizes the mean of the playouts starting with the move.
- Exploration : add a regret term (UCB).

UCT

- UCT : exploration/exploitation dilemma.
- Play the move that maximizes

$$\frac{w_i}{n_i} + c \sqrt{\frac{\ln t}{n_i}}$$

In which

- *w_i* = number of wins after the *i*-th move
- *n_i* = number of simulations after the *i*-th move
- *c* = exploration parameter (theoretically equal to $\sqrt{2}$)
- *t* = total number of simulations for the parent node

UCT

RAVE

 A large improvement for Go, Hex and other games is Rapid Action Value Estimation (RAVE) [Gelly and Silver 2007, 2011].

• RAVE combines the mean of the playouts that start with the move and the mean of the playouts that contain the move (AMAF).

GRAVE

- Generalized Rapid Action Value Estimation (GRAVE) [Cazenave 2015] is a simple modification of RAVE.
- It consists in using the first ancestor node with more than n playouts to compute the RAVE values.
- It is a large improvement over RAVE for Go, Atarigo, Knightthrough and Domineering.
- State of the art in General Game Playing.

PUCT

- MCTS used in AlphaGo and AlphaZero.
- A neural network gives a policy and a value.
- No playouts, evaluation with the value at the leaves.
- P(s,a) = probability for move a of being the best.
- Bandit for the tree descent:

$$U(s,a) = c_{\text{puct}} P(s,a) \frac{\sqrt{\sum_{b} N(s,b)}}{1 + N(s,a)}$$

Sequential Halving

- Sequential Halving [Karnin & al. 2013] is a bandit algorithm that minimizes the simple regret.
- It has a fixed budget of arm pulls.
- It gives the same number of playouts to all the arms.
- It selects the best half.
- Repeat until only one move is left

Sequential Halving

Sequential Halving

- Combining Sequential Halving and UCT :
 - Sequential Halving at the root
 - UCT deeper in the tree

• The combination gives good results for Atarigo, Breakthrough, Amazons and partially observable games.

SHUSS

- Sequential Halving combined with other statistics such as AMAF statistics.
- Instead of selecting the best half with the mean (mu_i), use:

 $mu_i + c * AMAF_i / p_i$

with p_i the number of playouts of move i and $c \ge 128$.

• Combining SH with AMAF = SHUSS (Sequential Halving Using Scores) [Fabiano et al. 2021]

Automated Theorem Proving

- The state space is an AND/OR tree as in games.
- Algorithms for solving games can be used to prove theorems.
- MCTS has been used in some theorem provers.
- Holophrasm [Daniel Whalen 2016].
- Tactictoe [Gauthier et al. 2021].

Automated Theorem Proving

Nested Monte Carlo Search

Nested Monte-Carlo Search

Snake in the box

- A path such that for every node only two neighbors are in the path.
- Applications: Electrical engineering, coding theory, computer network topologies.
- World records with NMCS [Kinny 2012].

Perfect Rectangle Packing

- Learning a policy with a neural network trained on solved instances.
- NMCS with playouts following the learned policy improves much on the uniform policy [Doux et al. 2022].

Retrosynthesis

- Find a set of chemical reactions that enable to synthetize a given molecule.
- The state space is an AND/OR tree as in games.
- DF-PN and MCTS have been used to find retrosynthesis pathways.
- Alphachem [Segler et al. 2017].
- AiZynthFinder [Genheden et al. 2020].

Retrosynthesis

RNA Inverse Folding

• Find a sequence that has a given folding

RNA Inverse Folding

- Molecule Design as a Search Problem
- Find the sequence of nucleotides that gives a predefined structure.
- A biochimist applied Nested Monte Carlo Search to this problem [Portela 2018].
- Better than the state of the art.
- GNRPA generalizes the approach.

