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A prevalent practice in recommender systems consists of averaging item embeddings to represent users or higher-level concepts in the
same embedding space. This paper investigates the relevance of such a practice. For this purpose, we propose an expected precision
score, designed to measure the consistency of an average embedding relative to the items used for its construction. We subsequently
analyze the mathematical expression of this score in a theoretical setting with specific assumptions, as well as its empirical behavior on
real-world data from music streaming services. Our results emphasize that real-world averages are less consistent for recommendation,
which paves the way for future research to better align real-world embeddings with assumptions from our theoretical setting.
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1 INTRODUCTION

Modern recommender systems often leverage representation learning techniques to summarize similarities between
recommendable items [20, 23, 29, 30]. These techniques learn low-dimensional vectorial representations of these items,
also known as embedding vectors or simply embeddings, in a common vector space where item proximity should reflect
user preferences (for a collaborative filtering system [16]) or resemblance of item characteristics (for a content-based
system [15]). By computing similarity metrics such as the inner product or Euclidean distance between embeddings, the
recommender system can subsequently identify new items similar to the ones each user has interacted with [10, 14].

A prevalent practice associated with the use of such embeddings in industry-oriented research and applications
consists of averaging item embeddings to obtain embeddings for users or higher-level concepts in the same vector
space [4, 8, 9, 20, 21, 25]. As an illustration, Spotify learns embedding representations of listening sessions by averaging
pre-computed embeddings of the music tracks listened to during these sessions [9]. This service also computes “long-
term” user embeddings, used for recommendation purposes, by averaging the session embeddings associated with
each user. Deezer computes embeddings for several types of recommendable music collections, such as playlists and
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albums, by averaging embeddings of the music tracks present in these collections [4]. Yahoo averages embeddings of the
news articles previously browsed by each user to represent them in the same embedding space as articles and provide
personalized news recommendations [20]. Alibaba averages side information embeddings, including category and brand
embeddings, to obtain product embeddings for cold start recommendation on the Taobao e-commerce platform [25].

However, despite its prevalence, this averaging practice is often adoptedwithout explicit justification from a theoretical
standpoint. As we detail in Section 2, the rationale for averaging item embeddings mainly stands in the simplicity and
scalability of this approach [4, 6]. Yet, it is unclear to which extent averaging item embeddings guarantees to provide
faithful user or higher-level concept representations for recommendation. For instance, assuming we represent a user
by the average embedding of their previously consumed items, to what degree would the neighboring items of this
average constitute relevant recommendations for this user? While the impact of averaging and other pooling operations
has been studied in other fields, notably natural language processing (NLP) [2, 5], to our knowledge, the consistency of
averaging operations remains relatively understudied in the specific context of a recommender system.

In this short paper, we propose to investigate these important considerations, making the following contributions:

• Firstly, we define Consistency𝑘 (X), a general expected precision score introduced in this study to measure the
consistency of an average embedding relative to the items it summarizes, from a recommendation standpoint.

• Secondly, we examine the consistency of averaging operations in a theoretical setting with general assumptions
on item embeddings, providing an in-depth analysis of the expression of Consistency𝑘 (X) in this setting.

• Thirdly, we analyze the empirical behavior of this score on real-world data. Our experiments consider three
variants of large-scale music track embeddings obtained from the music streaming service Deezer [4].

• Lastly, we discuss the discrepancies between our theoretical and empirical results, emphasizing that real-world
averages are less consistent for recommendation. This discussion paves the way for future research to better align
real-world data with our theoretical assumptions. Overall, we believe this study will be insightful for researchers
and practitioners aiming to improve the faithfulness of average embeddings in their recommender systems.

This paper is organized as follows. In Section 2, we introduce the average embedding consistency problem more
precisely. We subsequently present our proposed Consistency𝑘 (X) score. We report our theoretical analysis of this score
in Section 3, and discuss our experimental results on real-world data in Section 4. Finally, we conclude in Section 5.

2 PROBLEM FORMULATION AND EVALUATION

2.1 Preliminaries

2.1.1 Mathematical Notation. Throughout this paper, we consider a set X = {𝑋𝑖 }1≤𝑖≤𝑁 of 𝑁 ∈ N∗ real-valued vectors
of dimension 𝑑 ∈ N∗, i.e., ∀𝑖 ∈ {1, . . . , 𝑁 }, 𝑋𝑖 = (𝑋𝑖,1, 𝑋𝑖,2, . . . , 𝑋𝑖,𝑑 )⊺ ∈ R𝑑 . We denote by X𝑘 the set of subsets of X of
cardinality 𝑘 , for any 𝑘 ∈ {1, . . . , 𝑁 }. For any vector 𝑧 ∈ R𝑑 and 𝑘 ∈ {1, . . . , 𝑁 }, we define X𝑘 (𝑧) ∈ X𝑘 as the set of the
𝑘 nearest neighbors1 of 𝑧 among the 𝑁 elements of X, according to some similarity metric 𝑠 : R𝑑 × R𝑑 → R, i.e.,

X𝑘 (𝑧) = argmax
Y∈X𝑘

∑︁
𝑦∈Y

𝑠(𝑧,𝑦). (1)

Moreover, for any subset U = {𝑢𝑖 }1≤𝑖≤𝑘 ⊆ X of 𝑘 vectors, we define the center or average of U as 𝜇U = 1
𝑘

∑
𝑢𝑖 ∈U 𝑢𝑖 ,

and we denote the complementary set ofU within X asU, i.e., U = X \U = {𝑋 ∈ X, 𝑋 /∈ U}.

