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Abstract—In imperfect information games (e.g. Bridge, Skat,
Poker), one of the fundamental considerations is to infer the miss-
ing information while at the same time avoiding the disclosure of
private information. Disregarding the issue of protecting private
information can lead to a highly exploitable performance. Yet,
excessive attention to it leads to hesitations that are no longer
consistent with our private information. In our work, we show
that to improve performance, one must choose whether to use a
player’s private information. We extend our work by proposing
a new belief distribution depending on the amount of private
and public information desired. We empirically demonstrate an
increase in performance and, with the aim of further improving
performance, the new distribution should be used according
to the position in the game. Our experiments have been done
on multiple benchmarks and in multiple determinization-based
algorithms (PIMC and IS-MCTS).

Index Terms—Imperfect Information Games, Search Algo-
rithms, Belief Distributions

I. INTRODUCTION

Search in artificial intelligence has been constantly evolving
over the last few decades, and game-oriented research has
always been a cornerstone of this success. Chess, Go [1]–
[3], Poker [4], Skat, Contract Bridge or Dota [5] are among
the most famous ones.

Perfect information games (Chess, Go) — where all infor-
mation is available for each player — have been the most
studied, and many algorithms have been able to achieve a
level far beyond the level of a human professional player. On
the other hand, Imperfect Information Games (IIGs) (Poker,
Skat, Bridge) — where some information is hidden — have
been less studied, and only a few algorithms are capable of
beating professional human player [4], [6].

In IIG, the complexity is heightened by the missing infor-
mation, as one must try to infer the missing information of
the opponents and, at the same time, be wary to not reveal
private hidden information to opponents. Among the methods
used in IIG, determinization-based algorithms — where the
hidden information is fixed according to a belief distribution
— such as Perfect Information Monte Carlo (PIMC) [7],
Recursive PIMC [8], Information Set MCTS [9] or AlphaMu
[10] achieve state-of-the-art performance in many trick-taking
card games (Contract-Bridge, Skat).

In the work cited above, the determinization operates by
sampling the hidden information according to the private
information of a given player, i.e. what has happened since the
beginning, from the point of view of a given agent. However,
by doing so, one can indirectly reveal private information
to opponents, which can lead to a highly exploitable perfor-
mance.

Recently, the concept of public knowledge [11] — where a
distinction is made between observations accessible to every-
one and those accessible individually — has emerged in IIGs.
This concept has resulted in many breakthroughs thanks to
the decomposition, which made the calculations feasible [12],
[13]. Despite this large benefit, there are limitations to its use,
especially in the context of belief distribution. By doing so,
we completely remove the knowledge observed by the acting
player, and one might wonder whether not using the private
information was useful.

In this work, we analyze the impact of using one method
rather than another and present a new belief distribution, which
is a mixture of both public and private belief distribution. We
extend the study by analyzing different mixtures, depending
on the position within the game. Our experiments are carried
out on determinization-based algorithms, which use the belief
distribution to fix the incertitude.

The paper is organized as follows: Section II presents
notation and current determinization-based algorithms; Sec-
tion III explains the different belief distributions used with
their advantages and drawbacks, and presents our new belief
distribution; Section IV empirically shows that using the new
belief distribution allows us to improve past performance; and
the last section summarizes our work and future work.

II. NOTATION AND BACKGROUND

A. Notation

We use the notation based on factored-observation stochas-
tic games (FOSGs [11]). This formalism distinguishes between
private and public observations.

A Game G is composed of the following elements. The set
of agents N “ t1, 2, . . . , Nu agents, the set of world state
possible W. In each world state w P W, the acting player i
chooses an action a P Apwq, where Apwq denotes the legal
actions at w. After an action a, we reach the next world state
w1 from the probability distribution of playing a in w.979-8-3503-2277-4/23/$31.00 ©2023 IEEE



During the transition from w to w1 by playing a, two obser-
vations are received: a public observation and a private ob-
servation. Public observation is the observation visible by ev-
ery player noted opub P Opubpw, a,w1q where Opubpw, a,w1q

refers to all the possible public observations. Private obser-
vation is the observation visible by a precise player i, noted
oprivpiq P Oprivpiqpw, a,w1q where Oprivpiqpw, a,w1q refers to
all the possible private observations.

