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Monte Carlo Tree Search



090

Q¢ AlphaGo

Lee Sedol is among the strongest and the most famous
9p Go player :

AlphaGo Lee won 4-1 against Lee Sedol in march 2016.
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MCTS

Selection Expansion Sampling Backpropagation

Tree Policy Default Policy



GRAVE

State of the art in General Game Playing (GGP)
Best Al of the Ludii system (https://ludii.games/)
Simple modification of RAVE

Uses statistics both for Black and White at all nodes

“In principle it is also possible to incorporate the
AMAF values, from ancestor subtrees. However, in
our experiments, combining ancestor AMAF values
did not appear to confer any advantage.”



Continuous MCTS

Infinite number of moves

Progressive widening

Action Decomposition (AD)

Constraints on the possible actions (CSP)
cRAVE and cGRAVE

Application : Biology
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Improving continuous Monte Carlo Tree Search
for identifying parameters in hybrid Gene
Regulatory Networks
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Abstract. Monte-Carlo Tree Search (MOTS) is largely responzible for
the improvement not only of many computer games, including Go and
General Game Playing (GPP). but also of real-world continuons Markov
decizion process problems. MOTS initially uses the Upper Confidence
bounds applicd to Trees (UCT), but the Rapid Action Value Estimation
(RAVE) heuristic has rapidly taken over in the discerete and continu-
ous domains. Recently, generalized RAVE (GRAVE) outperformed such
heuristics in the discrete domain. This paper is conoerned with extending
the GRAVE heuristic to contimous action and state spaces (cGRAVE).
To enhanece itz performance, wesuggest an action decompesition strategy
to break down multidimensional actions into multiple unidimensional ac-
tions, and we propese a selective policy based on constraints that bias the
playouts and select promizsing actions in the search tree. The approach is
experimentally validated on a real-world biological problem: the goal & to
identify the continuous parameters of gene regulatory networks (GRNz).

Keywords: MOTS - continuous GRAVE .« constmints-based selective
policy - action decomposition - chronotherapy - hybrid GRN.

1 Introduction

MCTS is a peneral decision-time planning algorithm that was initially desipned
for the improvement of computer Go [13]. The MCTS core idea is to incremen-
tally build a search tree whose nodes represent the states of the environment
and edges represent the actions taken from one state to a snceessor state. MCTS
has proved to be effective in a wide variety of settings, including General Game
Playing {GGP) [15,23] but is not limited to games [5. 26]: it can be effective
for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation. The most popular MCTS algorithm
is Upper Confidence bounds applied to Trees (UCT) |19], which addresses the
exploration versus exploitation trade-off in each state of the tree search using
the Upper Confidence Bound [1]. The Rapid Action Value Estimate [16,17] & a



Hybrid Gene Regulatory Networks

(a) (b)
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Fig. 2: Example of a hGRN depicted as a directed graph (a), and a possible
hybrid state graph (b). The hGRN dynamic parameters are depicted as black
ATTOWS.
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Fig. 3: Interaction graph of the G-genes hGRN (a) and its corresponding biolog-
ical knowledpe (b).



cGRAVE
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Fig. 4: Comparative performances {cumulative reward) of the different variants
on the b genes hGRN, versus the computational budpet { munber of iterations).
The upper the better: a reward of 12 means that a solution is found.



Nested Monte Carlo Search
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Refutation of Spectral Graph
Theory Conjectures

* Monte Carlo Search better than Deep RL
[Roucairol & Cazenave 2022]



Coalition Structure Generation

* Lazy Nested Monte Carlo Search with clever
state space [Roucairol et al. 20241 :
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Figure 2: Model B: an example with three agents. We de-
note {} when the coalition is not locked and not active, ()
when the coalition is not locked and active, and [| when the
coalition 1s locked.



Applications

Nested Monte Carlo Search :
* Morpion Solitaire [Cazenave 2009]
* SameGame [Cazenave 2009]
* Sudoku [Cazenave 2009]
* Expression Discovery [Cazenave 2010]
* The Snake in the Box [Kinny 2012]
* Cooperative Pathfinding [Bouzy 2013]
* Software Testing [Poulding et al. 2014]
* Heuristic Model-Checking [Poulding et al. 2015]
* Pancake problem [Bouzy 2015]
* Games [Cazenave et al. 2016]
* Cryptography [Dwivedi et al. 2018]
* RNA inverse folding problem [Portela 2019]
* Perfect Rectangle Packing [Doux et al. 2022]
* Refutation of Spectral Graph Theory Conjectures [Roucairol et al. 2022]
* Coalition Structure Generation [Roucairol et al. 2024]
* Optimization of Radars [Ardon et al. 2024]
* Neural Architecture Search [Lallouet et al. 2024]
* Retrosynthesis [Roucairol et al. 2024]
* Drug-like molecule generation [Roucairol et al. 2024]
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Retrosynthesis

Find a set of chemical reactions that enable to
synthetize a given molecule.