1This set might not be unique if 𝑧 is equidistant to several elements of X, in which case X𝑘 (𝑧) can be drawn uniformly from all complying sets.
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2.1.2 From Mathematics to Recommender Systems. In the context of an embedding-based recommender system [16, 30],
X would correspond to a set of 𝑑-dimensional embedding representations associated with all recommendable items in a
catalog, whileU ∈ X𝑘 would correspond to the embeddings of a subset of 𝑘 items. For instance,X could represent music
tracks on a music streaming service, and U could represent the tracks present in a playlist or album of length 𝑘 [4, 9].
Alternatively,X could represent all products from an e-commerce platform andU the shopping cart of a user [25, 28]. At
this stage, we do not make assumptions regarding the representation learning technique used to learn these embeddings.

2.2 Problem Formulation

2.2.1 Averaging Embeddings. As illustrated in Section 1, recommender systems frequently average item embeddings.
Using the above notation, the action of averaging all embeddings of an item collection U to represent this collection
translates to using 𝜇U as the representation. As 𝜇U ∈ R𝑑 , one can interpret this vector as a new embedding in the same
vector space as items, and, therefore, measure the similarity between 𝜇U and other items using the similarity metric 𝑠 .

2.2.2 How Relevant is this Practice? This paper aims to rigorously investigate the consistency of this averaging practice.
For instance, if we represent a user by the average embedding 𝜇U of the itemsU this user has consumed or liked, do the
items similar to 𝜇U in the embedding space (according to 𝑠) also constitute items that the user would like? In the same
way, if 𝜇U summarizes an album composed of the tracks inU, are tracks similar to 𝜇U also similar to tracks inU?

Intuitively, for 𝜇U to be faithful toU, we expect 𝜇U to remain similar to the original items fromU. For instance,
the user embedding should remain similar to the items the user has already liked, and the album embedding to the
tracks contained in the album. For this reason, this paper focuses on the following specific research question: to which
extent and under which conditions does 𝜇U remain similar to items fromU, i.e., to the items used for its construction?

2.2.3 Related Work. To our knowledge, this theoretical question remains understudied in recommendation. Existing
research predominantly relied on averages for practical reasons. Average embeddings are faster and simpler to compute
than alternatives such as neural aggregations [11, 12]. They have also been praised for their scalability, as they provide
fixed-size representations independently of the number of items inU [4, 6]. Yet, recent research pointed out some of
their limitations, e.g., to represent heterogeneous or contextual preferences [9, 22, 24]. We also acknowledge that the
pros and cons of average embeddings have been studied for other applications, such as NLP tasks [2, 5, 18, 27]. While
being out of our scope (averaging for recommendation), these studies confirm the importance of our research problem.

2.3 Problem Evaluation

To evaluate the consistency of 𝜇U in accordance with our formulation in Section 2.2.2, we propose the following score:

(2)Consistency𝑘 (X) = EU∈X𝑘

[
Precision𝑘 (U)

]
, where Precision𝑘 (U) =

|X𝑘 (𝜇U )⋂U|
𝑘

∈ [0, 1],

for a given 𝑘 ∈ {1, . . . , 𝑁 }. In essence, Precision𝑘 (U) measures the percentage of items fromU among the 𝑘 nearest
neighbors of 𝜇U in X. A perfect precision of 1 indicates that X𝑘 (𝜇U ) = U. Therefore, higher values of Consistency𝑘 (X)
indicate that, on expectation, average embeddings computed from X will comprise more items used for their construc-
tions in their neighborhood. The remainder of this paper provides an analysis of Consistency𝑘 (X) in a theoretical setting
with assumptions of the distribution of embeddings in X, and studies its empirical behavior on real-world embeddings.
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3 A THEORETICAL ANALYSIS OF CONSISTENCY𝑘 (X)

We dedicate Section 3 to our theoretical analysis of Consistency𝑘 (X). For clarity, we only present our setting, main
results, and interpretation of these results in this section. We report all mathematical proofs in Appendices A and B.