Applications

Nested Monte Carlo Search :

- Morpion Solitaire [Cazenave 2009]
- SameGame [Cazenave 2009]
- Sudoku [Cazenave 2009]
- Expression Discovery [Cazenave 2010]
- The Snake in the Box [Kinny 2012]
- Cooperative Pathfinding [Bouzy 2013]
- Software Testing [Poulding et al. 2014]
- Heuristic Model-Checking [Poulding et al. 2015]
- Pancake problem [Bouzy 2015]
- Games [Cazenave et al. 2016]
- Cryptography [Dwivedi et al. 2018]
- RNA inverse folding problem [Portela 2019]
- Perfect Rectangle Packing [Doux et al. 2022]
- Retrosynthesis [Roucairol et al. 2023]
- ...

Nested Rollout Policy Adaptation

Nested Rollout Policy Adaptation

- NRPA is NMCS with policy learning.
- It adapts the weights of the moves according to the best sequence of moves found so far.
- There are multiple levels of best sequences.
- During adaptation each weight of a move of the best sequence is incremented and all the moves in the same state are decreased proportionally to their probability of being played.

Nested Rollout Policy Adaptation

- Each move is associated to a weight w_i
- During a playout each move is played with a probability:

exp (w_i) / $\Sigma_k exp$ (w_k)

Nested Rollout Policy Adaptation

• For each move of the best sequence: $w_i = w_i + 1$

• For each possible move of each state of the best sequence:

 $w_j = w_j - \exp(w_j) / \Sigma_k \exp(w_k)$

Morpion Solitaire

World record [Rosin 2011]

Applications of NRPA

• Traveling Salesman Problem with Time Windows [Cazenave 2012].

• Physical traveling salesman problem.

Applications of NRPA

 Improvement of some alignments for Multiple Sequence Alignment [Edelkamp & al. 2015].

 A
 G
 C
 T
 A
 T
 C
 C
 G
 C
 C
 G
 A
 T
 T
 A
 G
 T
 T
 A
 G
 T
 T
 A
 G
 G
 T
 T
 A
 G
 G
 T
 T
 A
 G
 G
 T
 G
 A
 C
 T
 A
 G
 G
 T
 C
 A
 G
 C
 T
 G
 A
 C
 T
 A
 G
 G
 T
 C
 T
 A
 G
 T
 T
 C
 C
 A
 G
 C
 T
 G
 A
 C
 T
 T
 C
 C
 A
 G
 C
 T
 G
 A
 A
 T
 T
 C
 C
 A
 G
 C
 T
 A
 A
 C
 T
 T
 A
 C
 T
 C
 C
 A
 G
 C
 T
 A
 A
 C
 T
 A
 C
 T
 A
 C
 T
 A
 C
 T

Applications of NRPA

• State of the art results for Logistics [Edelkamp & al. 2016].

EDF Agents

- EDF fleet of vehicles is one of the largest.
- They plan lot of visits every day.
- Monte Carlo Search is 5% better than the specialized algorithms they use [Cazenave & al. 2021].
- Millions of kilometers saved each year.
- Hundreds of tons of CO_2 saved each year.

Network Traffic Engineering

- Provide routing configurations in networks that:
 - Miminize ressources
 - Preserve QoS.

• Better than local search [Dang et al. 2021]:

Refutation of Spectral Graph Theory Conjectures

• Conjecture 3. Collins. Given a tree T, CPA(T) form an unimodal sequence and its peak pA(T) is at the same place as pD(T).

• Better than Deep RL [Roucairol et Cazenave 2022]

Generalized Nested Rollout Policy Adaptation

We propose to generalize the NRPA algorithm by generalizing the way the probability is calculated using a temperature τ and a bias β_{ij} :

$$p_{ik} = \frac{e^{\frac{w_{ik}}{\tau} + \beta_{ik}}}{\sum_{j} e^{\frac{w_{ij}}{\tau} + \beta_{ij}}}$$

TSPTW

Table 2: Results for the TSPTW rc204.1 problemTimeNRPAGNRPA.beta GNRPA.beta.t.1.4 GNRPA.beta.t.1.4.opt

40.96 ·	-3745986.46 (245766.53) -897.60 (1.32)	-892.89 (0.96)	-892.17 (1.04)
81.92 -	-1750959.11 (243210.68) -891.04 (1.05)	-886.97 (0.87)	-886.52 (0.83)
163.84 -	-1030946.86 (212092.35) -888.44 (0.98)	-883.87 (0.71)	-884.07 (0.70)
327.68	-285933.63 (108975.99) -883.61 (0.63)	-880.76 (0.40)	-880.83 (0.32)
655.36	-45918.97 (38203.97) -880.42 (0.30)	-879.35 (0.16)	-879.45 (0.17)
/		(****)	(****)

