
Time-based Dynamic Controllability of Disjunctive Temporal Networks with
Uncertainty: A Tree Search Approach with Graph Neural Network Guidance
Kevin Osanlou1,2,3,4, Jeremy Frank1, J. Benton1, Andrei Bursuc5, Christophe Guettier2, Eric

Jacopin6 and Tristan Cazenave3
1 NASA Ames Research Center 2 Safran Electronics & Defense 3LAMSADE, Paris-Dauphine

4 Universities Space Research Association 5valeo.ai 6CREC Saint-Cyr Coetquidan
{kevin.osanlou, jeremy.d.frank, j.benton}@nasa.gov
{kevin.osanlou, christophe.guettier}@safrangroup.com

andrei.bursuc@valeo.com
eric.jacopin@st-cyr.terre-net.defense.gouv.fr

tristan.cazenave@lamsade.dauphine.fr

Abstract

Scheduling in the presence of uncertainty is an area of interest
in artificial intelligence due to the large number of applica-
tions. We study the problem of dynamic controllability (DC)
of disjunctive temporal networks with uncertainty (DTNU),
which seeks a strategy to satisfy all constraints in response
to uncontrollable action durations. We introduce a more re-
stricted, stronger form of controllability than DC for DTNUs,
time-based dynamic controllability (TDC), and present a tree
search approach to determine whether or not a DTNU is TDC.
Moreover, we leverage the learning capability of a message
passing neural network (MPNN) as a heuristic for tree search
guidance. Finally, we conduct experiments for which the tree
search shows superior results to state-of-the-art timed-game
automata (TGA) based approaches. We observe that using an
MPNN for tree search guidance leads to a significant increase
in solving performance and scalability to harder DTNU prob-
lems.

1 Introduction
Temporal Networks (TN) are a common formalism to repre-
sent and reason about temporal constraints over a set of time
points (e.g. start/end of activities in a scheduling problem).
The Simple Temporal Networks with Uncertainty (STNUs)
(Tsamardinos 2002) (Vidal and Fargier 1999) explicitly in-
corporate qualitative uncertainty into temporal networks.
Considerable work has resulted in algorithms to determine
whether or not all timepoints can be scheduled, either up-
front or reactively, in order to account for uncertainty (e.g.
(Morris and Muscettola 2005), (Morris 2014)). In particu-
lar, an STNU is dynamically controllable (DC) if there is a
reactive strategy in which controllable timepoints can be ex-
ecuted either at a specific time, or after observing the occur-
rence of an uncontrollable timepoint. Cimatti et al. (Cimatti,
Micheli, and Roveri 2016) investigate the problem of DC for
Disjunctive Temporal Networks with Uncertainty (DTNUs),
which generalize STNUs. Figure 1a shows an example of
two DTNUs γ and γ′ on the left side; ai are controllable
timepoints, uj are uncontrollable timepoints. Timepoints are
variables which can take on any value in IR. Constraints be-

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two example DTNUs γ and γ′. In both examples, time-
points a1 and a2 are controllable; u1 is uncontrollable. Black ar-
rows and their intervals (valued in IR) represent time constraints
between timepoints; the light red arrow and its interval contingency
links. The dashed dark red arrow in γ′ implies u1 has already been
activated and will occur in the specified interval. A TDC strategy is
displayed for γ: the root node of the strategy is γ while other nodes
are sub-DTNUs except the ∨ node which lists transitional possibil-
ities. DTNU γ′, on the other hand, is an example of a DTNU which
is DC but not TDC.

tween timepoints characterize both a minimum and maxi-
mum time distance separating them, likewise valued in IR.
The key difference between STNUs and DTNUs lies in the
disjunctions that yields more choice points for consistent
scheduling, especially reactively.

The complexity of DC checking for DTNUs is
PSPACE-complete (Bhargava and Williams 2019), mak-
ing this a very challenging problem. The difficulty in prov-
ing or disproving DC arises from the need to check all pos-
sible combinations of disjuncts in order to handle all pos-
sible occurrence outcomes of the uncontrollable timepoints.
The best previous approaches for this problem use timed-
game automata (TGAs) and Satisfiability Modulo Theories
(SMTs), described in (Cimatti, Micheli, and Roveri 2016).

ar
X

iv
:2

10
8.

01
06

8v
1

 [
cs

.A
I]

 2
 A

ug
 2

02
1

Recently, applications such as image classification have
benefited from learning techniques such as Convolutional
Neural Networks (CNNs) (Krizhevsky, Sutskever, and Hin-
ton 2012). A new emerging trend of neural networks, graph-
based neural networks (GNNs), have been proposed as an
extension of CNNs to graph-structured data; recent variants
based on spectral graph theory include (Defferrard, Bresson,
and Vandergheynst 2016), (Li et al. 2016), (Kipf and Welling
2017). These GNNs take advantage of relational properties
between nodes for classification, but do not take into account
potential edge weights. In newer approaches, Message Pass-
ing Neural Networks (MPNNs) with architectures such as in
(Battaglia et al. 2016), (Gilmer et al. 2017) and (Kipf et al.
2018) use embeddings comprising edge weights within each
computational layer. We focus our interest on these architec-
ture types as DTNUs can be formalized as graphs with edge
distances representing time constraints.

In this work, we study DC checking of DTNUs as a
search problem, express states as graphs, and use MPNNs to
learn heuristics based on previously solved DTNUs to guide
search. The key contributions of our approach are the follow-
ing. (1) We introduce a time-based form of dynamic control-
lability (TDC) and a tree search approach to identify TDC
strategies. We informally show that TDC implies DC, but
the opposite is not generally true. (2) We define a relevant
way of using an MPNN architecture for handling DTNU
scheduling problems and use it as heuristic for guidance in
the tree search. Moreover, we define a self-supervised train-
ing scheme to train the MPNN based on solving randomly
generated DTNUs with short timeouts to limit search du-
ration. (3) We introduce constraint propagation rules which
enable us to enforce time domain restrictions for variables
in order to ensure soundness of strategies found. We carry
out experiments which show the tree search algorithm of-
fers improved scalability over the best previous DC-solving
approach evaluated in (Cimatti, Micheli, and Roveri 2016),
PYDC-SMT. Moreover, we show the tree search is improved
upon significantly by the learned MPNN heuristic on harder
DTNUs.