A history is a finite sequence of legal actions and world
states, denoted ht “ pw0, a0, w1, a1, ..., wtq. For describing
the point of view of an agent i of a history h, we introduce an
infostate siphq. An infostate for agent i is a sequence of an
agent’s observations and actions sti = (o0i , a0i , o1i , a1i , ..., oti)
where oki = (okpub, okprivpiqq. A public infostate is a sequence
of public observations stpub “ po0pub, o

1
pub, ..., o

t
pubq.

Determinization refers to the fact that we sample a world
state according to a belief distribution of the world states
possible. Determinizing the belief distribution is not new and a
similar concept exists in other formalisms such as belief state
in Partially Observable Markov Decision Process (POMDP)
problems [14] or occupancy-state in Decentralised-POMDPs
problems [15].

B. Determinization-based algorithms

Each determinization-based algorithm has its own char-
acteristics. Nevertheless, they share some common features
such as (i) sampling a world state according to a belief
distribution over the possible world states; and (ii) using a
perfect information algorithm for estimating the value of the
sampled world state.

The algorithms are simple and, in practice, they achieve
great results, mainly due to the use of perfect information
algorithms (AlphaBeta [16], MCTS [17] or Value Network)
that are fast and efficient.

In the following, we present two determinization-based
algorithms that are baseline and will, at a later stage, be used
in our experiments.

1) PIMC: Perfect Information Monte Carlo (PIMC) is the
state of the art of many IIG problems such as Contract-Bridge,
Skat, and many others.

The algorithm is defined in Algorithm 1 and works as
follows: (i) samples a world state by using the player’s private
information; (ii) plays each action of the sampled world state;
(iii) estimates the reward of the new world state by using
an algorithm available in perfect information setting; (iv)
repeats until the budget is over; and, (v) selects the action
that produces the best result in average. In practice, PIMC
often uses AlphaBeta as the perfect information evaluator.

2) IS-MCTS: Information Set Monte Carlo Tree Search [9]
uses Monte Carlo Tree Search (MCTS) [17] according to a
sampled world state.

MCTS is a state-of-the-art tree search algorithm in perfect
information games. It works as follows (i) selection — selects
a path of nodes based on an exploitation policy; (ii) expan-
sion — expands the tree by adding a new child node; (iii)

Algorithm 1: PIMC

Function PIMC(s):
for m P Moves (sq do

score[m] Ð 0;
end
while budget do

w Ð InfoSampling(s);
for m P Moves (w) do

score [m] Ð score[m] + PerfectAlgo (w,
m);

end
end
return Best action on average

playout — estimates the child node by using an exploration
policy; and, (iv) backpropagation — backpropagates the result
obtained from the playout through the nodes chosen during the
selection phase. In practice, MCTS often uses random playout
as the perfect information evaluator, and UCB1 in the selection
phase.

IS-MCTS works by using MCTS according to a sampled
world state, i.e. the selection and playout are done on the
sampled world state.

Algorithm 2: IS-MCTS

Function IS-MCTS(s):
while budget do

w Ð InfoSampling(s);
MCTS conditioned on w.;

end
return Normalise visit count for each action

Function MCTS(w):
u Ð Selection(w);
u Ð Expansion (u,w);
u Ð Simulation (u,w);
Backpropagation(uq;

III. BELIEF DISTRIBUTIONS

To present the different belief distributions, with their
advantages and drawbacks, we use the following example
throughout the section to facilitate understanding.

The example is based on the famous game ‘Liar’s Dice’
(an explanation of the game is given in Subsection IV-A2). In
our case, two players, each with 1 die of 2 sides. We denote
tP1 : X;P2 : Y u for player 1 has X and player 2 has Y .
There are four world states possible (w1 “ tP1 : 1;P2 : 1u,
w2 “ tP1 : 1;P2 : 2u; w3 “ tP1 : 2;P2 : 2u, w4 “ tP1 :
2;P2 : 1u).

For each player, there are two infostates possible and
one public infostate spub “ to1pub “ H, o2pub “ Hu (no
observation). For the player 1 we have s1 “ to1privp1q

“

1, o2privp1q
“ Hu or s1

1 “ to1privp1q
“ 2, o2privp1q

“ Hu (i.e.
Player 1 observes the die rolled but not the die rolled by the



other player), and for the player 2, we have s2 “ to1privp2q
“

H, o2privp2q
“ 1u or s1

2 “ to1privp2q
“ H, o2privp2q

“ 2u (i.e.
Player 2 observes the die rolled but not the die rolled by the
other player).

