
Deep Reinforcement Learning for Morpion Solitaire

Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

LAMSADE, Université Paris-Dauphine, PSL, CNRS, Paris, France
Boris.Doux@dauphine.psl.eu

Abstract. The efficiency of Monte-Carlo based algorithms heavily relies on a
random search heuristic, which is often hand-crafted using domain knowledge.
To improve the generality of these approaches, new algorithms such as Nested
Rollout Policy Adaptation (NRPA), have replaced the hand crafted heuristic with
one that is trained online, using data collected during the search. Despite the
limited expressiveness of the policy model, NRPA is able to outperform tradi-
tional Monte-Carlo algorithms (i.e. without learning) on various games including
Morpion Solitaire. In this paper, we combine Monte-Carlo search with a more ex-
pressive, non-linear policy model, based on a neural network trained beforehand.
We then demonstrate how to use this network in order to obtain state-of-the-art
results with this new technique on the game of Morpion Solitaire. We also use
NeuralNRPA as an expert to train a model with Expert Iteration.

1 Introduction

Monte-Carlo search algorithms can discover good solutions for complex combinatorial
optimization problems by running a large number of simulations. Internally, the simula-
tions are used to evaluate each alternative branching decision, and the search algorithm
successively commits to the best branching decision until a terminal state is reached.
Thus, one can see simulations as a tool to turn uninformed (random) search policies
into well informed ones, at the cost of computational power. Building on this observa-
tion, Nested Monte Carlo Search (NMCS) further improves the technique by running
recursive (a.k.a. nested) simulations. At the lowest recursive level, the simulations are
driven by a simple random search policy. At higher recursive levels, the simulations are
driven by a search policy that is based on the simulations of the recursive level below.
Nesting simulations greatly improve the quality of the solutions discovered, however it
is generally impossible to run NMCS with more than 5 or 6 levels of recursion, due to
the prohibitive cost of recursive simulations.

To further improve the quality of the results, it is often desirable to replace the
purely random search policy with a hand crafted search heuristic, but building such
heuristic is time consuming and requires expert knowledge which is difficult to en-
code in the search heuristic. To overcome this limitation and facilitate the adaptation of
Monte-Carlo search to new problems, Nested Rollout Policy Adaptation [10] replaces
the recursive policies, with a simple policy model that is learned, using data collected
during the search. Thanks to this simple principle, NRPA is now the state of the art
on different problems such as vehicle routing problems, network traffic engineering
or RNA design as well as the game of Morpion Solitaire which became a testbed for
several Monte-Carlo based algorithms such as NRPA and NMCS.



2 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

However, despite the success of learned policies, and a number of recent studies
on the topic, the last major record break on Morpion Solitaire dates back from 2011.
(Rosin obtained 82 on the 5D variant with a week long execution of NRPA).

Recently [2] has managed to rediscover the best score with optimized playouts, but
despite many tries was unable to break the record. The recent success of AlphaGo/AlphaZero
[12–14] suggests that combining Monte-Carlo search together with a neural network
based heuristic can lead to important improvements. AlphaZero like Deep Reinforce-
ment Learning has been tried for Morpion Solitaire with PUCT [15].

In this paper, we look into learning an expressive policy model for the Morpion
Solitaire that is based on a deep neural network, and we use it to drive simulations at low
computational cost. We then conduct thorough experiments to understand the behaviour
of new and existing approaches, and to assess the quality of our policy models. Then
we reintroduce this neural network based policy inside NMCS. We are able to obtain
a policy which is almost as good as state-of-the-art NRPA algorithm with 3 nested
levels, for a 2-3 times reduction of computational time. Finally, we experiment using
self-play with a second approach based on Expert Iteration (Exit) with various experts.
Our approach is able to learn a policy from scratch and outperforms previous work on
selfplay in Morpion Solitaire by 6 points.