The state space is an AND/OR tree as in games.

DF-PN and MCTS have been used to find
retrosynthesis pathways.

Alphachem [Segler et al. 2017].
AiZynthFinder [Genheden et al. 2020].
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Comparing search algorithms on the retrosynthesis

problem
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In this article we try different algorithms, namely Nested Monte Carlo Search
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and Greedy Best First Search, on AstraZeneca’s open source retrosynthetic
tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base
Monte Carlo Tree Search on a benchmark selected from the PubChem data-

hase and by Bayer's chemists. We show that both Mested Monte Carlo Search
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and Greedy Best First Search outperform AstraZeneca’s Monte Carlo Tree
Search, with a slight advantage for Nested Monte Carlo Search while ex-
perimenting on a playout heuristic. We also show how the search algorithms

are bounded by the quality of the policy network, in order to improve our
results the next step is to improve the policy network.
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MCTS, Monte Carlo Tree Search, retrosynithesis, search algorithm

1 | INTRODUCTION

Retrosynthesis is a domain of organic chemistry that
consists of finding & synthetic route (a sequence of re-
actions) for a given molecule in order to synthesize it
from a given set of available precursor molecules [1]. It
is an important part of organic chemistry molecule syn-
thesis, and can be used to produce newfound drugs.
What we aim for in this paper is to evaluate the
strengths and weaknesses of two search algorithms by
comparing them to AiZynthFinder's Monte Carlo Tree
Search (MCTS) on a small benchmark consisting of cu-
rated and complex molecules, covering many reactions
encountered by chemists.

The second section presents the retrosynthesis prob-
lem, the third section presents the AiZynthFinder retro-
synthesis tool, the fourth section describes the search al-
gorithms we compare, the fifth section details the
benchmark used to compare the search algorithms, and
the sixth section gives experimental results.

2 | THE RETROSYNTHESIS
PROBLEM

Before diving into the details, let's broadly present the
retrosynthesis problem.

+ precursors: molecules that form one or multiple prod-
uct molecules when they react together. ZINC [2] is a
database of precursors that are available on the mar-
ket.

reaction template: a patent predicting the product of
the reaction of cne or multiple molecules. USFTO is a
database of reaction template patents.

One step retrosynthesis: an important part of retrosyn-
thesis is selecting a few promising reaction templates
before applying them as MCTS moves, this step uses a
neural network.

As said before: the retrosynthetic analysis of a mole-
cule is trying to find a sequence of reactions from a

This is an open acress article under the lerms of the Creative Commons Attribulion License, which permils use, distribulion and repmdaction i any medium, provided

the original work is property cited.
© 24 The Authors. Malacafor feformaics pablished by Wiley-¥CH GmbEL
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Retrosynthesis

molecules solved
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Drug Discovery
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DrugSynthMC: An Atom-Based Generation of Drug-like Molecules
with Monte Carlo Search
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ABSTRACT: A growing number Dfd.:.ep ieaming {DL} m::ﬂwd.ﬂlngit: have recently been r]mlu]:-ﬂl to dt:ixn novel cmrlpnumk
and eq:umd the chemical space within wirtual libraries. Most of these neural network aPPmachH dﬂi!;n molecules to speci:ﬁn."j bind
a target based on its structural information and,/or knowledge of previously identified binders. Fewer attemipts have been made to
dl:‘rdnfp :PPman:llu for de mave d.:risn of wirtual libraries, as synthesizability nfgﬂmt:d maolecubes remains a a:'lu]]cnsc. In this wark,
we dErdD'PEd a new Monte Cado Search (MCS) ﬂgnriﬂ'unl DrugSjnthc E_DmE Synthesis using Monte Carla), in conjunction
with DL and statistical-based priors to generate thousands of interpretable chemical structures and novel drug-like molecules per
second. ]:hugS'y'uthMC pmduc:s d:us-lill.- :ump-mmds using an atom-based search model that builds molecules as SH:lLES.
character br character. D:n'gned maolecules follow Lipin:'r.i's “rule of 37, show a high proportion af hlgh]j' water-soluble nontoxic
predicted-to-be synthesizable compounds, and efficiently expand the chemical space within the libraries, without reliance on training
data sets, synthesizability metrics, or enforcing during SMILES generation. Our approach can function with or without an underlying
neural network and is thus elsilr ::q_:!l:in:l:d: and versatile. This ease in lirug-lilne maoleculs generation albows for future integration of
score functions aimed at different target- or job-oriented goals. Thus, DrugfynthMC is expected to enable the functional assessment
of large compound libraries covering an extensive novel chemical space, overcoming the limitations of existing drag collections. The
zoftware & available at h.lIp::_-"."Silhul:!.:Dr.||_."F.aun::imodn\rjﬂn_-"DrugSymh}'[c.