In the following, we suppose that the world state of this
example is w2. Therefore, for the player 1, the infostate is s1
with two world states possible (tw1, w2u) and for the player 2,
the infostate is s1

2 with two world states possible (tw2;w3u).
Fig. 1 represents the different belief distributions presented
throughout the section.

Fig. 1: Multiple belief distributions for the game Liar’s Dice
with 1 dice of 2 sides each. Four world states possible w1,
w2, w3 and w4. The Public-Private belief uses the mixture
distribution with λ “ 0.5.

A. Private Distribution

As previously introduced, current determinization-based
algorithms work by sampling world states according to
the player’s private information distribution, i.e. knowing a
player’s private and public observation, we sample a world
state.

Let Sjpsiq be the set of possible infostates for player j
conditioned on the infostate si of the player i. In our example,
the infostate possible for the player 2 when the player 1 has s1
is S2ps1q “ ts2; s

1
2u, i.e. having the die 1 for the player 1 does

not exclude the player 2 to have a 1 or a 2. Depending on the
game Sjpsiq can be restrictive, e.g. in trick-taking card games
if the player i has the card ‘Queen of Hearts’, no opponent
can have it.

Definition (Private Belief Distribution). Let Sjpsiq be the
set of possible infostates for player j conditioned on the
infostate si. Let ∆Sjpsiq denotes the probability distribution
over the elements of Sjpsiq. We define the private belief distri-
bution as ∆ipsiq “ p∆S1psiq, . . . ,∆Sipsiq, . . . ,∆SN psiqq “

p∆S1psiq, . . . , si, . . . ,∆SN psiqq .

In Fig. 1, using Player 1’s private belief state provides the
following belief distribution ∆1ps1q “ pts1 : 100%u, ts2 :
50%; s1

2 : 50%uq, which results in two equiprobable world
states (w1, w2).

When using the private distribution for determinization,
the algorithm samples a world state (w1 or w2) consistent
with the current player’s information (s1) and, as the state-
of-the-art in trick-taking game shows, great performance is
obtained. Yet, by doing so, 3 problems arise.

(i) It is not consistent with the other player’s belief, e.g. if
we use it with the first player, the algorithm samples w1 or
w2 but never w3, which is nevertheless, a world state possible
from the point of view of the player 2.

(ii) It is not able to mislead others. In our example, two
actions are possible for the first player, ‘I have a one’ and
‘I have a two’. The action ‘I have a two’ is a lie, however,
one may want to play this action with the aim of deceiving
the opponent. However, in our case only w1 or w2 can be
sampled and, in each world, the action ‘I have a two’ results
in a defeat because the second player will say ‘This is a lie’.
Therefore, lying is never an option, as it never succeeds.

(iii) It, indirectly, allows the opponents to infer our private
information, e.g. after playing multiple matches, the second
player understands that, if the first player plays ‘I have a two’,
it is because he really has a two as it can not lie, and therefore,
play to counter it.

Trying to infer missing information is one of the key com-
ponents of IIG, and using the private belief distribution could
result in a highly exploitable performance. To remove this
problem, one can use public belief distribution, as presented
in the next section.

B. Public Distribution

Recently in IIG, many algorithms [12], [13] have been using
the concept of public observation. This concept has resulted
in many breakthroughs thanks to decomposition, which made
the calculations feasible. One application of public observation
is the creation of a public belief distribution over the world
states possible according to the public observations observed
so far.

Definition (Public Belief Distribution [13]). Let Sjpspubq

be the set of possible infostates for player j conditioned
on the public infostate spub. Let ∆Sjpspubq denote the
probability distribution over the elements of Sjpspubq. We
define the public belief distribution as ∆pubpspubq “

p∆S1pspubq, ...,∆SN pspubqq.

In our example, using the public belief distribution from
the point of view of the player 1 would result in the following
belief distribution ∆pub “ pts1 : 50%; s1

1 : 50%u, ts2 :
50%; s1

2 : 50%u. In other world, every world state are
equiprobable, this is due to the public infostate that does not
contain any information.