The rest of this paper is organized as follows: the second section describes related
work on Monte Carlo Search. The third section explains search with a learned model.
The fourth section shows how to combine neural networks and Monte Carlo Search. The
fifth section shows how to apply Deep Reinforcement Learning using Neural NMCS
and Neural NRPA. The sixth section outlines future work.

2 Preliminaries on Monte-Carlo search for game playing

Policies: A policy is a probability distribution p over a set of movesM that is condi-
tioned on the current game state s ∈ S. For example, we often consider the uniform
policy p0, which assigns equal probability to all the moves that are legal in state s. I.e.
p0(m|s) = 1

|Ms| .
In this paper, we also consider policies probability distributions pW which are pa-

rameterized with a set of weights W . There is one real valued weight for each possible
move, i.e. W = wm1 , . . . , wm|M| , and the probability pW (m|s) is defined as follows:

pW (m|s) = ewm∑
p∈Ms

ewp

The softmax function enables to calculate the gradient for all the possible weights
associated to the possible moves of a state and to learn a policy in NRPA using gradient
descent.

Finally, we also consider more complex policies πθ in which the probability of
each move depends on a function of the state, represented using a neural network. Let
fθ : S → R|M | be a neural network parameterized with θ, we can then define policy
πθ as follows:



Deep Reinforcement Learning for Morpion Solitaire 3

πθ(m|s) =
e(fθ(s))m∑
p∈Ms

e(fθ(s))p

2.1 NMCS and NRPA

As most Monte-Carlo based algorithms, Nested Monte Carlo Search (NMCS) and Nested
Rollout Policy Adaptation (NRPA) both generate a large number of random sequences
of moves. The best sequence according to the scoring function is then returned as a
solution to the problem. The quality of the final best sequence directly depends on the
quality of the intermediate random sequences generated during the search, and thus
on the random policy. Therefore NMCS and NRPA have introduced new techniques to
improve the quality of the policy throughout the execution of the algorithm.

NMCS and NRPA are both recursive algorithms, and at the lowest recursive level,
the generation of random sequences is done using playouts parameterized with a simple
stochastic policy. If the user has access to background knowledge, it can be captured
by using a non-uniform policy (typically by manually adjusting the weights W of a
parameterized policy pW ). Otherwise, the uniform policy p0 is used.

In NMCS, the policy remains the same throughout the execution of the algorithm.
However, the policy is combined with a tree search to improve the quality over a simple
random sequence generator. At every step, each possible move is evaluated by com-
pleting the partial solution into a complete one using moves sampled from the policy.
Whichever intermediate move has led to the best completed sequence, is selected and
added to the current sequence. The same procedure is repeated to choose the following
move, until the sequence has reached a terminal state.

A major difference between NMCS and NRPA, is the fact that NRPA uses a stochas-
tic policy that is learned during the search. At the beginning of the algorithm, the policy
is initialized uniformly and later improved using gradient descent based the best se-
quence discovered so far. The policy weights are updated using gradient descent steps
to increase the likelihood of the current best sequence under the current policy.

Finally, both algorithms are nested, meaning that at the lowest recursive level, weak
random policies are used to sample a large number of low quality sequences, and pro-
duce a search policy of intermediate quality. At the recursive level above, this policy
is used to produce sequences of high quality. This procedure is applied recursively. In
both algorithms the recursive level (denoted level) is a crucial parameter. Increasing
level increases the quality of the final solution at the cost of more CPU time. In prac-
tice it is generally set to 4 or 5 recursive level depending on the time budget and the
computational resources available.

2.2 Playing Morpion Solitaire with Monte Carlo search

The game of Morpion Solitaire Morpion Solitaire is a single player board game. The
initial board state is shown in Figure 1 and a move consists of drawing a circle on an
empty intersection, and drawing a line out of five neighboring circles including the new



4 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

one. A game is over when the player runs out of moves, and the goal of the game is
to play as many moves as possible. The final score is simply the number of moves that
have been played. There are two versions of the game called 5T (T for touching) and 5D
(D for disjoint). In 5T two lines having the same direction can share a common circle,
whereas in 5D they cannot.