2 Time-based Dynamic Controllability
A DC strategy for a DTNU either executes controllable
timepoints at a specific time, or reacts to the occurrence of
an uncontrollable timepoint. We present our TDC formal-
ism here. A TDC strategy executes controllable timepoints
at specific times under the assumption that some uncontrol-
lable timepoints may occur or not in a given time interval.
Each interval in a TDC strategy can have an arbitrary du-
ration. Thus, controllable timepoints are usually executed at
the end of the same interval, regardless of if and when un-
controllable timepoints occur inside the interval. Within a
given interval, TDC also leaves open the choice to execute
a controllable timepoint at the same time as the occurrence
of an uncontrollable timepoint, which we call reactive exe-
cution.

Nonetheless, TDC is less flexible than a DC strategy
which can wait for an uncontrollable timepoint to occur be-
fore making a new decision. It does not allow, for exam-
ple, delayed reactive execution of the controllable timepoint.

TDC is a subset of DC, and a stronger form on controllabil-
ity: TDC implies DC. As described below, representing re-
active DC strategies in TDC may require the tree to become
arbitrarily large, so DC does not imply TDC. DTNU γ′ in
figure 1a shows an example of an STNU which is not TDC
but DC. In this example, uncontrollable timepoint u1 is acti-
vated, i.e. the controllable timepoint associated to u1 in the
contingency links has been executed. Moreover, it is known
that u1 occurs between t and t + 1, where t is the current
time. The interval [t, t + 1] is referred to as the activation
time interval for u1. Controllable timepoint a1 must be exe-
cuted at least 1 time unit after u1, and controllable timepoint
a2 at least 5 time units after a1. However, controllable time-
point a2 cannot be executed later than 6 time units after u1.
A valid DC strategy waits for u1 to occur, then schedules a1

exactly 1 time unit later, and a2 5 time units after a1. How-
ever, for any TDC strategy, there is no wait duration small
enough while waiting for u1 to happen that does not violate
these constraints. There will always be some strictly positive
lapse of time between the moment u1 occurs and the end of
the wait. The exact execution time of u1 during the wait is
unknown: a TDC strategy therefore assumes u1 happened at
the end of the wait when trying to schedule a1 at the ear-
liest. Therefore, the earliest time a1 can be scheduled in a
TDC strategy is 1 time unit after the end of the wait, which
is too late.

3 Tree Search Preliminaries
We introduce here the tree search algorithm. Intuitively, the
approach discretizes uncontrollable durations, i.e. durations
when one or several uncontrollable timepoints can occur,
into multiple reduced intervals. These reduced intervals are
then used to account for possible outcomes of uncontrollable
timepoints and adapt the scheduling strategy accordingly.

The root of the search tree is the DTNU, and other tree
nodes are either sub-DTNUs of the DTNU or logical nodes
(OR, AND) which represent the presence or lack of control
over transition into children nodes. At a given DTNU tree
node, decisions such as executing a controllable timepoint or
waiting for a period of time develop children DTNU nodes
for which these decisions are propagated to constraints. The
TDC controllability of a leaf DTNU, i.e. a sub-DTNU for
which all controllable timepoints have been executed and
uncontrollable timepoints are assumed to have occurred in
specific intervals, indicates whether or not this sub-DTNU
has been solved at the end of the scheduling process. We
also refer to the TDC controllability of a DTNU node in the
search tree as its truth attribute. Lastly, the search logically
combines TDC controllability of children DTNUs to deter-
mine TDC controllability for parent nodes. We give a simple
example of a TDC strategy for a DTNU γ in figure 1.

Let Γ = {A,U,C, L} be a DTNU. A is the list of con-
trollable timepoints, U the list of uncontrollable timepoints,
C the list of constraints and L the list of contingency links.
The root node of the search tree built by the algorithm is Γ.
There are four different types of nodes in the tree. Further-
more, each node possesses a truth attribute, as explained in
§4.4, which is initialized to unknown and can be set to ei-
ther true or false . The different types of tree nodes are listed

below and shown in figure 2.

DTNU nodes. Any DTNU node other than the original
problem Γ corresponds to a sub-problem of Γ at a given
point in time t, for which some controllable timepoints may
have already been scheduled in upper branches of the tree,
some amount of time may have passed and some uncontrol-
lable timepoints may have occurred. A DTNU node is made
of the same timepoints A and U , constraints C and con-
tingency links L as the original DTNU Γ. It also carries a
schedule memory S of what exact time, or during what time
interval, scheduled timepoints were executed during previ-
ous decisions in the tree. Lastly, the node also keeps track of
the activation time intervals of activated uncontrollable time-
points B. The schedule memory S is used to create an up-
dated list of constraints C ′ resulting from the propagation of
the execution time or execution time interval of timepoints
in constraints C as described in §4.5. A non-terminal DTNU
node, i.e. a DTNU node for which all timepoints have not
been scheduled, has exactly one child node: a d-OR node.
OR nodes. When a choice can be made at time t, this tran-
sition control is represented by an OR node. We distinguish
two types of such nodes, d-OR and w-OR . For d-OR nodes,
the first type of choice available is which controllable time-
point ai to execute. This leads to a DTNU node. The other
type of choice is to wait a period of time (§4.2) which leads
to a WAIT node. w-OR nodes can be used for reactive wait
strategies, i.e. to stipulate that some controllable timepoints
will be scheduled reactively during waits (§4.1). The parent
of a w-OR node is therefore a WAIT node and its children
are AND nodes, described below.
WAIT nodes. These nodes are used after a decision to wait
a certain period of time ∆t. The parent of a WAIT node is
a d-OR node. A WAIT node has exactly one child: a w-OR
node, which has the purpose of exploring different reactive
wait strategies. The uncertainty management related to un-
controllable timepoints is handled by AND nodes.
AND nodes. This type of node represents a lack of transi-
tion control over children nodes. It is used after a wait deci-
sion is taken and a reactive wait strategy is decided, repre-
sented consecutively by a WAIT and w-OR node. Each child
node of the AND node is a DTNU node at time t+∆t, where
t is the time before the wait and ∆t the wait duration. Fur-
thermore, each child node represents an outcome of how un-
controllable timepoints may unfold, and is built from the set
of activated uncontrollable timepoints (uncontrollable time-
points that have been started by the execution of their con-
trollable timepoint) whose occurrence time interval overlaps
the wait. If there are l activated uncontrollable timepoints,
then there are at most 2l AND node children, representing
each element of the power set of activated uncontrollable
timepoints (§4.2).