B |INTRODUCTION
Since the 1980s, in silico approaches have been extensively and

melecules predicted te be synthetically accessible has been
explored”

routinely used n drug discovery and have transformed the
medicinal chemistry feld with expectation to do so even
meore in the future. The need for mpid resp-onse, hg'tl:gﬁhd by
the EMErgence of resistant bacteria and, amang others, the
COVID-19 Funﬂ!mi:, has fosled the dﬂ'elupm.ent of nowvel
computational tools for drug design and :l:reen.ing."‘i'll silico
wirtual-library screening (V5) & usually the first critical step in
structure-based -rhus discovery, where the dgarithm aims ko
Pr!d.il:t the best m:m:hing bindi:ns mode of a ligamf to a
r\eup‘bocr.': Despite the many attempts to improve accuracy of
V5 methods™ the relatively limited chemical diversity of
compounds in lbraries reduces the ability of strocture-based
VE to :idn:nﬁ.ﬂr hits and keads™= Indeed, it has been estimated
that only a small partion [10E—105) of the 102 dru.s-Jil!
Bt e A T i T

~g ACS Publications s :

Several studies have shown that screening larger libraries
that expand the accessible molecules by several order of
magnitude (~104) improves the rate of true high affinity (nM-
PM] binders = Ta further !rpand the chemical space within
wirtual librasies, generative maodels based on deep Inmins
{DL) mﬂhnduhgj:: have been used to rmduce molecules
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DrugSynthMC

De novo design of virtual libraries

Statistics on ngrams with the molecules of the FDA
Lipinski rule of 5

Synthesizability with AIZynthfinder

Thousands of novel drug-like molecules per second
Very small dataset used to train the ngrams (FDA)

Future work : target oriented evaluation
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Nested Rollout Policy Adaptation



Nested Rollout Policy Adaptation

* NRPA is NMCS with policy learning.

* It uses sampling with a softmax of the move
weights as a playout policy.

* There are recursive levels of best sequences
as in NMCS.

* There is a policy at each level.
* The policy Is reinforced on the best sequence.



Morpion Solitaire
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Virtual Network Embedding

* MCTS for 5G network slicing [Elkael 2023]



Snake In the Box

* Find a long path in an hypercube :

110 111

Dimension | Meta-NRPA-fe | Best Known Score

7 50 50
8 97 98
100 101 9 188 190
10 373 370
11 721 712
12 1383 1373
570 011 13 2709 2687
Table 5: Comparison of Meta-NRPA with known lower
bounds on the Snake-in-the-Box

000 001

* Improved lower bounds [Dang & al. 2023]



Nested Rollout Policy Adaptation

* Morpion Solitaire [Rosin 2011]

* CrossWords [Rosin 2011]

* Traveling Salesman Problem with Time Windows [Cazenave et al. 2012]
* 3D Packing with Object Orientation [Edelkamp et al. 2014]

* Multiple Sequence Alignment [Edelkamp et al. 2015]

* SameGame [Cazenave et al. 2016]

* Vehicle Routing Problems [Edelkamp et al. 2016, Cazenave et al. 2020]
* Graph Coloring [Cazenave et al. 2020]

* RNA Design [Cazenave & Fournier 2020]

* Network Traffic Engineering [Dang & al. 2021]

* Refutation of Spectral Graph Theory Conjectures [Roucairol & Cazenave 2022]
* Slicing 5G [Elkael et al. 2023]

* Snake in the Box [Dang et al. 2023]

* Latin Square Completion and Kakuro [Cazenave 2024]

* Flexible Job Shop Scheduling [Kobrosly et al. 2025]



RNA Design



RNA Design

Molecule Design as a Search Problem

Find the sequence of nucleotides that gives
a predefined structure

Useful for synthetic biology, medicine, and
nanotechnology

GREED-RNA: Greedy Local Search
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Solve Puzzles. Invent Medicine.

What is RNA?

RMAs are tiny molecules In the cells of every living thing. They
copy information from DNA and use it to make things
happen in the cell.