The best human score for 5T is 170 moves and it has been discovered by Charles-
Henri Bruneau who held this record for 34 years until he was beaten by an algorithm
based on Monte-Carlo search. The current best score is 82 for 5D and 178 for 5T. Both
records were established in August 2011 by Chris Rosin with an algorithm combining
nested Monte-Carlo search and a playout policy learning (NRPA, [3, 10]).

Fig. 1: Move 1, 2, 3 and 4 are legal for 5D and 5T. Move 5 is legal for 5T only

Modeling Morpion solitaire as a Monte-Carlo search problem Any game state is fully
determined by the set of (oriented) segments connecting the circles. Thus, the initial
game state s0 is the empty set, and performing a move consists of adding a segment to
the set of segments representing the current state. Each segment (or move) is determined
by a 2D coordinates representing the starting point of the segment, and one direction
among the 4 possible directions: left to right, top to bottom, top-left to bottom-right,
and top-right to bottom-left. The game is over when the player reaches a terminal state
i.e. a state s such that Ms = ∅.

Although the order in which the moves are added does not influence the final
game state, (i.e. for any sequence of moves X and any permutation X ′ of X , we have
state(X) = state(X ′)), it is generally difficult to compute the subset of moves that
can be added without breaking the rules. Therefore the moves are drawn sequentially
such that every intermediate state is also a legal state.

3 Imitating NRPA

In this section, we first focus on training a policy model that can be used to select good
moves, without having to simulate a large number of games. We recall that a policy
model is a conditional probability distribution πθ(m|s) where s is a game state from
the set of all possible game states S, and m is a move from the set of all possible move
M.



Deep Reinforcement Learning for Morpion Solitaire 5

To obtain a good policy, we first train our policy model to learn to reproduce the
sequences found by NRPA. The policy model is represented by a neural network, and
is trained to predict the next NRPA move, given a description of the current game state.
Each supervised example is a particular game state, labeled with the move that was
chosen by NRPA during a previous run. (Note that since NRPA is a stochastic algorithm,
identical game states may appear several times in the dataset, labeled with different
moves.)

To successfully reproduce sequences found by NRPA, we need 1: a game state rep-
resentation that contains the adequate features to accurately predict the next move by
NRPA, and 2: a policy model that is expressive enough to capture the complex relation
that exists between the game state and the best move selected by NRPA. In this section,
we design and evaluate several training settings using different game state representa-
tions and different models. We then discuss the performance of these settings by using
two criteria: the ability to mimic the behaviour of NRPA, and the quality of a play (i.e.
the game score).

3.1 Game state representation

Although the game state is fully determined by the set of segments (as discussed in
Section 2), this representation does not favor learning, and generalization over different
but similar states. In this section, we discuss a better state representation, that explicitly
captures important features and makes it possible to predict the behavior of NRPA,
without having to run the costly simulations.

In all our models, the board is represented by five 30 × 30 binary valued matrices,
which are large enough to capture any record holding boards. The first matrix is used
to represent the occupied places (i.e. the circles in Figure 1) which are not directly
available nor easy to compute from a board state represented as a set of segments. If the
place i, j is occupied on a board, the corresponding value in the matrix is set to 1, and
0 otherwise.

Because this matrix alone does not fully determine the game state, the four extra
binary valued matrices are used to represent the connecting segments, one matrix for
each possible direction respectively: left to right, top to bottom, top-left to bottom-
right, and top-right to bottom-left. A one in the first matrix (left to right) at position
i, j signifies that there is a segment between the place i, j and the place i + 5, j on the
board. A one in the second matrix (top to bottom) at position i, j signifies that there is a
line between position i, j and position i, j+5 on the board and so on for each matrices.
Every time a new place is occupied (i.e. the player makes a move) we set one boolean
value in the first matrix, and one boolean value from one of the 4 remaining matrices.