3.1 Setting and Assumptions

We focus on the setting where X is a set of independent and identically distributed (i.i.d.) multi-dimensional random
variables (r.v.). For every 𝑋𝑖 ∈ X, the elements {𝑋𝑖, 𝑗 }1≤ 𝑗≤𝑑 form a set of i.i.d uni-dimensional r.v. and we denote by
𝜇, 𝜎2, 𝛾 , and 𝜅 the mean, variance, skewness, and kurtosis of their distribution, respectively. We assume that these
moments are finite. 𝑠 is the prevalent inner product similarity: ∀(𝑥,𝑦) ∈ R𝑑 × R𝑑 , 𝑠(𝑥,𝑦) = 𝑥⊺𝑦 = ∑𝑑

𝑖=1 𝑥𝑖𝑦𝑖 .

3.2 Main Results and Interpretations

In this theoretical setting, we obtain the following results on average embeddings.

Proposition 1. Let 𝑘 ∈ {2, . . . , 𝑁 },U ∈ X𝑘 , 𝑢in ∈ U, and 𝑢out ∈ U. Then, under the hypotheses of Section 3.1, both
𝑠in = 𝑠(𝑢in, 𝜇U ) and 𝑠out = 𝑠(𝑢out, 𝜇U ) converge in probability to normal distributions as 𝑑 increases. Their respective
means and variances are provided in the proof of Appendix A. Moreover, under such distributions, we have:

(3)P
(
𝑠(𝑢in, 𝜇U ) > 𝑠(𝑢out, 𝜇U )

)
=
1
2

(
1 + erf(

√︄
𝑑𝜎2

2((2(𝑘 − 1) + 𝜅)𝜎2 + 2𝑘𝛾𝜇𝜎 + 2𝑘2𝜇2)
)
)
,

where erf denotes the Gauss error function [1]: erf : 𝑥 ↦→ 2√
𝜋

∫𝑥
0 𝑒

−𝑡2𝑑𝑡 .

Proposition 1 is a consequence of the central limit theorem [7] applied to inner product similarities. Figure 1 illustrates
that, for dimension values such as 𝑑 = 128 (a common choice in recommendation applications), the normal distribution
faithfully approximates the distribution of similarities, regardless of the original embedding distribution. Hence,
Equation (3) provides a reliable approximation of the probability that an element fromU will be closer to its center 𝜇U
than a random point fromU. It is worth noting that the probability is guaranteed to be greater than 0.5, as the expression
within the erf function is positive.We also observe that the probability increases with𝑑 , illustrating that, as the dimension
increases, the chances for a vector fromU to have a stronger similarity with 𝜇U than elements ofU diminishes.

The case of centered embeddings (𝜇 = 0) is of particular interest. Indeed, for 𝜇 = 0 and a fixed 𝑑 , the probability
becomes independent of 𝜎 and 𝛾 , and a decreasing function of 𝑘 and 𝜅 . In essence, as 𝑘 increases, it becomes increasingly
difficult for 𝜇U to remain similar to allU items, while remaining dissimilar to all U items. The decrease with respect
to the kurtosis 𝜅 relates to its interpretation as a measure of the propensity of a distribution to produce outliers [26].
Intuitively, the presence of outliers would impact the ability for 𝜇U to remain similar to allU items and dissimilar to all
U items2. In the following, we continue to focus on 𝜇 = 0, using results from Proposition 1 to express Consistency𝑘 (X).

Proposition 2. Under the hypotheses of Section 3.1 and approximated distributions of Proposition 1 with 𝜇 = 0:

Consistency𝑘 (X) =
1
𝑘

𝑘∑︁
𝑖=1

∫∞

−∞
𝑓in,(𝑖)(𝑥 ) × 𝐹out,(𝑘−𝑖+1)(𝑥 ) d𝑥, (4)

where explicit formulas for the 𝑓in,(𝑖) and 𝐹out,(𝑘−𝑖+1) functions are provided in the proof of Appendix B.

2On the contrary, Equation (3) would be maximized by distributions with minimal kurtosis, such as a re-centered Bernoulli(0.5) or a Rademacher
distribution (𝑋𝑖,𝑗 = 1 or −1 with probability 0.5 each). We emphasize that these distributions are discrete, and might therefore allow for less precise
similarity computations between vectors. This brings to light an interesting trade-off between similarity precision and average embedding consistency.
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Fig. 1. Histograms of inner product similarity values between 1 000 𝑑-dimensional vectors with entries randomly drawn from N(0.5, 1)
(Figure 1a), Beta(2, 2) (Figure 1b), or Uniform(0, 1) (Figure 1c) distributions, with 𝑑 ∈ {2, 10, 32, 64, 128}. Histograms undergo a
rightward shift as 𝑑 increases, since similarity computations involve summing more elements (see Section 3.1). Curves correspond to
normal approximations of similarity distributions. We observe that, for the largest values of 𝑑 , the normal distribution faithfully
approximates all similarity distributions, an important result to validate the approximations of Propositions 1 and 2.
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Fig. 2. Comparison of the Consistency𝑘 (X) scores obtained by a direct computation of Equation (4) to the ones estimated via
numerical simulations, for 𝑘 ∈ {2, . . . , 50}, with 𝑑 = 128, 𝑁 = 1 000 or 1 000 000, and 𝑋𝑖,𝑗 ∼ N(0, 1) (Figure 2a), 𝑋𝑖,𝑗 ∼ Rademacher()
(Figure 2b), or 𝑋𝑖,𝑗 ∼ Uniform(−1, 1) (Figure 2c). We used the Python library scipy to compute integrals from Equation (4). For
numerical simulations, we sampled 𝑁 vectors from the above three distributions. Then, for each 𝑘 , we randomly picked a subset of
𝑘 vectors and computed the precision of this subset (Equation 2). We repeated this operation 1 000 times for each value of 𝑘 and
reported averaged scores on figures.

