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Abstract. αµ is an anytime heuristic search algorithm for incomplete informa-
tion games that assumes perfect information for the opponents. αµ addresses and
if given enough time solves the strategy fusion and the non-locality problems en-
countered by Perfect Information Monte Carlo search (PIMC). Strategy fusion is
due to PIMC playing different strategies in different worlds when it has to find a
unique strategy for all the worlds. Non-locality is due to choosing locally optimal
moves that are globally inferior. In this paper αµ is applied to the game of Bridge
and outperforms PIMC.

1 Introduction

As computer programs have reached superhuman at Go [18] and other two-player per-
fect information games like Chess and Shogi [17] starting from zero knowledge, some
of the next challenges in games are imperfect information games such as Bridge or
Poker. Multiplayer Poker has been solved very recently [1] while Computer Bridge
programs are still not superhuman.

The state of the art for Computer Bridge is Perfect Information Monte Carlo search.
It is a popular algorithm for imperfect information games. It was first proposed by Levy
[12] for Bridge, and used in the popular program GIB [9]. PIMC can be used in other
trick-taking card games such as Skat [2,11], Spades and Hearts [20]. The best Bridge
and Skat programs use PIMC. Long analyzed the reasons why PIMC is successful in
these games [14].

However PIMC plays sub-optimally due to two main problems: strategy fusion and
non-locality. We will illustrate these problems in the second section. Frank and Basin
[5] have proposed a heuristic algorithm to solve Bridge endgames that addresses the
problems of strategy fusion and non-locality for late endgames. The algorithm we pro-
pose is an improvement over the algorithm of Frank and Basin since it solves exactly the
endgames instead of heuristically and since it can also be used in any state even if the
search would be too time consuming for the program to reach terminal states. Ginsberg
has proposed to use a lattice and binary decision diagrams to improve the approach of
Frank and Basin for solving Bridge endgames [9]. He states that he was generally able
to solve 32 cards endings, but that the running times were increasing by two orders of
magnitude as each additional card was added. αµ is also able to solve Bridge endings
but it can also give a heuristic answer at any time and for any number of cards and
adding cards or searching deeper does not increase as much the running time.
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Furtak has proposed recursive Monte Carlo search for Skat [7] to improve on PIMC
but the algorithm does not give exact results in the endgame and does not solve the
non-locality problem.

Other approaches to imperfect information games are Information Set Monte Carlo
Tree Search [3], counterfactual regret minimization [22], and Exploitability Descent
[13].

αµ searches with partial orders. It is related to partial order bounding [16] and to
opponent modeling in card games [19]. However our algorithm is different from these
algorithms since it searches over vectors only composed of 0 and 1 and uses different
backups for sets of vectors at Max and Min nodes as well as probabilities of winning.

The contributions of the paper are:
1. An anytime heuristic search algorithm that assumes Min players have perfect infor-

mation and that improves on PIMC and previous related search algorithms.
2. An anytime solution to the strategy fusion problem of PIMC that solves the strategy

fusion problem when given enough time.
3. An anytime solution to the non-locality problem of PIMC using Pareto fronts of

vectors representing the outcomes for the different possible worlds. It also con-
verges given enough time.

4. A search algorithm with Pareto fronts.
5. The description of the early and root cuts that speed up the search.
6. Adaptation of a transposition table to the algorithm so as to improve the search

speed using iterative deepening.
7. Experimental results for the game of Bridge.

The paper is organized as follows: the second section deals with Bridge and Com-
puter Bridge. The third section defines vectors of outcomes and Pareto fronts. The fourth
section details the αµ algorithm. The fifth section gives experimental results.

2 Bridge and Computer Bridge

2.1 Bridge in Short

The interested reader can refer for instance to [15] for a more complete presentation of
the game of Bridge. Bridge is a trick-taking card game opposing four players (denoted
by West, North, East and South or W,N,E,S) divided in two partnerships (East-West
and North-South). A standard 52 card pack is shuffled and each player receives a hand
of 13 cards that is only visible to him. A Bridge game is divided into two major playing
phases: the bidding phase (out of the scope of the paper) and the card play. The goal
of the bidding phase is to reach a contract which determines the minimum number of
tricks the pair commits to win during the card play, either with no trump (NT) or with
a determined suit as trump. During the card play, the goal is to fulfill (for the declarer)
or to defeat (for the defenders) the contract reached during the bidding phase. Let us
assume that South is the agent who plays the game (i.e the declarer). Player on the left
of the declarer (W) exposes the first card of the game. The declarer’s partner (N called
Dummy) then lays his cards face up on the table. When playing in a NT contract, there
is only one simple rule : each player is required to follow suit if possible and can play



The αµ Search Algorithm for the Game of Bridge 3

any card of the suit. When the four players have played a card, the player who played
the highest-ranked card in the suit (2<3<...<10<J<Q<K<A) wins the trick and he
will be on lead at the following trick. The game is over when all the cards have been
played, In the following (including in our experiments), we assume that the pair North-
South (NS) reached the contract of 3NT. In this case, if NS wins nine or more tricks the
game is won otherwise it is lost 3.