In addition to the board representation, we extend the state representation with 4
extra matrices which are meant to represent all the possible moves for the next move
(one matrix for each possible direction). We call this first representation R1.

To further improve temporal consistency of the policy model, we extend the first
state representation with 8 extra matrices, to represent the 8 previous moves. We call
this second representation R2.



6 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

3.2 Neural network architecture

We consider two neural network architectures. The first one is a fully convolutional
neural network with 4 convolutional layers. The first 3 layers have 32 filters with 3x3
kernels, and the last convolutional layer has 4 filters with 1x1 kernels to match the
output. The output is a vector of dimension n2d where n is the dimension of the board
and d the number of directions to represent all possible moves (in all our experiments
use n=30 and d=4).

The second architecture is a residual neural network [8] with 4 convolutional lay-
ers with the same type and number of filters as the first architecture, and the same
input/output definition.

We found the use of a fully convolutional model more effective than the policy
heads used in AlphaGo and Alpha Zero which contain fully connected layers. A fully
convolutional head is similar to the policy heads of Polygames [7] and Golois [6].

3.3 Training data & training procedure

We train the policy models using data generated with NRPA. Each example in the train-
ing set is a game state representation labelled with one move played by NRPA in this
game state. To improve the quality of the training data, we can select only the moves
from the NRPA games that scored well, however it is important to remark that there is a
trade-off between the quality of the moves, and the diversity of the training data (a.k.a.
the exploration vs. exploitation trade-off). To observe this phenomenon, we selected 10
000 games (800.000 game states) generated with NRPA that scored 80 or above (Fig-
ure 2 first plot), and 10 000 games (around 800.000 game states) generated with NRPA
that scored between 70 and 82 (Figure 2 second plot). As we can see in the first plot,
game states dramatically lack of diversity.

Based on this observation and other empirical analysis, we used NRPA to generate a
large number of games, and selected 9141 games scoring between 70 and 82 for a total
of 694 716 training examples (couples: game state, move). We use this data to train the
neural networks models described above, using the two representations R1 and R2. We
used a decaying learning rate starting at 0.01 and divided it by 10 every 40 epochs.

Fig. 2: NRPA data diversity



Deep Reinforcement Learning for Morpion Solitaire 7

3.4 Model performance (without search)

We now compare the different policy models using two metrics. First we consider the
test accuracy, that is how well the policy models are able to predict NRPA moves.
Then we estimate the average and the maximum score obtained with a playing strategy
which sample moves from the different policy models. The mean and the average are
computed over 100 000 games.

Train/Test accuracy We first compare the two neural network architectures and the two
game state representations that we have described in the previous section. The values
of the loss functions during the training procedure for each architecture are shown in
Figure 3, and a comparison of the accuracy achieved by each architecture and each
state representation is shown in Figure 4. (We only show the comparison of the state
representation using the Resnet architecture since it performs best.)

We first consider, the initial model with the game state representation R1 and the
BasicCNN neural network architecture shown in Figure 3 (left). We observe that the
training loss quickly reaches its lowest value, and that an important difference between
the training and the testing loss remains. Unsurprisingly, this results in a poor model
accuracy of 45.5% on the test set (as seen in Figure 1). Furthermore, this peculiar be-
haviour is not impacted by the use of a larger, more expressive neural network architec-
ture such as the Resnet or by any more sophisticated training procedure.

To explain this behaviour, we recall that 1) NRPA is not deterministic, 2) the policy
in NRPA is trained in a stochastic way and may vary significantly from one game to
another. Non determinism leads to presence of a large number of identical examples
labelled differently in the train and test set, which induces an incompressible Bayes risk,
that cannot be removed, by increasing the expressivity of the model, or by improving
the training procedure.