Proposition 2 provides a useful approximated analytical expression of Consistency𝑘 (X). In Figure 2, we assess the
accuracy of this expression by comparing, for various 𝑋𝑖, 𝑗 distributions and values of 𝑘 , the Consistency𝑘 (X) score
obtained from Equation (4) to the one estimated via numerical simulations. Our computed expression systematically
coincides with the simulated score, validating the correctness of Proposition 2 and the relevance of our approximations.

Overall, we observe that Consistency𝑘 (X) decreases with 𝑘 and the number of items 𝑁 = |X|. Regarding 𝑘 , this result
is coherent with our above interpretation of Proposition 1. Regarding 𝑁 , such a result is also unsurprising. Indeed, the
more vectors in X, the greater the likelihood of some unrelated item embeddings becoming similar to 𝜇U by chance.

Yet, in Figure 2, all scores remain quite high for 𝑁 = 1 000 (e.g., around 0.4 for 𝑘 = 50). Importantly, for small values
of 𝑘 , the consistency of average embeddings remains close to 1 even for 𝑁 = 1 000 000. Therefore, even with a large
catalog of millions of items, as in music streaming services, averaging item embeddings appears as a consistent way to
faithfully represent collections of a few items, provided that these embeddings comply with our theoretical assumptions.
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Fig. 3. Consistency𝑘 (X) scores of centered versions of TT-SVD (Figure 3a), UT-ALS (Figure 3b), and 2M-TT-SVD embeddings (3c), for
𝑘 ∈ {2, . . . , 50} and the inner product similarity 𝑠 . For comparison, figures also display the Consistency𝑘 (X) scores of embeddings
generated from normal distributions, with the same dimension and number of items as the real-world embeddings under consideration.
Average embeddings of real-world data are less consistent than those of data complying with our theoretical setting from Section 3.

4 FROM THEORY TO PRACTICE

4.1 Experimental Setting

In this Section 4, we analyze the empirical behavior of Consistency𝑘 (X) on real-world data, with the aim of discussing
potential discrepancies with our results from Section 3. Our experiments focus on threemusic track embeddings datasets.
As illustrated in this paper, music recommendation is especially prone to high-order concept learning: album, playlist,
session, music genre, and user embeddings can all be obtained by averaging music track embeddings [3, 4, 9, 23].

Firstly, we consider two variants3 of 50 000 music track embeddings publicly released by Deezer [4]. The first ones,
denoted TT-SVD embeddings, consist of 128-dimensional vectors obtained by factorizing a track-track (TT) pointwise
mutual information matrix computing track co-occurrences in Deezer playlists, using singular value decomposition
(SVD) [4]. The second ones, denoted UT-ALS embeddings, are 256-dimensional vectors obtained by factorizing a
user-track (UT) interaction matrix, using alternating least squares (ALS) [4].

Besides, we report results on 2M-TT-SVD embeddings, a private dataset of two million 128-dimensional track embed-
dings, extracted from Deezer’s production environment. These embeddings are computed using SVD on a co-occurrence
matrix comparable to the TT-SVD one. We voluntarily omit technical details for confidentiality reasons.

4.2 Results and Discussion

Figure 3 reports our evaluation of Consistency𝑘 (X) scores for the three music track embeddings under consideration.
Our experiments show that average embeddings of real-world data are less consistent for recommendation than those
computed from embedding data explicitly complying with our theoretical setting from Section 3.

Specifically, one can not ensure that the average embedding of a collection of items will remain similar to the items
present in this collection. Even for low values of 𝑘 , the consistency of average embeddings does not surpass 14%,
6%, and 2 % for TT-SVD, 2M-TT-SVD, and UT-ALS embeddings, respectively. Consequently, even the average of two
randomly selected embeddings would likely result in a vector whose two most similar neighbors will not be the selected
embeddings themselves.