Figure 2 illustrates how a sub-problem of Γ, referred to
as DTNUO,P,t, is developed. Here, O ⊂ A is the set
of controllable timepoints that have already been executed,
P ⊂ U the set of uncontrollable timepoints which have oc-
curred, and t the time. This root node transitions into a d-
OR node. The d-OR node in turn is developed into several

Figure 2: Basic structure of the search tree describing how a
DTNU node DTNUO,P,t is developed.DTNUO,P,t (placed at
the root of the tree) refers to a DTNU where O is the set of con-
trollable timepoints that have already been executed, P the set of
uncontrollable timepoints that have occurred, and t the time. Each
branch ai refers to a controllable timepoint ai, Ri to a reactive
strategy during the wait, and Λi to a combination of uncontrollable
timepoints which can occur during the wait.

children nodes DTNUO∪{ai},P,t and a WAIT node. Each
nodeDTNUO∪{ai},P,t corresponds to a sub-problem which
is obtained from the execution of controllable timepoint ai
at time t. The WAIT node refers to the process of waiting
a given period of time, ∆t in the figure, before making the
next decision. The WAIT node leads directly to a w-OR node
which lists different wait strategies Ri. If there are l acti-
vated uncontrollable timepoints, there are 2l subsets of un-
controllable timepoints Λi that could occur. Each ANDRj

node has one sub-problem DTNU for each Λi.
Each sub-problem DTNUOi,P∪Λi,t+∆t of the node

ANDRj
is a DTNU at time t + ∆t for which all uncontrol-

lable timepoints in Λi are assumed to have happened during
the wait period, i.e. in the time interval [t, t + ∆t]. Addi-
tionally, some controllable timepoints may have been reac-
tively executed during the wait and may now be included in
the set of scheduled controllable timepoints Oi. Otherwise,
Oi = O.

Two types of leaf nodes exist in the tree. The first type
is a node DTNUA,U,t for which all controllable time-
points ai ∈ A have been scheduled and all uncontrol-
lable timepoints ui ∈ U have occurred. The second type
is a node DTNUA\A′,U,t for which all uncontrollable time-
points ui ∈ U have occurred, but some controllable time-
points ai ∈ A′ have not been executed. The constraint sat-
isfiability test of the former type of leaf node is straight-
forward: all execution times of all timepoints are propa-
gated to constraints in the same fashion as in §4.5. The
leaf node’s truth attribute is set to true if all constraints are
satisfied, false otherwise. For the latter type, we propagate
the execution times of all uncontrollable timepoints as well
as all scheduled controllable timepoints in the same way,
and obtain an updated set of constraint C ′. This leaf node,
DTNUA\A′,U,t, is therefore characterized as {A′, ∅, C ′, ∅}
and is a DTN. We add the constraints a′i ≥ t, ∀a′i ∈ A′

and use a mixed integer linear programming solver (Cplex
2009) to solve the DTN. If a solution is found, the execution
time values for each a′i ∈ A′ are stored and the leaf node’s
truth value is set to true. Otherwise, it is set to false. After
a truth value is assigned to the leaf node, the truth propaga-
tion function defined in §4.4 is called to logically infer truth
value properties for parent nodes.

Lastly, the search algorithm explores the tree in a depth-
first manner. At each d-OR , w-OR and AND node, children
nodes are visited in the order they are created. Once a child
node is selected, its entire subtree will be processed by the
algorithm before the other children are explored. Some sim-
plifications made in the exploration are detailed in §11.6 in
the appendix.

4 Tree Search Characteristics
4.1 Reactive scheduling during waits
Some situations may arise when instant scheduling of a con-
trollable timepoint is necessary as soon as an uncontrollable
timepoint occurs to satisfy a constraint. We designate as a
conjunct a constraint relationship of the form vi−vj ∈ [x, y]
or vi ∈ [x, y], where vi, vj are timepoints and x, y,∈ IR. We
refer to a constraint where several conjuncts are linked by
∨ operators as a disjunct. If at any given DTNU node in the
tree there is an activated uncontrollable timepoint u with the
potential to occur during the next wait and there is at least
one unscheduled controllable timepoint a such that a con-
junct of the form u − a ∈ [0, y], y ≥ 0 is present in the
constraints, a reactive wait strategy is considered that sched-
ules a as soon as u occurs. Let Φ = {φ1, φ2, ..., φs} ⊂ A
be the complete set of unscheduled controllable timepoints
for which there are conjunct clauses u − φi ∈ [0, y]. We
denote as R1, R2, ..., Rm all possible combinations of ele-
ments taken from Φ, including the empty set. As depicted
in Figure 2, we account for potential reactive wait strategies
by using a w-OR node. The child node ANDRi

of the w-OR
node resulting from the combination Ri has a reactive wait
strategy for which all controllable timepoints in Ri will be
immediately executed at the moment u occurs during the
wait, if it does. If u doesn’t occur, no controllable timepoint
is reactively scheduled during the wait.

4.2 Wait action
When a wait decision of duration ∆t is taken at time
t for a given DTNU node, two different categories of
uncontrollable timepoints are considered to account for all
transitional possibilities:

• Z = {ζ1, ζ2, ..., ζl} is a set of timepoints that could either
happen during the wait, or afterwards, i.e. the end of the
activation time interval for each ζi is greater than t+ ∆t.

• H = {η1, η2, ..., ηm} is a set of timepoints that are certain
to happen during the wait, i.e. the end of the activation
time interval for each ηi is less than or equal to t+ ∆t.

There are q = 2l number of different possible combina-
tions (empty set included) V1, V2, ..., Vq for elements taken
from Z. For each combination Vi, the set Λi = H ∪ Vi is

created. The union
q⋃
i=1

Λi refers to all possible combinations

of uncontrollable timepoints which can occur by t + ∆t. In
figure 2, for each AND node, the combination Λi leads to
a DTNU sub-problem DTNUOi,P∪Λi,t+∆t for which the
uncontrollable timepoints in Λi are considered to have oc-
curred between t and t + ∆t in the schedule memory S. In
addition, any potential controllable timepoint φ planned to
be instantly scheduled in a reactive wait strategy Ri in re-
sponse to an uncontrollable timepoint u in Λi will also be
considered to have been scheduled between t and t + ∆t in
S. The only exception is when checking constraint satisfi-
ability for the conjunct u − φ ∈ [0, y] which required the
reactive scheduling, for which we assume φ executed at the
same time as u, thus the conjunct is considered satisfied au-
tomatically.

4.3 Wait Eligibility and Period
The way time is discretized is fundamental and holds direct
implications on the search space explored and the capabil-
ity of the algorithm to find TDC strategies. Longer waits
make the search space smaller, but carry the risk of miss-
ing key moments where a decision is needed. On the other
hand, smaller waits can make the search space too large to
explore. We explain when the wait action is eligible, and
how the wait duration is computed.

Eligibility At least one of the following criteria has to be
met for a WAIT node to be added as child of a d-OR node:

• There is at least one activated uncontrollable timepoint for
the parent DTNU node.