However, the behaviour is remarkably different on the second representation R2
which includes the previous moves in addition to current game state. This may be sur-
prising, since with an unbiased algorithm, the best move only depends on the current
state, and should not depend on the previous actions performed by the player. However,
NRPA is biased by the learned policy, which differs from one game to another. The
previous moves thus informs the neural network on the current policy, and the partic-
ular strategy that is being played, and ultimately reduces Bayes’s risk. As a result, the
neural network is able to better fit the training set (and benefits from additional epochs),
the final loss is lower, the generalization gap is reduced, and the final accuracy reaches
70%.

This suggests that unlike the first two models based on R1, last model based on R2
is able to capture not just one strategy but several good strategies that were discovered
by NRPA during the 9141 selected games.

Score To evaluate the quality of the policy models as players, we sample sequence of
moves from each policy model and observe the score of the final state. The distribution
of the scores across 100 000 sequences generated from each policy model is shown in
Figure 5.

In both plots, we have a high probability of reaching a score between 57 and 62.
However, the second model based on state representation R2 demonstrates better results



8 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

Fig. 3: Loss evolution during training
Fig. 4: Accuracy evolution during
training

Epoch BasicCNN R1 Resnet R1 Resnet R2
1 25% 27% 47%
40 45.5 % 45.3 % 67%
80 45.5 % 45.5 % 68.9%

Table 1: Accuracy for each tested configuration

in the early games, and there are fewer games that score less than 50 points. We believe
that the second game state representation, which includes the previous moves, is able
to achieve better temporal consistency and avoid simple mistakes which may be the
consequence of mixing several NRPA strategies from the training set. The model based
on R2 also exhibits the highest average score, and maximum score than the model based
or R1.

Fig. 5: Score distribution of Resnet R1 and Resnet R2

To accurately evaluate the quality of the models and to compare it with the orig-
inal NRPA algorithm, we provide more precise score statistics which are available in
Table 2.

In this table, Uniform is the performance of the uniform policy model p0, the next
3 are the performance of NRPA with increasing level recursions, and the last 3 are our
models, described in the previous sections. The statistics for the Uniform policy and



Deep Reinforcement Learning for Morpion Solitaire 9

our models, are averaged over 100 000 games. However, generating NRPA games is
computationally intensive so the statistics for NRPA(1), NRPA(2) and NRPA(3) are
computed over 100 000, 10 000 and 400 games respectively where number between
brackets refers to the number of recursive levels

We can see that the two neural network models based on R1 (without the previous
moves) offer a little improvement over the baseline, but are outperformed by NRPA(1).
However the neural network based on R2 performs significantly better than the baseline,
(mean and max), and achieves better maximum scores than NRPA(1) and NRPA(2),
without having to run a large number of rollouts.

mean max σ/
√
n

Uniform 39.1 61 0.059
NRPA(1) 58.5 66 0.014
NRPA(2) 65.9 72 0.024
NRPA(3) 68.2 78 0.119
BasicCNN R1 41.7 60 0.024
Resnet R1 44.0 58 0.018
Resnet R2 50.5 74 0.032

Table 2: Results of our approaches compared to state of the art algorithm.

3.5 Combining MC search algorithms with a neural based search procedure

We now have a neural network that can act as an informed search heuristic comparable
to a NRPA of level 2-3. To further improve the quality of the solutions, we incorporate
the newly trained policy model inside existing search algorithms, in place of the random
heuristic.

Table 3 summarizes results achieved by the different policy models. Nested(1) where
number between brackets refers to the number of recursive levels, outperforms Resnet
by 18,3 points in average and by 5 points for the maximum score. In this setup, our
approach outperforms NRPA(2) in mean and maximum and perform very close to
NRPA(3).

mean max avg. game time
NRPA(3) 68.2 78 16:40
Nested(1) + Resnet R2 68.8 79 6:26
Resnet R2 50.5 74 0:01

Table 3: Comparison between different search algorithms

4 Self play with Exit

In the previous section, we were able to obtain a playing strategy by training a neural
network with game data generated by NRPA. Although the resulting strategy is good



10 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

and computationally efficient, this technique remains entirely supervised by NRPA, and
thus it is unlikely performing better than NRPA itself.