Like DNA, RNA is made up of four bases. Each RNA folds into
a shape that determines its function, and the shape is
defined by the pattern of the bases.
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Eterna is Solved

Tristan Cazenave

LAMSADE, Universite Parix Diauphine - PSL. CNRS, Paris. France

Abstract. RNA desgn consists of discovering a nucleotide sequence that fobds
inio a largel secondary structure. It is useful Ffor synthetic baodogy, medicine,
and nanolechnology. We propose Montpamasse. a Multi Ohjective Generalized
Nested Rolkut Policy Adapiation with Limited Repetidon (MOGNRPALR)RNA
dexign algorithm. It spdves the Elerna benchmark.

1 Introduoction

The design of molecubes with specific properties is an important topic for research re-
lated 1o health. The RNA design problem, also named the Inverse RMA Folding prob-
lem. is a difficult combinatorial problem. This problem is imponant for scientific fields

such as bioeng ing, phar ical research, bicchemistry, synthetic biclogy, and
RMNA nanostrsciures [20].

RMA s involved in many biclogical functions. Synthetic RNA can be easily pro-
duced [21] and has many applications in synthetie biology, as well as in drug design
with the building of ribeswitches and ribozymes.

RMA design consists of finding a nucleotide sequence that folds into a desired 1arget
structure. Eterna is a standard benchmark for RNA design algorithms. Many algorithms
have been applied 1o this problem over the years. However, none have successfully
solved all the Ererna problems. This paper presents a simple algorithm that solves the
Exerna benchmark.

RMA molecules ae long molecules composed of fowr possible nucleotides. Molecules
can be represented as sirings composed of the four characters A (Adenine), C (Cyio-
sineh, G {Guanine), and U {Uracil). For RNA molecules of length M, the size of the state
space of possible strings is exponential in M. It can be very large for bong molecules. The
sequence of nucleotides folds back on itself to form what is called its secondary struc-
e, It is pessible to find in polynomial time the folded structure of & given sequence.
However, the opposite. which is the Inverse RNA Folding problem, is hard [2].

RMA functions are determined by its tertiary structure. The secondary structure is
wsied 1o determine the temiary structure scconding o the base pairing ineractions. The
boads between two nucleotides are given by the six possible base pairs (06, GC, Al
UA, UG, GU). The dot-bracket notation is used to represent the secondary strsciung,
the opening and closing brackets represent the base pairs, and the dots represent the
unbounded sites.

The paper is erganized as follows: the second section is abour previous attempts at
designing RMNA. The third section presents the algorithms used in Montparnasse. The
fourth section details the experimental results.

2505.02110v1 [cs.Al] 4 May 2025

arXiv



Eterna is Solved

Montparnasse

Multi Objective Generalized Nested Rollout
Policy Adaptation with Limited Repetitions

Base Pair Distance (BPD), Hamming
Distance, ...

Stop search at a level if the same best
sequence is found a second time.

Prior on CG, GC and A.



Eterna is Solved

(a) Gladius: problem 90 (b) Shooting Star: problem 99  (c) Teslagon: problem 100



Eterna is Solved

Table 1: Distributions of the BPD of the various algorithms after 270 000 evaluations
for problem 99.

BEPD B ¥ 2 3 &5 67 8
GREED-RNA 6 22 49 66 3817 2 0 O
MOGRLS 19 46 63 39 22 7 2 2 O
PN 28 726428 B 0 0 0 O
MOGNRPALR 120 78 2 0 O 0 O O O




terna is Solved
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(a) Distribution of the BPD for problem 90 (b) Distribution of the BPD for problem 90
after 110 000 evaluations by GREED-RNA. after 2200000 evaluations by GREED-RNA.
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(e} Comparison of the distributions after (f) Evolution of the average BPD of
220 000 evaluations between GREED-RNA GREED-RNA and MOGNRPALR for
and MOGNRPALR. problem 90.

Fig. 5: Comparison of the BPD on problem 90 for GREED-RNA and MOGNRPALR
for increasing numbers of evaluations. 220 000 evaluations by one process takes one
day. GREED-RNA is stuck and does not solve the problem while MOGNRPALR pro-
gresses and solves the problem 6 times out of 200 runs.



Eterna is Solved
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(a) Distribution of the BPD for problem 100
after 265 000 evaluations by GREED-RNA.
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Fig. 6: Comparison of the BPD on problem 100 for GREED-RNA and MOGNRPALR
for increasing numbers of evaluations. 530 000 evaluations by one process takes one
day. GREED-RNA solves problem 100 less frequently than MOGNRPALR.



Eterna is Solved

* First time that the most difficult problems
from Eterna are solved within one day.

* Eterna consists of puzzles for the secondary
structure.

* Next step : 3D design.



Conclusion

* Monte Carlo Search has many applications to
Chemistry and Biology:

— Modeling Gene Regulatory Networks
— Retrosynthesis

— Drug Discovery
— RNA Design