• There is at least one conjunct of the form v ∈ [x, y], where
v is a timepoint, in the constraints of the parent DTNU
node.

These criteria ensure that the search tree will not develop
branches below WAIT nodes when waiting is not relevant,
i.e. when a controllable timepoint necessarily needs to be
scheduled. It also prevents the tree search from getting stuck
in infinite WAIT loop cycles.

Wait Period We define the wait duration ∆t at a given d-
OR node eligible for a wait dynamically by examining the
updated constraint list C ′ of the parent DTNU and the acti-
vation time intervals B of its activated uncontrollable time-
points. Let t be the current time for this DTNU node. The
wait duration is defined by comparing t to elements in C ′
and B to look for a minimum positive value defined by the
following three rules:

First rule For each activated time interval u ∈ [x, y]
in B, we select x − t or y − t, whichever is smaller and
positive, and we keep the smallest value δ1 found over all
activated time intervals.

Second rule For each conjunct v ∈ [x, y] in C ′, where
v is a timepoint, we select x−t or y−t, whichever is smaller
and positive, and we keep the smallest value δ2 found over
all conjuncts.

Third rule This rule is used to determine timepoints
which need to be scheduled ahead of time by chaining con-
straints together. Intuitively, when a conjunct v ∈ [x, y] is in
C ′, it means v has to be executed when t ∈ [x, y] to satisfy
this conjunct. However, v could be linked to other timepoints
by constraints which require them to happen before v. These
timepoints could in turn be linked to yet other timepoints in
the same way, and so on. The purpose of the third rule is to
chain backwards to identify potential timepoints which start
this chain and potential time intervals in which they need
to be executed. The following mechanism is used: for each
conjunct v ∈ [x, y] in C ′ found in 2), we apply a recursive
backward chain function to both (v, x) and (v, y). We detail
here how it is applied to (v, x), the process being the same
for (v, y). Conjuncts of the form v − v′ ∈ [x′, y′], x′ ≥ 0
in C ′ are searched for. For each conjunct found, we add to a
list two elements, (v′, x−x′) and (v′, x−y′). We also select
x−x′− t or x−y′− t, whichever is smaller and positive, as
potential minimum candidate. The backward chain function
is called recursively on each element of the list, proceeding
the same way. We keep the smallest candidate δ3. Figure 8
in the appendix illustrates an application of this process.

We set ∆t = min(δ1, δ2, δ3) as the wait duration. This
duration is stored inside the WAIT node.

4.4 Truth Value Propagation
In this section, we describe how truth attributes of nodes are
related to each other. The truth attribute of a tree node rep-
resents its TDC controllability, and the relationships shared
between nodes make it possible to define sound strategies.
When a leaf node is assigned a truth attribute β, the tree
search is momentarily stopped and a propagator function
PropagateTruth() is called. This function recursively
propagates β onto upper parent nodes. A parent node ω is
selected recursively and we distinguish the following cases:
• The parent ω is a DTNU node or a WAIT node: ω is as-

signed β.
• The parent ω is a d-OR or w-OR node: If β = true, then
ω is assigned true . If β = false and all children nodes
of ω have false attributes, ω is assigned false . Otherwise,
the propagation stops.

• The parent ω is an AND node: If β = false, then ω is
assigned false . If β = true and all children nodes of ω
have true attributes, ω is assigned true . Otherwise, the
propagation stops.
After the propagation algorithm finishes, the tree search

algorithm resumes where it was temporarily stopped. If a
truth attribute has reached the root node of the tree, the tree
search algorithm will be swiftly ended due to the branch
cuts implemented in §11.6 in the appendix. A true attribute
reaching the root node of the tree means a TDC strategy has
been found. A false attribute means none could be found.
The pseudocode for the PropagateTruth() function is
given in Algorithm 1 in the appendix.

4.5 Constraint Propagation
Decisions taken in the tree define when controllable time-
points are executed and also bear consequences on the ex-

ecution time of uncontrollable timepoints. We explain here
how these decisions are propagated into constraints, as well
as the concept of ‘tight bound’. Let C ′ be the list of updated
constraints for a DTNU node ψ for which the parent node is
ω. We distinguish two cases. Either ω is a d-OR node and ψ
results from the execution of a controllable timepoint ai, or
ω is an AND node andψ results from a wait of ∆t time units.
In the first case, let t be the execution time of ai. The updated
list C ′ is built from the constraints of the parent DTNU of
ψ in the tree. If a conjunct contains ai and is of the form
ai ∈ [x, y], this conjunct is replaced with true if t ∈ [x, y],
false otherwise. If the conjunct is of the form vj−ai ∈ [x, y],
we replace the conjunct with vj ∈ [t + x, t + y]. The other
possibility is that ψ results from a wait of ∆t time at time t,
with a reactive wait strategy Rj . In this case, the new time
is t+ ∆t for ψ. As a result of the wait, some uncontrollable
timepoints ui ∈ Λi may occur, and some controllable time-
points ai ∈ Rj may be executed reactively during the wait.
Let vi ∈ Λi ∪ Rj be these timepoints occurring during the
wait. The execution time of these timepoints is considered to
be in [t, t+∆t]. For uncontrollable timepoints u′i ∈ Λ′i ⊂ Λi
for which the activation time ends at t + ∆′ti < t + ∆t,
and potential controllable timepoints a′i instantly reacting to
these uncontrollable timepoints, the execution time is further
reduced and considered to be in [t, t+∆′ti]. We define a con-
cept of tight bound to update constraints which restricts time
intervals in order to account for all possible values vi can
take between t and t+∆t. For all conjuncts vj−vi ∈ [x, y],
we replace the conjunct with vj ∈ [t + ∆t + x, t + y]. In-
tuitively, this means that since vi can happen at the latest at
t+ ∆t, vj can not be allowed to happen before t+ ∆t + x.
Likewise, since vi can happen at the earliest at t, vj can not
be allowed to happen after t+y. Finally, if t+∆t+x > t+y,
the conjunct is replaced with false . Also, the process can be
applied recursively in the event that vj is also a timepoint
that occurred during the wait, in which case the conjunct
would be replaced by true or false. In any case, any conjunct
obtained of the form aj ∈ [x′, y′] is replaced with false if
t + ∆t > y′. Finally, if all conjuncts inside a disjunct are
set to false by this process, the constraint is violated and the
DTNU is no longer satisfiable.

5 Learning-based Heuristic
We present our learning model and explain how it pro-
vides tree search heuristic guidance. Our learning architec-
ture originates from (Gilmer et al. 2017). It uses message
passing rules allowing neural networks to process graph-
structured inputs where both vertices and edges possess fea-
tures. Authors of this architecture carry out node classifica-
tion experiments in quantum chemistry and achieve state-
of-the-art results on a molecular property prediction bench-
mark. Here, we first define a way of converting DTNUs into
graph data. Then, we process the graph data with our MPNN
and explain how the output is used to guide the tree search.