In this Section, we explore self-play and learn a new policy from scratch using
an approach based on Exit [1]. In contrast with the previous approach in which the
neural network is only used to store and generalize past experiences acquired through
supervision, in Exit the expert is also based on a neural network and can be improved as
we discover new good moves. This allows the expert to learn from scratch, and improve
beyond the current best known strategy. (See [1] for details.)

Exit has been used in the notorious Alpha Zero [13] and Wang et al. [15] applied it
for Morpion Solitaire. However, our approach is different since it does not use PUCT
as the search algorithm. Instead we use an expert based on NRPA which is state-of-the
art in Morpion Solitaire. Although using NRPA poses a number of challenges, we are
able to outperform state-of-the-art in the self play setting by a significant margin.

Speeding up NeuralNRPA The main challenge that is to overcome if we want to use
NeuralNRPA as an expert is the computational cost. Despite the improvement discussed
in the previous Section training a policy from scratch using NeuralNRPA remains pro-
hibitive.

In the previous approach, we make a forward pass at each step, which induces a
significant computational cost. In the Morpion Solitaire, moves are often commutative,
meaning that playing move a, then b leads to the same state than playing move b, then
a. We can exploit this property and make a single forward pass for an entire game
(including the many rollouts). This results in a small reduction of the average score, but
a dramatic reduction of computational cost.

Training setting In our experiments, at each iteration we generated 10.000 boards with
the learner. We train our model with a learning rate of 5.10−4 and 20 epochs.

We tested Exit using 3 different configurations: NeuralNMCS(0) is Exit with NMCS
lvl 0 as expert which means the expert use the best sequence out of x rollouts played
by the neural network. NeuralNMCS(1) is Exit with NMCS level 1 as expert, Neu-
ralNMCS(1)c the expert is a early stopped version of NMCS where instead of calling
NMCS after each move played, we stop the algorithm after the end of the first call from
the highest nested level end and use the best sequence found as the label instead of
choosing only one move after one call and repeat until the end of the sequence. Neural-
NRPA(1) and NeuralNRPA(2) are GNRPA [5] of level 1 and 2 with the bias given by
the policy output by the neural network. GNRPA had a bias to NRPA action’s weight
leading to a bootstraped NRPA into a specific direction.

Table 4 gives mean and max scores of neural networks trained by the different ap-
proaches. All of the approaches have been running for 180h. NeuralNRPA(2) A, Neu-
ralNMCS(1)c A, NeuralNMCS(1) A and NeuralNMCS(0) A are the best approaches
among all tested parameters.

The figure 6 displays the evolution of the maximum score evolution on 100 rollouts
with the four best approaches of each type. NeuralNMCS(0) A is the fastest reaching
70 but it gets stuck quickly. NeuralNMCS(1) A shows poor exploration due to a low
number of rollouts but it is also very slow regarding the number of its rollout parameter.
NeuralNMCS(1)c A and NeuralNRPA(2) A are slower then NeuralNMCS(0) A but



Deep Reinforcement Learning for Morpion Solitaire 11

ended up outperforming it. NeuralNMCS(1)c A is a bit faster than NeuralNRPA(2) A
at the begining but NeuralNRPA(2) A gets the highest score at the end.