3We release our source code on GitHub to ensure the reproducibility of our experimental analysis on these two Deezer public datasets:
https://github.com/deezer/consistency.
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Regarding SVD-based embeddings (TT-SVD, 2M-TT-SVD), we observe that consistency scores drop as 𝑘 increases, as
in Figure 2. On the contrary, scores remain steady at around 2% for UT-ALS embeddings. This phenomenon highlights
the dissimilarity in distributions of embeddings generated by different representation learning algorithms (SVD, ALS).
In particular, the steady consistency of UT-ALS suggests that these embeddings might be more suitable for downstream
applications involving average operations on large collections, while TT-SVD embeddings might be preferable for
applications with low values of 𝑘 , although more studies would be required in future work for confirmation.

Overall, our experiments also pave the way for future work to align real-world embeddings with the setting
from Section 3, to improve the consistency of real-world averages. For instance, one could consider alternating SVD
or ALS matrix reconstruction optimization steps with projections within the set of distributions complying with
assumptions from Section 3. One could also examine adding a regularization term to the optimized loss during training,
e.g., the Kullback-Leibler divergence of embeddings with a pre-selected complying distribution. In particular, these
strategies could help to enforce the identical distribution of embedding dimensions. In addition, we note that, in
Figure 3, we computed scores on centered embeddings. Besides being in line with Section 3, our tests revealed that this
centering operation slightly improves the consistency of TT-SVD, UT-ALS, and 2M-TT-SVD average embeddings (albeit
modifying initial similarities). Our future research will aim to further understand the impact of centering embeddings
on consistencies.

5 CONCLUSION

This short paper proposed a rigorous study of the common practice consisting of averaging item embeddings in
recommender systems. We provided a mathematical analysis of the consistency of these averaging operations in a
general theoretical setting, as well as an empirical evaluation on real-world data. Our results revealed that real-world
averages were less consistent than those computed in our theoretical setting. This sets the stage for future research
directions, discussed in this paper, toward better aligning real-world data with our theoretical assumptions. Due to
the prevalence of the embedding averaging practice in industry-oriented research and applications, we believe our
study and proposed directions will be insightful for the recommendation community, and could eventually lead to the
improvement of embedding-based recommender systems leveraging average embeddings for representation learning.
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APPENDIX

In this supplementary section, we report the mathematical proofs of our Propositions 1 and 2 from Section 3.

A PROOF OF PROPOSITION 1

A.1 Preliminaries

Let 𝑋 , 𝑌 , and 𝑍 be 𝑑-dimensional random variables (r.v.) composed of 𝑑 independent and identically distributed (i.i.d.)
uni-dimensional r.v. as elements. Distributions might differ between 𝑋 ,𝑌 , and 𝑍 . Let 𝜇𝑋 , 𝜎2𝑋 , 𝛾𝑋 , 𝜅𝑋 be the finite mean,
variance, skewness, and kurtosis of the distribution of elements of 𝑋 , respectively. Let 𝜇𝑌 , 𝜎2𝑌 , 𝜇𝑍 , 𝜎

2
𝑍
be the finite mean

and variance of the elements of 𝑌 and 𝑍 , respectively. When 𝑑 increases, the following approximations hold:

𝑠(𝑋,𝑌 ) ∼ N (𝜇𝑋𝑌 , 𝜎
2
𝑋𝑌 ),

𝑠(𝑋,𝑋 ) ∼ N (𝜇𝑋𝑋 , 𝜎
2
𝑋𝑋 ),

(5)

with:

𝜇𝑋𝑌 = 𝑑 × 𝜇𝑋 𝜇𝑌 ,

𝜎2𝑋𝑌 = 𝑑 × ((𝜎2𝑋 + 𝜇2𝑋 )(𝜎
2
𝑌 + 𝜇2𝑌 ) − 𝜇2𝑋 𝜇2𝑌 ),

𝜇𝑋𝑋 = 𝑑 × (𝜇2𝑋 + 𝜎2𝑋 ),

𝜎2𝑋𝑋 = 𝑑 × (4𝜇2𝑋𝜎
2
𝑋 + 4𝜇𝑋𝛾𝑋𝜎3𝑋 + (𝜅𝑋 − 1)𝜎4𝑋 ).

Indeed, we have 𝑠(𝑋,𝑌 ) = ∑𝑑
𝑖=1 𝑋𝑖𝑌𝑖 . Each r.v. 𝑋𝑖𝑌𝑖 verifies E[𝑋𝑖𝑌𝑖 ] = 𝜇𝑋 𝜇𝑌 and Var (𝑋𝑖𝑌𝑖 ) = (𝜎2

𝑋
+ 𝜇2

𝑋
)(𝜎2

𝑌
+ 𝜇2

𝑌
)− 𝜇2

𝑋
𝜇2
𝑌
.