Let Γ = {A,U,C, L} be a DTNU. We start by explaining
how we turn Γ into a graph G = (V, E). First, we convert
all time values from absolute to relative with the assumption
the current time for Γ is t = 0. We search all converted time
intervals [xi, yi] in C and L for the highest interval bound

value dmax, i.e. the farthest point in time. We then proceed
to normalize every time value in C and L by dividing them
by dmax. As a result, every time value becomes a real num-
ber between 0 and 1. Next, we convert each controllable
timepoint a ∈ A and uncontrollable timepoint u ∈ U into
graph nodes with corresponding controllable or uncontrol-
lable node features. The time constraints in C and contin-
gency links in L are expressed as edges between nodes with
10 different edge distance classes (0 : [0, 0.1), 1 : [0.1, 0.2),
..., 9 : [0.9, 1]). We also use additional edge features to ac-
count for edge types (constraint, disjunction, contingency
link, direction sign for lower and upper bounds). Moreover,
intermediary nodes are used with a distinct node feature in
order to map possible disjunctions in constraints and contin-
gency links. We also add a WAIT node with a distinct node
feature which implicitly designates the act of waiting a pe-
riod of time. The graph conversion of DTNU γ is character-
ized by three elements: the matrix of all node features Xv ,
the adjacency matrix of the graph Xe and the matrix of all
edge features Xw.

Let f be the mathematical function for our MPNN and θ
its set of parameters. Our function f stacks 5 graph con-
volutional layers from (Gilmer et al. 2017) coupled with
the ReLU(·) = max(0, ·) piece-wise activation function
(Glorot, Bordes, and Bengio 2011). The sigmoid function
σ(·) = 1

1+exp(−·) is then used to obtain a list of probabilities
π over all nodes in G : fθ(Xv, Xe, Xw) = π. The proba-
bility of each node v in π corresponds to the likelihood of
transitioning into a TDC DTNU from the original DTNU
Γ by taking the action corresponding to v. If v represents a
controllable timepoint a in Γ, its corresponding probability
in π is the likelihood of the sub-DTNU resulting from the
execution of a being TDC. If v represents a WAIT decision,
its probability refers to the likelihood of the WAIT node hav-
ing a true attribute, i.e. the likelihood of all children DTNUs
resulting from the wait being TDC (with the wait duration
rules set in §4.3). We call these two types of nodes active
nodes. Otherwise, if v is another type of node, its probabil-
ity is not relevant to the problem and ignored. Our MPNN is
trained on DTNUs generated and solved in §6 only on active
nodes by minimizing the cross-entropy loss:

1

m

m∑
i=1

q∑
j=1

−Yij log(fθ(Xi)j)− (1−Yij) log(1− fθ(Xi)j)

Here Xi = (Xiv , Xie , Xiw) is DTNU number i among a
training set of m examples, Yij is the TDC controllability (1
or 0) of active node j for DTNU number i.

Lastly, the MPNN heuristic is used in the following way
in the tree search. Once a d-OR node is reached, the parent
DTNU node is converted into a graph and the MPNN f is
called upon the corresponding graph elements Xv, Xe, Xw.
Active nodes in output probabilities π are then ordered by
highest values first, and the tree search visits the correspond-
ing children tree nodes in the suggested order, preferring
children with higher likelihood of being TDC first.

6 Randomized Simulations for Heuristic
Training

We leverage a learning-based heuristic to guide the tree
search and increase its effectiveness. A key component in
learning-based methods is the annotated training data. We
generate such data in automatic manner by using a DTNU
generator to create random DTNU problems and solving
them with a modified version of the tree search. We store
results and use them for training the MPNN. We detail now
our data generation strategy.

For training purposes, we create DTNUs which have a
number of controllable timepoints ranging from 10 to 20
and a number of uncontrollable timepoints ranging from 1
to 3. The DTNUs are generated in the following way. For
interval bounds of constraint conjuncts or contingency links,
we always randomly generate real numbers within [0, 100].
We restrict the number of conjuncts inside a disjunct to 5
at most. A random number n1 ∈ [10, 20] of controllable
timepoints and a random number n2 ∈ [1, 3] of uncontrol-
lable timepoints are selected. Each uncontrollable timepoint
is randomly linked to a different controllable timepoint with
a contingency link. Next, we iterate over the list of time-
points, and for each timepoint vi not appearing in constraints
or contingency links, we add a disjunct for which at least
one conjunct constrains vi. The type of conjunct is selected
randomly from either a distance conjunct vi − vj ∈ [x, y]
or a bounded conjunct vi ∈ [x, y]. On the other hand, if vi
was already present in the constraints or contingency links,
we add a disjunct constraining vi with only a 20% probabil-
ity. In order to solve these random DTNUs, we modify the
tree search as follows. For a DTNU Γ, the first d-OR child
node is developed as well as its children ψ1, ψ2, ..., ψn ∈ Ψ.
The modified tree search will explore each ψi multiple times
(ν times at most), each time with a timeout of τ seconds.
Here we set ν = 25 and τ = 3. For each exploration of ψi,
children nodes of any d-OR node encountered in the corre-
sponding subtree are explored randomly each time. If ψi is
proved to be either TDC or non-TDC during an exploration,
the next explorations of the same child ψi are called off and
the truth attribute βi of ψi is updated accordingly. The active
node number k, corresponding to the decision leading to ψi
from DTNU Γ’s d-OR node, is updated with the same value,
i.e. Yk = βi. However, if every exploration times out, ψi is
assumed non-TDC and Yk is set to false. Once each ψi has
been explored, the pair 〈G(Γ), (Y1, Y2, ..., Yn)〉 is stored in
the training set, where G(Γ) is the application of the graph
conversion of Γ described in §5.

The assumption of non-TDC controllability for children
nodes for which all explorations time out is good enough.
The output of the MPNN is a probability for each child node
of the d-OR node of the input DTNU. These children nodes
are visited in the suggested order when the heuristic is ac-
tive, until one is found to be TDC, and no child is ever dis-
carded. The trained MPNN will tend to give higher probabil-
ities for children nodes for which explorations often found
a TDC strategy before timeout, and lower probabilities for
ones where explorations often ended up with a timeout.