Using a public belief distribution instead of a private
belief distribution removes the problem defined in Section
III-A.

(i) It is consistent with the other player’s doubts, e.g. it
samples the world w3 which is a world state possible of the
second player.



(ii) It is capable of misleading others, e.g. when sampling
w3 or w4 the action ‘I have a two’ does not result in a defeat
for the first player, therefore, allows the first player to play
the action ‘I have a two’.

(iii) It no longer reveals private information, i.e. as the
reasoning is no longer biased toward the private information,
it can not be used against it.

Nevertheless, using public distribution has a significant
drawback as it does not consider a player’s private information,
and one might wonder whether it is useful to not use private
information. It is straightforward to consider that the extent
to which private information should be kept hidden depends
on the game being played and, in certain games, it is not
necessary to keep the information concealed.

In addition, by using public distribution, one must be aware
as there are more world states possible (e.g. by using private
distribution, we have two world states possible and by using
public distribution, we have four world states possible), which
can be intractable in large games.

C. Mixture between public and private distribution

To solve both of the problems defined in Section III-A and
in Section III-B, we propose to use a mixture of private and
public distribution.

Definition (Mixture Belief Distribution). Let spub be the
public infostate associated with the infostate si. We define
the mixture belief distribution as ∆λpsiq “ p1 ´ λq∆ipsiq `

λ∆pubpspubq

The mixture belief distribution allows us to be consistent
with the problem encountered. When care must be taken not
to reveal information, one can increase λ. In contrast, when it
is not appropriate to withhold information, one can decrease
λ. The private belief distribution is obtained when λ “ 0 and
the public belief distribution is obtained when λ “ 1.

In our example, when using the mixture with λ “ 0.5
for the player 1, we obtain the following belief distribution
∆0.5ps1q “ pts1 : 75%; s1

1 : 25%u, ts2 : 50%; s1
2 : 50%u.

w1 and w2 are more probable (37.5% each) than w3 and w4

(12.5% each). Nevertheless, their probabilities are not zero,
which makes it consistent with the other player’s belief.

It is possible to expand this concept by considering
that λ depends on the progress of the game. As an example,
in trick-taking card games, it may be important to keep the
private information hidden at the beginning of the game (so
as not to reveal information) but, as the game progresses, the
focus shifts to accumulating points before the end, where the
importance of concealing this information may decrease.

D. Adaptation of algorithms

PIMC and IS-MCTS have been created with private belief
distribution in mind. Therefore, it is necessary to modify the
algorithms to use the public or a mixture belief distribution.
Instead of starting at an infostate si, the algorithms must be

adapted to start at spub, where spub is the public infostate
associated with si.

1) PIMC: In the case of PIMC, one must use a distinct
PIMC for each infostate possible (Sipspubq), and combine the
final result by aggregating the scores using the distribution of
possible infostates (∆Sipspubq).

In our example, when using the mixture belief distribution,
two infostates are possible for the first player (s1 and s1

1). If
w2 or w1 are sampled, the algorithm used is the one defined
for s1, on the other hand, if w3 or w4 are sampled, the
algorithm used is the one defined for s1

1. In the end, if s1
has been visited 75% (corresponding to the mixture belief
distribution with λ “ 0.5), the action chosen in s1 will have
more impact than the action chosen in s1

1.

s1 s1
1

s2
s1
2 s2

2

s3
2

(a) Constructed with the mixture be-
lief distribution.

s1

s2
s1
2 s2

2

s3
2

(b) Constructed with private belief
distribution.

Fig. 2: Example of the tree constructed by IS-MCTS. The first
player is acting in the red square, the second player is acting
in the green diamond and the blue circle refers to the chance
node.

2) IS-MCTS: With IS-MCTS, a singular algorithm is
feasible as IS-MCTS creates a tree where the nodes represent
infostates, and an infostate for player j may come from
several infostates of player i.

An example is provided in Fig. 2. For the first player,
two infostates are possible (s1 and s1

1) and four infostates are
possible for the second player after the first player’s action
(s2 “ to1privp2q

“ H, o2privp2q
“ 1, o3privp2q

“ a1u,
s1
2 “ to1privp2q

“ H, o2privp2q
“ 1, o3privp2q

“ a2u,
s2
2 “ to1privp2q

“ H, o2privp2q
“ 2, o3privp2q

“ a1u or
s3
2 “ to1privp2q

“ H, o2privp2q
“ 2, o3privp2q

“ a2u).
For the second player, all infostates are achievable through

any infostate of the first player. For example, s2 is achievable
when sampling w1 (from s1) or when sampling w2 (from s1

1q

and playing the action a1.