𝑠(𝑋,𝑌 ) being the sum of 𝑑 i.i.d. r.v., according to the central limit theorem [7], it can be approximated by a normal
distribution of expectation 𝑑 × E [𝑋𝑖𝑌𝑖 ] and variance 𝑑 × Var (𝑋𝑖𝑌𝑖 ) for large values of 𝑑 , leading to the approximation
for 𝑠(𝑋,𝑌 ) in Equation (5). A similar reasoning leads to the approximation for 𝑠(𝑋,𝑋 ) in this same Equation (5).

Moreover, regarding covariances of these similarities, we have:

Cov (𝑠(𝑋,𝑌 ), 𝑠(𝑋,𝑍 )) = 𝑑 × 𝜎2𝑋 𝜇𝑌 𝜇𝑍 ,

Cov (𝑠(𝑋,𝑋 ), 𝑠(𝑋,𝑌 )) = 𝑑 × 𝜇𝑌 (𝛾𝑋𝜎3𝑋 + 2𝜇𝑋𝜎2𝑋 ).
(6)

Indeed:

Cov (𝑠(𝑋,𝑌 ), 𝑠(𝑋,𝑍 )) = E[𝑠(𝑋,𝑌 )𝑠(𝑋,𝑍 )] − E[𝑠(𝑋,𝑌 )]E[𝑠(𝑋,𝑍 )]

= E[(
𝑑∑︁
𝑖=1

𝑋𝑖𝑌𝑖 )(
𝑑∑︁
𝑗=1

𝑋 𝑗𝑌𝑗 )] − 𝑑 × 𝜇𝑋 𝜇𝑌 × 𝑑 × 𝜇𝑋 𝜇𝑍

= E[
𝑑∑︁
𝑖=1

(𝑋𝑖𝑌𝑖𝑋𝑖𝑍𝑖 +
𝑑∑︁
𝑗=1
𝑗 ̸=𝑖

𝑋𝑖𝑌𝑖𝑋 𝑗𝑍 𝑗 )] − 𝑑2 × 𝜇2𝑋 𝜇𝑌 𝜇𝑍

=
𝑑∑︁
𝑖=1

(E[𝑋 2
𝑖 ]E[𝑌𝑖 ]E[𝑍𝑖 ] +

𝑑∑︁
𝑗=1
𝑗 ̸=𝑖

(E[𝑋𝑖 ]E[𝑌𝑖 ]E[𝑋 𝑗 ]E[𝑍 𝑗 ])) − 𝑑2 × 𝜇2𝑋 𝜇𝑌 𝜇𝑍

= 𝑑 × ((𝜎2𝑋 + 𝜇2𝑋 )𝜇𝑌 𝜇𝑍 + (𝑑 − 1)(𝜇2𝑋 𝜇𝑌 𝜇𝑍 )) − 𝑑2 × 𝜇2𝑋 𝜇𝑌 𝜇𝑍

= 𝑑 × 𝜎2𝑋 𝜇𝑌 𝜇𝑍 .
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We obtain the second covariance of Equation (6) with similar computations. Notice how 𝜇𝑌 = 0 or 𝜇𝑍 = 0 implies that
similarities are uncorrelated and, therefore, also independent when they follow multivariate normal distributions [13].

A.2 Distribution of 𝑠in = 𝑠(𝑢in, 𝜇U ) and 𝑠out = 𝑠(𝑢out, 𝜇U )

Using the distributive property of the inner product 𝑠 , we have:

𝑠out =

𝑘∑
𝑖=1

𝑠(𝑢out, 𝑢𝑖 )

𝑘
,

i.e., the sum of 𝑘 correlated identically distributed normal distributions. The expectation of the sum is thus:

E[𝑠out] = 𝑑 × 𝜇2 .

We compute its variance using Bienaymé’s identity [17] stating that, for 𝑘 r.v. (𝐴𝑖 )1≤𝑖≤𝑘 , then:

Var (
𝑘∑︁
𝑖=1

𝐴𝑖 ) =
𝑘∑︁
𝑖=1

Var (𝐴𝑖 ) +
𝑘∑︁

𝑖,𝑗=1
𝑖 ̸=𝑗

Cov (𝐴𝑖 , 𝐴 𝑗 ) =
𝑘∑︁

𝑖, 𝑗=1
Cov (𝐴𝑖 , 𝐴 𝑗 ).

Also considering 𝐴𝑖 = 𝑠(𝑢out, 𝑢𝑖 ), and using the first half of both Equations (5) and (6), we obtain:

Var (𝑠out) =
𝑘𝑑(𝜎4 + 2𝜎2𝜇2) + 𝑘(𝑘 − 1)𝑑𝜎2𝜇2

𝑘2

= 𝑑
(𝜎4 + (𝑘 + 1)𝜎2𝜇2)

𝑘
.

Besides, under preliminary approximations:

𝑠in =
𝑠(𝑢in, 𝑢in) +

∑
𝑖 ̸=in 𝑠(𝑢in, 𝑢𝑖 )

𝑘

is the sum of 𝑘 correlated normal distributions, i.e., a normal distribution with:

E[𝑠in] = 𝑑(𝜇2 +
𝜎2

𝑘
).