7 Strategy Execution
A strategy found by the tree search for a DTNU Γ is sound
and guarantees constraint satisfiability if executed in the fol-
lowing manner. LetQ be the system interacting with the en-
vironment, executing controllable timepoints and observing
how uncontrollable timepoints unfold. At each DTNU node
in the tree, Q will move on to the child d-OR node. The
child node ψi of the d-OR node which was found by the
strategy to have a true attribute is selected. If ψi is a DTNU
node, Q executes the corresponding controllable timepoint
ai and moves on to ψi. On the other hand, if ψi is a WAIT
node, Q moves on to ψi, reads the wait duration time ∆t

stored in ψi and moves on to the child w-OR node. The child
node ANDRj

of the w-OR node which has a true attribute is
selected, and Q will wait ∆t time units with the reactive
wait strategy Rj . After the wait is over, Q observes the list
of all uncontrollable timepoints Λi which occurred, deduces
which DTNU child node of the ANDRj node it transitioned
into, and moves on to that node.

By following these guidelines, the final tree node Q tran-
sitions into is necessarily a leaf node with a true attribute, i.e.
a node for which all constraints are satisfied. This is due to
the fact that for d-OR and w-OR nodes Q visits, Q chooses
to transition into a child node with a true attribute. For AND
nodes Q visits, all children DTNU nodes have a true at-
tribute, soQ transitions into a child node with a true attribute
regardless of how uncontrollable timepoints unfold.

8 Related Works
The use of learning-based heuristics has recently become
increasingly popular for planning, combinatorial and net-
work modeling problems. Recent works applied to network
modeling and routing problems include (Rusek et al. 2019),
(Chen et al. 2018), (Xu et al. 2018), (Kool and Welling
2018). Recently, GNNs have become a popular extension of
CNNs. Essentially, their ability to represent problems with
a graph structure and the resulting node permutation invari-
ance makes them convenient for some applications. We re-
fer the reader to (Wu et al. 2019) for a complete survey
on GNNs. In combinatorial optimization, GNNs can ben-
efit both approximate and exact solvers. In (Li, Chen, and
Koltun 2018), authors combine tree search, GNNs and a lo-
cal search algorithm to achieve state-of-the-art results for
approximate solving of NP-hard problems such as the max-
imum independent set problem. On the other hand, (Gasse
et al. 2019) use a GNN for branch and bound variable se-
lection for exact solving of NP-hard problems and achieve
superior results to previous learning approaches. In path-
planning problems with NP-hard constraints, (Osanlou et al.
2019) use a GNN to predict an upper bound for a branch and
bound solver and outperform an A*-based planner coupled
with a problem-suited handcrafted heuristic. Lastly, (Ma et
al. 2018) call a GNN for the selection of a planner inside
a portfolio for STRIPS planning problems and outperform
the leading learning-based approach which was based on a
CNN (Sievers et al. 2019). In most works, GNNs seem to
offer generalization to bigger problems than they are trained
on. Results from our experiments are in line with this obser-

Figure 3: Experiments on (Cimatti, Micheli, and Roveri 2016)’s
benchmark from which DTNs and STNs have been removed.
The X-axis represents the allocated time in seconds and the Y-axis
the number of instances in the benchmark each solver can solve
within the corresponding allocated time. Timeout is set to 20 sec-
onds per instance.

vation.

9 Experiments
We carry out experiments to evaluate the efficiency of the
proposed tree search approach and the effect of the MPNN’s
guidance. We also compare these methods to a DC solver
from (Cimatti, Micheli, and Roveri 2016). TDC is a subset
of DC and a more restrictive form of controllability: non-
TDC controllability does not imply non-DC controllability.
In that sense, a TDC solver can be expected to offer better
performance that a DC counterpart in exchange for poten-
tially being unable to find a strategy when a DC algorithm
would. In this section, we refer to the tree search algorithm
as TS, the tree search algorithm guided by the trained MPNN
up to the 15th (respectively Xth) d-OR node depth-wise in
the tree as MPNN-TS (respectively MPNN-TS-X) and the
most efficient DC solver from (Cimatti, Micheli, and Roveri
2016) as PYDC-SMT ordered.

First, we use the benchmark in the experiments of
(Cimatti, Micheli, and Roveri 2016) from which we remove
DTNs and STNs. We compare TS, MPNN-TS and PYDC-
SMT on the resulting benchmark which is comprised of 290
DTNUs and 1042 STNUs. Here, Limiting the maximum
depth use of the MPNN to 15 offers a good trade off between
guidance gain and cost of calling the heuristic. Results are
given in Figure 3. We observe that TS solves roughly 50%
more problem instances than PYDC-SMT within the allo-
cated time (20 seconds). In addition, TS solves 56% of all
instances while the remaining ones time out. Among solved
instances, a strategy is found for 89% and the remaining
11% are proved non-TDC. On the other hand, PYDC-SMT
solves 37% of all instances. A strategy is found for 85%
of PYDC-SMT’s solved instances while the remaining 15%
are proved non-DC. Finally, out of all instances PYDC-SMT

Figure 4: Experiments on benchmark B1. Axes are the same as
in figure 3. Timeout is set to 30 seconds per instance.

solves, TS solves 97% accurately with the same conclusion,
i.e. TDC when DC and non-TDC when non-DC. The use
of the heuristic leads to an additional +6% problems solved
within the allocated time. We argue this small increase is es-
sentially due to the fact that most problems solved in the
benchmark are small-sized problems with few timepoints
which are solved quickly.

For further evaluation of the heuristic, we create new
benchmarks using the DTNU generator described in §6 with
varying number of timepoints. These benchmarks contain
fewer DTNU instances which are quick to solve and more
harder instances. Each benchmark contains 500 randomly
generated DTNUs which have 1 to 3 uncontrollable time-
points. Moreover, each DTNU has 10 to 20 controllable
timepoints in the first benchmark B1, 20 to 25 in the sec-
ond benchmark B2 and 25 to 30 in the last benchmark B3.
Experiments on B1, B2 and B3 are respectively shown in
figure 4, 6c (in the appendix) and 5. We note that for all
three benchmarks, no solver ever proves non-TDC or non-
DC controllability before timing out due to the larger size of
these problems.

In these benchmarks, PYDC-SMT does not perform well
on B1 and cannot solve any instance on B2 and B3. TS does
not perform well on B2 and only solves 2 instances on B3.
However, we see a significantly higher gain from the use of
the MPNN for TS, varying with the maximum depth use.
At best depth use, the gain is +91% instances solved for
B1, +980% instances solved for B2 and +1150% instances
solved forB3. The more timepoints instances have, the more
worthwhile heuristic guidance appears to be. Indeed, the op-
timal maximum depth use of the MPNN in the tree increases
with the problem size: 15 for B1, 60 for B2 and 120 for B3.
We argue this is due to the fact that more timepoints results
in a wider search tree overall, including in deeper sections
where heuristic use was not necessarily worth its cost for
smaller problems. Furthermore, the MPNN is trained on ran-
domly generated DTNUs which have 10 to 20 controllable
timepoints. The promising gains shown by experiments on

Figure 5: Experiments on benchmark B3. Axes are the same as
in figure 3. Timeout is set to 180 seconds.