IV. EXPERIMENTATION

A. Benchmarks

For our experiments, the following benchmarks are tested
‘Liar’s Dice’ (LD), ‘Card Games (CG)’, and ‘Leduc Poker’
(LP). Each of them is described below.



1) Card game: For the purpose of the experimentation, we
use a smaller version of classic trick-taking card games. The
game is played with two players, 10{20 cards known by all,
2{6 are hidden and the rest is distributed to each player.

The playing phase is decomposed into tricks, the player
starting the trick is the one who won the previous trick. The
starting player of a trick can play any card in his hand, but the
other players must follow the suit of the first player. If they
can not, they can play any card they want but, without the
possibility of winning the trick. The winner of the trick is the
one with the highest-ranking card. At the end of the game, the
points of each player are counted (plain version of trick-taking
card game). The count is defined by the number of tricks won.
A player wins if it has at least half of the points.

2) Liar’s Dice: Liar’s dice is a dice game played with two
or more players, where each player possesses N dice of K
sides and in which a player must deceive and be able to detect
an opponent’s deception.

In the beginning, each player rolls his dice and observes the
values. After that, players take turns guessing the number of
dice of a particular type held by everyone. The game continues
until a player accuses another of lying. If the player who made
the assumption is right, he wins the game, on the opposite, if
the challenged player did not lie, the challenged player wins.

During the game, a player can not bid less than previously,
i.e. he must at least bid more dice than the previous player’s
bid, or the same number of dice but with a higher value. Lastly,
the highest face is a wild card, i.e. the value can be used to
count for any other face.

3) Leduc Poker: Leduc Poker, as described in [18], is a
variation of poker that uses a deck with only two suits, each
containing three cards.

The game consists of two rounds. In the first round, each
player is dealt a single private card. In the second round, a
single board card is revealed. The maximum number of bets
allowed is two, with the first round allowing raises of 2 and
the second round allowing raises of 4. Both players begin the
first round with 1 already in the pot.

B. Experimentation

In our experiments, our objective is (i) to observe the
extent to which an algorithm X reveals information according
to mixture belief distribution; (ii) to analyze how the
mixture belief distribution impacts the performance against
an opponent that uses the revealed information; and (iii)
to analyze how the mixture belief distribution impacts the
performance against an opponent that does not use the
revealed information.

Our code is based on OpenSpiel [19]. This is a collection
of environments and algorithms for research in general
reinforcement learning and search/planning in games.

PIMC and IS-MCTS are used with their basic version, i.e.
PIMC uses AlphaBeta and IS-MCTS uses random rollouts as
the perfect information evaluator and an exploration constant
of 0.7. For both, 1000 world states are sampled.

To achieve a stable policy (as PIMC and IS-MCTS are
online algorithms), we run the algorithm multiple times for
every infostate until the policy obtained has less than 1% of
variation.

The experiments were conducted according to the player’s
playing position (each position reveals more or less informa-
tion). In the following part, the experiments are carried out for
the first player and in the appendix for the second player.
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(a) Liar’s dice with 2 dice
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(b) Liar’s dice with 3 dice
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(c) Leduc poker
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(d) Card Game with 10 cards

Fig. 3: Average TSSR for IS-MCTS and PIMC on multiple
benchmarks according to λ of the mixture distribution.

1) How much information is revealed: For analyzing the
impact of the revealed information according to the distribu-
tion used, we use the formula called True State Sampling Ratio
(TSSR) [20]. TSSR measures how much more likely it is for
the opponent to guess the current world state when using an
algorithm X rather than using a uniform function.

The formula is TSSRpwq “ ηpw | siq ¨ |Sipsiq| where si is
the infostate corresponding to w, ηpw | siq is the probability
that the true state is guessed given the information set si.
The closer the result is to 1, the less likely it is to know the
real world state. Fig. 3 presents the TSSR value obtained
according to λ of the mixture distribution.