Using Bienaymé’s identity and Equations (5) and (6), we get:

Var (𝑠in) = 𝑑 × 4𝜇2𝜎2 + 4𝜇𝛾𝜎3 + (𝜅 − 1)𝜎4 + (𝑘 − 1)(𝜎4 + 2𝜎2𝜇2) + 2(𝑘 − 1)𝜇(𝛾𝜎3 + 2𝜇𝜎2) + (𝑘 − 1)(𝑘 − 2)𝜎2𝜇2

𝑘2

=
𝑑 × (𝑘(𝑘 + 3)𝜇2𝜎2 + 4𝜇𝛾𝜎3 + (𝜅 + 𝑘 − 2)𝜎4)

𝑘2
.

A.3 Distribution of 𝑠diff = 𝑠in − 𝑠out

Using preliminary approximations, and since the difference of two normally distributed r.v. is also normally dis-
tributed [13], we obtain that 𝑠diff = 𝑠(𝑢in, 𝜇U ) − 𝑠(𝑢out, 𝜇U ) follows a normal distribution with:

E[𝑠diff] = E[𝑠(𝑢in, 𝜇U )] − E[𝑠(𝑢out, 𝜇U )]

= 𝑑
𝜎2

𝑘
.
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To compute its variance, we remark that:

𝑠diff = 𝑠(𝑢in, 𝜇U ) − 𝑠(𝑢out, 𝜇U )

=
1
𝑘
(𝑠(𝑢in, 𝑢in) + 𝑠(𝑢in,

𝑘∑︁
𝑗 ̸=in

𝑢 𝑗 ) − 𝑠(𝑢out, 𝑢in) − 𝑠(𝑢out,
∑︁
𝑗 ̸=in

𝑢 𝑗 ))

=
𝑠(𝑋,𝑋 ) + 𝑠(𝑋,𝑍 ) + 𝑠(𝑌,𝑋 ) + 𝑠(𝑌, 𝑍 )

𝑘
,

with 𝑋 = 𝑢in, 𝑌 = −𝑢out and 𝑍 = ∑
𝑗 ̸=in 𝑢 𝑗 . Since 𝑋 , 𝑌 , and 𝑍 are three independent multidimensional normal

distributions, for which dimensions are i.i.d. with expectation 𝜇,−𝜇, (𝑑 − 1)𝜇 and variance 𝜎2, 𝜎2, (𝑑 − 1)2𝜎2, we once
again use Bienaymé’s identity with Equations (5) and (6) to obtain:

Var (𝑠diff) = 𝑑
(2(𝑘 − 1) + 𝜅)𝜎4 + 2𝑘𝛾𝜇𝜎3 + 2𝑘2𝜎2𝜇2

𝑘2
.

Finally, using the cumulative distribution function of normal distributions [13], we get Equation (3):

P(𝑠diff > 0) = 1 − P(𝑠diff ≤ 0) =
1
2
(1 − erf(− E[𝑠diff]√︁

2Var (𝑠diff)
))

⇐⇒ P(𝑠(𝑢in, 𝜇U ) > 𝑠(𝑢out, 𝜇U )) =
1
2
(1 + erf(

√︄
𝑑𝜎2

2((2(𝑘 − 1) + 𝜅)𝜎2 + 2𝑘𝛾𝜇𝜎 + 2𝑘2𝜇2)
)).

B PROOF OF PROPOSITION 2

This proof starts by evaluating 𝑝( 𝑖
𝑘
) = P(Precision𝑘 (U)) = 𝑖

𝑘
) for 𝑖 ∈ {1, . . . , 𝑘}, and then computes Consistency𝑘 (X) =

E[Precision𝑘 (U)] = ∑𝑘
𝑖=1

𝑖
𝑘
× 𝑝( 𝑖

𝑘
) under the studied hypotheses. To begin with, we set:

𝑝+( 𝑖
𝑘
) = P(Precision𝑘 (U) ≥ 𝑖

𝑘
), for 𝑖 ∈ {1, . . . , 𝑘 + 1}.

As 𝑖 takes integer values:
𝑝( 𝑖

𝑘
) = 𝑝+( 𝑖

𝑘
) − 𝑝+( 𝑖+1

𝑘
) .