B2 and B3 suggest generalization of the MPNN to bigger
problems than it is trained on.

The tree search approach presented in this work presents
a good trade off between search completeness and effec-
tiveness: almost all examples solved by PYDC-SMT from
(Cimatti, Micheli, and Roveri 2016)’s benchmark are solved
with the same conclusion, and many more which could not
be solved are. Moreover, the TDC approach scales up bet-
ter to problems with more timepoints, and the tree structure
allows the use of learning-based heuristics. Although these
heuristics are not key to solving problems of big scales, our
experiments suggest they can still provide a high increase in
efficiency.

10 Conclusion

We introduced a new type of controllability, time-based dy-
namic controllability (TDC), and a tree search approach
for solving disjunctive temporal networks with uncertainty
(DTNU) in TDC. Strategies are built by discretizing time
and exploring different decisions which can be taken at dif-
ferent key points, as well as anticipating how uncontrol-
lable timepoints can unfold. We defined constraint propa-
gation rules which ensure soundness of strategies found. We
showed that the tree search approach is able to solve DTNUs
in TDC more efficiently than the state-of-the-art dynamic
controllability (DC) solver, PYDC-SMT, with almost al-
ways the same conclusion. Lastly, we created MPNN-TS, a
solver which combines the tree search with a heuristic func-
tion based on message passing neural networks (MPNN) for
guidance. The MPNN is trained with a self-supervised strat-
egy based on a variant of the tree search algorithm. The use
of the MPNN allows significant improvement of the tree
search on harder DTNU problems, notably on DTNUs of
bigger size than those used for training the MPNN.

References
Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D. J.; et al.
2016. Interaction networks for learning about objects, re-
lations and physics. In Advances in neural information pro-
cessing systems, 4502–4510.
Bhargava, N., and Williams, B. C. 2019. Complexity bounds
for the controllability of temporal networks with conditions,
disjunctions, and uncertainty. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, 6353 – 6357.
Chen, X.; Guo, J.; Zhu, Z.; Proietti, R.; Castro, A.; and Yoo,
S. 2018. Deep-rmsa: A deep-reinforcement-learning rout-
ing, modulation and spectrum assignment agent for elastic
optical networks. In 2018 Optical Fiber Communications
Conference and Exposition (OFC), 1–3. IEEE.
Cimatti, A.; Micheli, A.; and Roveri, M. 2016. Dynamic
controllability of disjunctive temporal networks: Validation
and synthesis of executable strategies. In Thirtieth AAAI
Conference on Artificial Intelligence.
Cplex, I. I. 2009. V12. 1: User’s manual for cplex. Interna-
tional Business Machines Corporation 46(53):157.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research 12(Jul):2121–
2159.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact combinatorial optimization with graph con-
volutional neural networks. In Advances in Neural Informa-
tion Processing Systems, 15554–15566.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1263–1272. JMLR.
org.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 315–323.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations.
Kipf, T.; Fetaya, E.; Wang, K.-C.; Welling, M.; and Zemel,
R. 2018. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687.
Kool, W., and Welling, M. 2018. Attention solves your tsp.
arXiv preprint arXiv:1803.08475.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016.
Gated graph sequence neural networks. In International
Conference on Learning Representations.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 536—-545.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2018.
Adaptive planner scheduling with graph neural networks.
CoRR abs/1811.00210.
Morris, P., and Muscettola, N. 2005. Temporal dynamic con-
trollability revisited. In Proceedings of the 22nd National
Conference on Artificial Intelligence.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proceedings of the IInternational Confer-
ence on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 464 – 479.
Osanlou, K.; Bursuc, A.; Guettier, C.; Cazenave, T.; and
Jacopin, E. 2019. Optimal solving of constrained path-
planning problems with graph convolutional networks and
optimized tree search. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 3519–
3525. IEEE.
Rusek, K.; Suárez-Varela, J.; Mestres, A.; Barlet-Ros, P.;
and Cabellos-Aparicio, A. 2019. Unveiling the potential of
graph neural networks for network modeling and optimiza-
tion in sdn. In Proceedings of the 2019 ACM Symposium on
SDN Research, 140–151.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and
Ferber, P. 2019. Deep learning for cost-optimal plan-
ning: Task-dependent planner selection. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7715–7723.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence, 97 – 108.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artificial
Intelligence 11(1):23 – 45.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2019. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596.
Xu, Z.; Tang, J.; Meng, J.; Zhang, W.; Wang, Y.; Liu, C. H.;
and Yang, D. 2018. Experience-driven networking: A
deep reinforcement learning based approach. In IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communica-
tions, 1871–1879. IEEE.

11 Appendix
11.1 Plots

(a) Experiments on (Cimatti, Micheli, and Roveri 2016)’s bench-
mark from which the DTNs and STNs have been removed. The
X-axis represents the allocated time in seconds and the Y-axis the
total number of instances that each solver can solve within the cor-
responding allocated time. Timeout is set to 20 seconds per in-
stance.

(b) Experiments on benchmark B1. Axes are the same as in figure
6a. Timeout is set to 30 seconds per instance.

(c) Experiments on benchmark B2. Axes are the same as in figure
6a. Timeout is set to 60 seconds per instance.

(d) Experiments on benchmark B3. Axes are the same as in figure
6a. Timeout is set to 180 seconds per instance.

Figure 6: Summary of experiments on benchmarks

11.2 Simplified Example
Figure 7 is a simplified example of a TDC strategy of the
example DTNU from (Cimatti, Micheli, and Roveri 2016).

Figure 7: Simplified TDC strategy of a DTNU Γ. For space
reasons, we only give a summarized copy of the strategy found.
Branches leading to unsolved cases are excluded, and we do not
include d-OR , w-OR , AND and WAIT nodes. The node γ is the
original DTNU. Other nodes are sub-DTNUs, except the ∨ node
which aims to list transitional possibilities, and should be inter-
preted in the figure as an AND node.

11.3 Truth Value Propagation Algorithm
We present in this section Algorithm 1. This algorithm is
called to propagate a truth value in the tree. The propagation
is done in an ascending way: truth values are inferred from
the leaves of the tree towards the root.