Eterna 100

• Find a RNA sequence that has a given folding

• 95/100 sequences found [Cazenave et al. 2020]

Nested Rollout Policy Adaptation

- Morpion Solitaire [Rosin 2011]
- CrossWords [Rosin 2011]
- Traveling Salesman Problem with Time Windows [Cazenave et al. 2012]
- 3D Packing with Object Orientation [Edelkamp et al. 2014]
- Multiple Sequence Alignment [Edelkamp et al. 2015]
- SameGame [Cazenave et al. 2016]
- Vehicle Routing Problems [Edelkamp et al. 2016, Cazenave et al. 2020]
- Graph Coloring [Cazenave et al. 2020]
- RNA Inverse Folding [Cazenave & Fournier 2020]
- Network Traffic Engineering [Dang & al. 2021]
- Slicing 5G [Elkael et al. 2021]

• . . .

• Refutation of Spectral Graph Theory Conjectures [Roucairol & Cazenave 2022]

Lee Sedol is among the strongest and the most famous 9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march 2016.

Ke Jie was the world champion of Go according to

Elo ratings :

AlphaGo Master won 3-0 against Ke Jie in may 2017.

- It plays against itself using PUCT and 1,600 tree descent: $U(s,a) = c_{puct}P(s,a)\frac{\sqrt{\sum_{b}N(s,b)}}{1+N(s,a)}$
- It uses a residual neural network with two heads.

• One head is the policy, the other head is the value.

b Neural network training

Polygames

- Polygames [Cazenave & al. 2020] is the open source implementation by Facebook FAIR of Alpha Zero.
- It has been applied to many games.
- It uses a fully convolutional policy head.
- It uses average global pooling in the value head.
- It makes it invariant to board size.
- It has beaten the best Havannah player.

Mobile Networks for Computer Go

MCTS and Deep RL

Monte Carlo Tree Search and Deep Reinforcement Learning to discover new fast matrix multiplication algorithms:

Unbounded Minimax

- Principle = Extend the most promising leaf.
- Asymmetric growing of the search tree.

Descent

- Only uses a value network.
- Self play without prior knowledge.
- Learns the scores inside the trees developed by the Unbounded MiniMax.
- Minimax Strikes Back [Cohen-Solal & Cazenave 2023].

- 5 gold medals at the 2020 Computer Olympiad.
- Othello 10x10, Breakthrough, Surakarta, Amazons, and Clobber.

- 11 gold medals at the 2021 Computer Olympiad!
- Othello 8x8, Breakthrough, Surakarta, Amazons, Hex 11x11, Hex 13x13, Hex 19x19, Havannah 8x8, Havannah 10x10, Canadian Draughts, Brazilian Draughts.

- 16 gold medals at the 2023 Computer Olympiad!
- Amazons, Arimaa, Ataxx, Breakthrough, Canadian Draughts, Chinese Chess, Clobber, Havannah (8×8), Havannah (10×10), Hex (11×11), Hex (13×13), Hex (19×19), Lines of Action, Othello (10×10), Santorini, Surakarta.

AlphaMu

PIMC

For all possible moves For all possible worlds Exactly solve the world

Play the move winning in the most worlds

Strategy Fusion

• Problem = PIMC can play different moves in different worlds.

 Whereas the player cannot distinguish between the different worlds.

Product of Pareto Fronts at Min Nodes

• AlphaMu [Cazenave & Ventos 2020].

- Opponent Modeling
- Alpha-Beta on each possible world
- AlphaMu
- Rule based opening lead
- Contract : 1NT 2NT 3NT
- Declarer

possession of all the information

Conclusion

- Monte Carlo Tree Search
- Nested Monte Carlo Search
- Nested Rollout Policy Adaptation
- Alpha Zero and Deep Reinforcement Learning
- Athénan = Unbounded Minimax and self play learning of the evaluation
- AlphaMu = Planning in Bridge