As expected, playing closer to the public belief distribution
greatly reduces the probability of knowing the real-world
state. In ‘Liar’s Dice’ with 2 dice with PIMC, it is up to 10
fold more likely to guess the real world state when using the
private instead of the public belief distribution.

In terms of information revealed, we observe that PIMC
reveals more information than IS-MCTS in every benchmark.
In ‘Leduc Poker’, it’s up to 2.2 times more likely to deduce
the true state with PIMC at λ “ 0.0 whereas, with IS-MCTS,
it is ‘only’ 1.3 times more likely to deduce the true state.



In addition, ‘Liar’s Dice’ is the game that reveals the most
information with the algorithm revealing up to 10 times more
likely than random, whereas in ‘Leduc Poker’ or ‘Card Game’,
it is only up to 2 times more likely than random.

For the following experiments, it is expected to observe
λ closer to 1 for PIMC in ‘Liar’s Dice’, as it reveals more
information, and therefore, could be exploited by the opponent.

2) How does the mixture impact the performance: To
measure how the mixture impacts the performance, we com-
pute the expected utility against the best responder. The best
responder is the worst possible enemy of all algorithms, i.e.
it knows exactly the policy our algorithm will execute, and
therefore, can infer the true infostate and plays the best action
against it.

The results are available in Table I where the values
represent the expected utility of the best responder and must
be minimized. The results obtained are exact utility (without
variation), as the best responder computes the best strategy
knowing all the distributions in every infostate of the game.

We observe that the private belief distribution performs better
than the public belief distribution, i.e. for all benchmarks and
algorithms (better results are obtained when λ “ 0.0 than
when λ “ 1.0).

In ‘Liar’s Dice’ with PIMC, the best performances are
obtained when λ is close to 0.5 (with 2 dice, we obtain the
best value when λ “ 0.6). These results were expected, as
PIMC reveals a lot of information with Liar’s Dice which is
then exploited by the best responder.

On the other hand, when the algorithm reveals less infor-
mation (as observed in ‘Leduc Poker’ or IS-MCTS), it is
preferable to use the private belief distribution or very close, as
it is not sufficient for the best responder to exploit the revealed
information.

3) Can the use of multiple mixture belief distributions
throughout the game improve performance: In this experi-
ment, we analyze the use of multiple mixtures throughout the
game to improve performance. For this purpose, we compute
multiple mixture distributions against the best responder.

Fig. 4 represents heatmaps for ‘Leduc Poker’ and ‘Liar’s
Dice’ according to the position throughout the game when
using PIMC (resp. IS-MCTS). For both games, we have a
mixture distribution for the first action and another for the
second action.

In all experiments, we observe that using multiple mixtures
throughout the game has an impact on the performance. In
‘Leduc Poker’ for both algorithms, not using our private
belief distribution is more punished in the second round than
in the first round (e.g. t0.0, 1.0u has a value of 1.17 whereas
t1.0, 0.0u has a value of 1.88 for IS-MCTS). On the other
hand, for ‘Liar’s Dice’, we observe that the first round is the
most important one.

In addition, we observe that playing multiple mixtures
improve performance. In ‘Liar’s Dice’, the best value for IS

(a) Leduc Poker with PIMC (b) Liar’s Dice 2 dice with PIMC

(c) Leduc Poker with IS MCTS (d) Liar’s Dice 2 dice with IS MCTS

Fig. 4: Heatmap of the expected utility against the best
response when playing at the first position.

MCTS is obtained when we have t0.0, 0.6u and for PIMC
when we have t0.6, 0.2u.

4) How does the mixture impact the winning rate: As
observed in the previous experiments, when using a λ closer
to the public belief distribution, we obtain a distribution of
action less relevant but with the advantage of disclosing less
information. Therefore, when faced with an opponent who
does not infer on our private information, it is expected to lose
the benefit of using a λ closer to the public belief distribution.
Nevertheless, using a λ closer to the public belief distribution
not only reveals less information but allows it to be more
consistent with the other player’s doubts.

To measure the impact of being more consistent with the
other player’s doubts, we evaluate the performance against an
algorithm that does not try to infer our private information.
To do this, we compute the winning rate against ‘PIMC’
over 1000 games which results in 3.1% variation (95% of
confidence interval). The scores are available in Table II.