Algorithm 1 Truth Value Propagation
1: function PROPAGATETRUTH(TREENODE ψ)
2: ω ← parent(ψ) . 1∗
3: if ω = null then
4: return
5: if isDTNU(ω) or isWAIT(ω) then . 2∗
6: ω.truth← ψ.truth
7: propagateTruth(ω)
8: else if isOR(ω) then . 3∗
9: if ψ.truth = True then

10: ω.truth← True
11: propagateTruth(ω)
12: else
13: if ∀σi, σi.truth = False then . 4∗
14: ω.truth← False
15: propagateTruth(ω)
16: else if isAND(ω) then . 5∗
17: if ψ.truth = False then
18: ω.truth← False
19: propagateTruth(ω)
20: else
21: if ∀σi, σi.truth = True then . 4∗
22: ω.truth← True
23: propagateTruth(ω)
1∗ parent(x): Returns the parent node of x, null if none.
2∗ isDTNU(x): Returns True if x is a DTNU node, False other-
wise; isWait(x): Returns True if x is a WAIT node, False otherwise.
3∗ isOR(x): Returns True if x is an d-OR or w-OR node, False
otherwise.
4∗ σi: Child number i of ω. For a d-OR or w-OR node, in the
case where ψ is false but not all other children of ω are false
the propagation stops. Likewise, for an AND node and in the
case where ψ is true but not all other children of ω are true , the
propagation stops.
5∗ isAnd(x): Returns True if x is an AND node, False otherwise.

11.4 Tree Search Algorithm
We give the simplified pseudocode for the tree search in Al-
gorithm 2

Algorithm 2 Tree Search
1: function EXPLORE(ψ)
2: if parent(ψ).truth 6= unknown then
3: return
4: if isDTNU(ψ) then
5: updateConstraints(ψ) . 6∗
6: if IsLeaf(ψ) then . 7∗
7: propagateTruth(ψ)
8: return
9: Create d-OR child ψ′

10: explore(ψ′)
11: if isOR(ψ) then
12: Create list of all children Ψ′ . 8∗
13: for ψ′ ∈ Ψ′ do
14: explore(ψ′)
15: if isAND(ψ) then
16: Create list of all children Ψ′ . 9∗
17: for ψ′ ∈ Ψ′ do
18: explore(ψ′)
19: if isWAIT(ψ) then
20: create w-OR child ψ′

21: explore (ψ′)
22: function MAIN(DTNU γ)
23: explore(γ)
24: if γ.truth = True then
25: return True
26: else
27: return False
6∗ updateConstraints(x): Updates the constraints of DTNU node x.
7∗ isLeaf(x): Sets the truth value of x to true and returns true if
all constraints are satisfied. Sets the truth value to false and returns
true if a constraint is violated. If no truth value can be inferred at
this stage with the updated constraints, a second check is run to de-
termine if all uncontrollable timepoints have occurred. In this case,
the corresponding DTN is solved, the truth value of x is updated
accordingly, and the function returns true . Otherwise, if no logical
outcome can be inferred for the current state of the constraints and
there remains at least one uncontrollable timepoint, this function
returns false .
8∗ If this is a d-OR node, the list Ψ′ contains all the children DTNU
nodes resulting from either the decision of scheduling a control-
lable timepoint, or the WAIT node resulting from a wait if avail-
able. If this is a w-OR node, Ψ′ contains all ANDRj nodes, each of
which possess a reactive wait strategy Rj
9∗ Here, the list Ψ′ contains all DTNUs resulting from all possible
combinations Λ1,Λ2, ...,Λq of uncontrollable timepoints which
have the potential to occur during the current wait.

11.5 Wait Period
The following figure gives an example of the third rule used
to compute a wait duration.

Figure 8: Application of the 3rd rule to determine a wait dura-
tion. Variables v1, v2 and v3 are timepoints. Here, v2 is constrained
to execute in the time interval [1, 2] after v1, v3 in [3, 5] after v2 and
v3 in [t+ 9, t+ 10]. It is suggested not to wait longer than 2 units
of time at t: an execution of v1 at t + 2, followed by an execution
of v2 at t + 4 opens a window of opportunity for v3 to execute at
t+ 9.

11.6 Optimization Rules
The following rules are added to make branch cuts when
possible.

Constraint Check. When a DTNU node is explored and
the updated list of constraints C ′ is built according to §4.5,
if a disjunct is found to be false , C ′ will no longer be sat-
isfiable. All the subtree which can be developed from the
DTNU will only have leaf nodes for which this is the case as
well. Therefore, the search algorithm will not develop this
subtree.

Symmetrical subtrees. Some situations can lead to the de-
velopment of the exact same subtrees. A trivial example,
for a given DTNU node at a time t, is the order in which
a given combination of controllable timepoints a1, a2, ..., ak
is taken before taking a wait decision. Regardless of what or-
der these timepoints are explored in the tree before moving
to a WAIT node, they will be considered executed at time t.
Therefore, when taking a wait decision, it is checked that all
preceding controllable timepoints executed before the previ-
ous wait are a combination of timepoints that has not been
not tested yet.

Truth Checks. Before exploring a new node for which the
truth attribute is set to unknown, the truth attribute of the
parent node is also checked. The node is only developed if
the parent node’s truth attribute is set to unknown. In this
manner, when children of a tree node are being explored
depth-first and the exploration of a child node leads to the
assignment of a truth value to the tree node, the remaining
unexplored children can be left unexplored.

11.7 Implementation details
Our MPNN architecture is made of 5 graph convolutional
layers from (Gilmer et al. 2017) with 32 neurons in each
layer. For each layer, we use a two-layer MLP (multi layer
perceptron) with 128 neurons in the hidden layer to compute

Figure 9: Conversion of a DTNU γ into a graph. γ′ is the nor-
malized DTNU. Edge distances are expressed as distance classes.
To distinguish between lower and upper bounds in intervals, we
introduce an additional negative directional sign feature.

node and edge embeddings. In addition, we use batch nor-
malization after each graph layer and apply the ReLU(·) =
max(0, ·) activation function. The input of our MPNN is the
graph conversion of a DTNU. Figure 9 illustrates an exam-
ple of graph conversion. We use 10 different edge distance
classes: 0 : [0, 0.1), 1 : [0.1, 0.2), ..., 9 : [0.9, 1]. Train-
ing is done with the adagrad optimizer (Duchi, Hazan, and
Singer 2011) and an initial learning rate 10−4 on a dataset
comprised of 30.000 instances generated as described in §6.
We split the data into a training set comprised of 25.000
instances and a cross-validation set comprised of 5.000 in-
stances. We add a dropout regularization layer with a keep
rate 0.9 before the output layer to reduce overfitting.