Approach Temperature Rollouts NN mean score NN best score Best score in (Hours)
NeuralNMCS(0) 0.2 1 50.66 64 6
NeuralNMCS(0) 0.2 100 63.76 68 72
NeuralNMCS(0) A 0.4 100 54.33 70 51
NeuralNMCS(1) A 0.2 1 56.1 66 50
NeuralNMCS(1)c 0.2 1 61.42 68 63
NeuralNMCS(1)c A 0.2 10 64.38 72 134
NeuralNMCS(1)c 0.4 10 53.23 67 111
NeuralNRPA(1) 0.2 100 47.4 63 3
NeuralNRPA(2) 0.2 10 54.9 71 93
NeuralNRPA(2) A 0.2 20 57.28 73 180
NeuralNRPA(2) 0.2 40 53.78 70 151

Table 4: Comparison of approaches

Fig. 6: Best approaches max score evolution

5 Conclusion

We have shown that it is possible to learn an exploratory policy for Morpion Solitaire
from a set of states with score ranging from high average scores (70) to highest known
scores (82) using a neural network. We also integrated this neural network in a Nested
Monte Carlo search and showed it improves when sampling from its moves distribution
reaching scores 3 moves away from the highest known score. We have also trained a
network with an original version of Expert Iteration using Neural NRPA and Neural
NMCS and found that Neural NRPA is the best expert performing 6 points higher than
the reinforcement learning approach in [15].

In computer Go and more generally in board games the neural networks usually
have more than one head. They have at least a policy head and a value head. The pol-
icy head is evaluated with the accuracy of predicting the moves of the games and the
value head is evaluated with the Mean Squared Error (MSE) on the predictions of the
outcomes of the games. The current state of the art for such networks is to use residual



12 Boris Doux, Benjamin Negrevergne, and Tristan Cazenave

networks [4, 13, 14]. The architectures used for neural networks in supervised learning
and Deep Reinforcement Learning in games can greatly change the performances of
the associated game playing programs. For example residual networks gave AlphaGo
Zero a 600 ELO gain in playing strength compared to standard convolutional neural
networks. Mobile Networks [9, 11] are commonly used in computer vision to classify
images. They obtain high accuracy for standard computer vision datasets while keep-
ing the number of parameters lower than other neural networks architectures. For board
games and in particular for Computer Go it was shown recently that Mobile Networks
have a better accuracy than residual networks [6].

We plan to try different architectures for Morpion Solitaire neural networks and
compare their performances.

References
1. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search.

In: Advances in Neural Information Processing Systems. pp. 5360–5370 (2017)
2. Buzer, L., Cazenave, T.: Playout optimization for Monte Carlo search algorithms. application

to Morpion Solitaire. In: IEEE Conference on Games (2021)
3. Cazenave, T.: Nested Monte-Carlo Search. In: Boutilier, C. (ed.) IJCAI. pp. 456–461 (2009)
4. Cazenave, T.: Residual networks for computer go. IEEE Transactions on Games 10(1), 107–

110 (2018)
5. Cazenave, T.: Generalized nested rollout policy adaptation. arXiv preprint arXiv:2003.10024

(2020)
6. Cazenave, T.: Mobile networks for computer go. IEEE Tansactions on Games (2020)
7. Cazenave, T., Chen, Y.C., Chen, G.W., Chen, S.Y., Chiu, X.D., Dehos, J., Elsa, M., Gong, Q.,

Hu, H., Khalidov, V., Cheng-Ling, L., Lin, H.I., Lin, Y.J., Martinet, X., Mella, V., Rapin, J.,
Roziere, B., Synnaeve, G., Teytaud, F., Teytaud, O., Ye, S.C., Ye, Y.J., Yen, S.J., Zagoruyko,
S.: Polygames: Improved zero learning. ICGA Journal 42(4) (December 2020)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition pp. 770–778
(2016)

9. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861 (2017)

10. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree Search. In: IJCAI. pp.
649–654 (2011)

11. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted resid-
uals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 4510–4520 (2018)

12. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go
with deep neural networks and tree search. nature 529(7587), 484–489 (2016)

13. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

14. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge.
nature 550(7676), 354–359 (2017)

15. Wang, H., Preuss, M., Emmerich, M., Plaat, A.: Tackling Morpion Solitaire with AlphaZero-
like ranked reward reinforcement learning (2020)


	Deep Reinforcement Learning for Morpion Solitaire