As before, we observe that it is preferable to use private
belief distribution instead of public belief distribution. In
‘Liar’s Dice’ with 3 dice with PIMC, we observe a drop of
20.8 in the winning rate between the private and public belief
distribution. In addition, we observe that in every benchmark
tested and for both algorithms, using a λ between 0.0 to
0.5 does not produce a drop in performance, but provides
equivalent results.

These results are surprising, as we could have expected
a drop in performance as the actions are less relevant to the
current infostate (as we have sampled less often the true
infostate). This implies that being more consistent with the
doubts of the other players compensates for the loss of the



TABLE I: Expected utility against best responder when playing at the first player position.

Algo Game λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC
LD 2D 0.300 0.298 0.297 0.292 0.294 0.288 0.281 0.290 0.336 0.382 0.382
LD 3D 0.313 0.276 0.265 0.269 0.235 0.283 0.324 0.356 0.359 0.393 0.458

LP 0.622 0.616 0.660 0.767 0.797 1.481 1.626 1.480 1.532 1.599 1.611

IS-MCTS LD 2D 0.513 0.512 0.517 0.528 0.539 0.547 0.552 0.554 0.555 0.562 0.562
LP 0.797 0.890 0.966 0.959 1.158 1.226 1.402 1.673 1.786 2.083 2.326

TABLE II: Winning rate when the opponent uses ‘PIMC’ when playing at the first player position.

Our Game λ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PIMC

LD 3D 48.6 50.4 47.9 47.4 44.6 42.6 39.9 37.5 36.1 28.9 27.8
LD 5D 43.1 43.4 42.2 43.4 42.5 41.4 39.8 36.3 37.1 29.8 23.6

CG 10C 48.2 47.9 47.7 47.7 47.6 47.4 46.7 46. 45.5 39.8 31.6
CG 20C 53.7 53.8 54.2 54.5 53.9 53.2 52.8 52. 47.4 36.3 23.5

IS MCTS

LD 3D 23.7 23.7 24.7 27. 23.1 23.1 21.7 20. 19.3 15.4 16.4
LD 5D 22. 20.9 21.9 22.2 21.9 20.8 21.6 21. 16.9 15.5 13.4

CG 10C 45.3 46.3 45.4 45.1 43.8 45.1 45. 43.1 42.7 37.6 30.
CG 20C 36.5 38.5 38.2 36.2 36.4 36.6 35.5 34.9 33.3 33.1 20.8

player’s private information.

V. CONCLUSION

In this paper, we study the strengths and weaknesses of
probability distributions (private and public) in which particu-
lar attention has been paid to the revealed information and the
impact of this revealed information on performance. Our study
has been carried out on determinization-based algorithms and
on multiple imperfect information games.

We complete the study by proposing a new probability
distribution, a mixture of the two previous ones, which solves
problems encountered by other distributions. We show that
using the mixture is beneficial to reduce the revealed infor-
mation and improve performance. We also show that using
multiple mixtures throughout the game improves performance.
In addition, we observed that using the mixture against an
opponent that does not use our private information revealed
results in a good performance as we are being more consistent
with the other player’s doubt.

An avenue for improvement would be to extend the uti-
lization of using multiple mixtures throughout the game. For
example, by using the mixture at each public infostate instead
of a fixed time step or using a different lambda for the
opponent player. Another area for improvement would be to
extend the study of algorithms that do not use determinization
or even, without probability distributions but bearing in mind
that one should not always use one’s private information at
the risk of revealing information and, on the contrary, that
one should not always use one’s public information in order
to be more consistent to one’s private knowledge. Lastly, it
would be interesting to extend the results at a larger scale,
either by using more games or by using larger games.

APPENDIX

A. Complementary experiments

The following experiments are identical to those in the
primary paper, with the exception that they are conducted for
the second player position.

Similar results are observed, i.e. PIMC reveals more infor-
mation than IS-MCTS, the private belief distribution obtains
better performance than the public belief distribution against
the best responder, using multiple mixtures is useful to im-
prove the performance and it is all as well to play the mixture
as the private against an opponent that does not try to infer.

Yet, we also observe some differences, especially that less
information is revealed when playing in the second position,
which results in λ closer to the private belief distribution
against the best responder.
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Fig. 5: Average TSSR according to λ value of the mixture
distribution.
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[11] V. Kovařı́k, M. Schmid, N. Burch, M. H. Bowling, and V. Lisý,
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