Assuming 𝑝+
( 𝑘+1

𝑘
)
= 0 by definition, we have:

E
[
Precision𝑘 (U)

]
=

𝑘∑︁
𝑖=1

𝑖

𝑘
× (𝑝+( 𝑖

𝑘
) − 𝑝+( 𝑖+1

𝑘
)) =

1
𝑘

𝑘∑︁
𝑖=1

𝑝+( 𝑖
𝑘
) . (7)

Let us denote by 𝑠in,(𝑖) the distribution of the 𝑖th highest value of 𝑆in = {𝑠(𝑢in, 𝜇U ), 𝑢in ∈ U}, and by 𝑠out,(𝑘−𝑖+1) the
(𝑘 − 𝑖 + 1)th highest value of 𝑆out = {𝑠(𝑢out, 𝜇U ), 𝑢out ∈ U}, for 𝑖 ∈ {1, . . . , 𝑘}. Using this notation, we observe that:

𝑝+( 𝑖
𝑘
) = P(𝑠in,(𝑖) > 𝑠out,(𝑘−𝑖+1)).

Indeed, as illustrated in Figure 4, we can show that 𝑠in,(𝑖) > 𝑠out,(𝑘−𝑖+1) ⇐⇒ Precision𝑘 (U) ≥ 𝑖
𝑘
:
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...s
in,(1)

s
in,(2) ... ... s

in,(i)

...s
out,(1)

s
out,(2) ... s

out,(k-i+1) ...

i-1

k-i
Fig. 4. Ranking 𝑠in and 𝑠out statistics.

• If 𝑠in,(𝑖) > 𝑠out,(𝑘−𝑖+1) then at most 𝑘 − 𝑖 elements of 𝑆out are greater than 𝑠in,(𝑖). Also, by definition, exactly 𝑖 − 1
elements of 𝑆in are greater than 𝑠in,(𝑖). So, at most 𝑘 − 1 similarities are greater than 𝑠in,(𝑖) overall. Thus, 𝑠in,(𝑖) is
one of the 𝑘 highest values of 𝑆in

⋃
𝑆out and Precision𝑘 (U) ≥ 𝑖

𝑘
.

• If Precision𝑘 (U) ≥ 𝑖
𝑘
, then at least 𝑖 elements of 𝑆in are in the top-𝑘 of 𝑆in

⋃
𝑆out, including 𝑠in,(𝑖). That leaves

at most 𝑘 − 𝑖 slots available in the top-𝑘 . Since, by definition, exactly 𝑘 − 𝑖 elements of 𝑆out are greater than
𝑠out,(𝑘−𝑖+1), 𝑠out,(𝑘−𝑖+1) is necessarily outside of the top-𝑘 elements of 𝑆in

⋃
𝑆out, and so 𝑠in,(𝑖) > 𝑠out,(𝑘−𝑖+1).

In our setting, we derive 𝑠in,(𝑖) by noticing that the distribution of the ith highest value of 𝑆in is also the distribution of
its (𝑘 − 𝑖)th lowest value. Hence, 𝑠in,(𝑖) is the (𝑘 − 𝑖)th order statistic of 𝑆in. As 𝜇 = 0, we have that, given two distinct
elements of U, say 𝑢1 and 𝑢2, Cov (𝑠(𝑢1, 𝜇U ), 𝑠(𝑢2, 𝜇U )) = 0, which implies that all elements of 𝑆in are i.i.d. and that the
probability density function of the (𝑘 − 𝑖)th order statistic of 𝑆in is [19]:

𝑓in,(𝑘−𝑖)(𝑥 ) =
𝑘!

𝜎in2𝑘−1(𝑘 − 𝑖)! (𝑖 − 1)!
𝜙(

𝑥 − 𝜇in
𝜎in

)(1 + erf(−𝑥 − 𝜇in√
2𝜎in

))𝑘−𝑖 (1 − erf(−𝑥 − 𝜇in√
2𝜎in

))𝑖−1,

with:

𝜇in = 𝑑
𝜎2

𝑘
,

𝜎in = 𝜎2
√︁
𝑑(𝜅 + 𝑘 − 2)

𝑘
,

𝜙 : 𝑥 ↦→ 2
√
𝜋

∫𝑥

0
𝑒−𝑡

2
𝑑𝑡 .

Similarly, 𝑠out,(𝑘−𝑖+1) is the (𝑁 − 2𝑘 + 𝑖)th order statistic of 𝑆out and so its cumulative density function is [19]:

𝐹out,(𝑘−𝑖+1)(𝑥 ) =
𝑁−𝑘∑︁

𝑗=𝑁−2𝑘+𝑖

(
𝑁 − 𝑘

𝑗

)
(1 + erf(− 𝑥

√
2𝜎out

))𝑗 (1 − erf(− 𝑥
√
2𝜎out

))𝑁−𝑘− 𝑗 ,

with:

𝜎out = 𝜎2
√︂

𝑑

𝑘
.

Finally, we obtain:

𝑝+( 𝑖
𝑘
) = P(𝑠in,(𝑖) > 𝑠out,(𝑘−𝑖+1))

=
∫∞

−∞
𝑓in,(𝑖)(𝑥 ) × 𝐹out,(𝑘−𝑖+1)(𝑥 ) d𝑥,

(8)

and, by injecting Equation (8) into Equation (7), we retrieve the expression from Equation (4) of Proposition 2.
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