2.2 Computer Bridge

A Double Dummy Solver (DDS) is a solver for complete information Bridge. A very
efficient Double Dummy Solver (DDS) has been written by Bo Haglund [10]. In our
experiments we use it to evaluate double dummy hands. It makes use of partition search
[8] among many other optimizations to improve the solving speed of the αβ .

PIMC is the state of the art of Computer Bridge, it is used for example in GIB [9]
and in WBRIDGE5 [21] the former computer world champion.

The PIMC algorithm is given in algorithm 1. In this algorithm S is the set of possible
worlds and allMoves is the set of moves to be evaluated. The play function plays a
move in a possible world and returns the corresponding state. All the possible worlds
have the same hand for the player to play, so all the moves for the player to play are
legal in all the possible worlds. The DDS function evaluates the state using a double
dummy solver. The DDS sends back the maximum number of tricks the player to play
can win. If the number of tricks already won by the declarer plus the number of tricks
that the declarer can win returned by DDS is greater than or equal to the contract the
world is evaluated to 1, else to 0.

Algorithm 1 The PIMC algorithm.
1: Function PIMC (allMoves, S)
2: for move ∈ allMoves do
3: score[move]← 0
4: for w ∈ S do
5: s← play (move,w)
6: score[move]← score[move]+ DDS (s)
7: end for
8: end for
9: return argmaxmove(score[move])

PIMC accumulates the payoff of strategies related to different worlds. This process
leads to an optimistic evaluation since in reality a specific strategy has to be chosen.
This problem is known as strategy fusion [4]. The reason why PIMC is optimistic is
that it can adapt its strategy to each world since it has perfect information. In the real
game the player does not know the real world and cannot adapt its strategy, it has to
choose a strategy working in all possible worlds.

3 It is an acceptable simplification of the real scoring of Bridge. At Bridge, the declarer has to
make six more tricks than the number in his contract.
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Fig. 1: Example of a Bridge hand illustrating strategy fusion.

♠KJT7
♥AKQ
♦AKQ
♣xxx

N

S

♠A986
♥xxx
♦xxx
♣AKQ

Figure 1 is a hand from [9] which illustrates the strategy fusion problem. PIMC
finds that the declarer always makes all of the four tricks at Spades when it has only
50% chances of making them since it has to finesse the Queen. The declarer does not
know where is the Queen, so it has to bet where she is and for example play the Jack
for the dummy hoping she is not in East hand.

Strategy fusion arises because PIMC can play different cards in different worlds
whereas it should play the same cards in all the worlds since it cannot distinguish be-
tween worlds. Frank and Basin solve this problem with an algorithm they call Vector
Minimaxing [5] that plays the same cards for the Max player in all the worlds.

Fig. 2: Example of a tree with three worlds illustrating non-locality.

a

b [0 0 0]

d [0 1 1]

[1 0 0] [0 1 1]

e [1 0 0]

[0 0 0] [1 0 0]

c [0 0 0]

f [0 0 0]

[0 0 0]

The fact that a move is optimal at a node but not optimal considering the whole
search tree leads to the problem of non-locality. From an algorithmic point of view
non-locality can be explained using figure 2 from [6]. It illustrates non-locality when
searching with strategy fusion for Max and perfect information for Min. As usual the
Max nodes are squares and the Min nodes are circles. The Max nodes are dashed since
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they represent information sets for Max. Max does not know in which of the three
worlds he is playing whereas Min can distinguish the worlds and thus chooses actions
in a different way for each world. The leaves give the result of the game in the three
possible worlds. For example the move to the left from node d reaches a state labeled
[1 0 0] which means that the game is won in world 1 (hence the 1 in the first position),
lost in world 2 (hence the 0 in the second position) and also lost in world 3 (hence the 0
in the third position). The vectors near the internal nodes give the values that are backed
up by the strategy fusion for Max and perfect information for Min algorithm. We can
see that each Max node is evaluated by choosing the move that gives the maximum
average outcome. For example at node d there are two moves, the left one leads to
[1 0 0] and therefore has an average of 1

3 whereas the right one leads to [0 1 1] and
has an average of 2

3 . So node d backs up [0 1 1]. However it is not globally optimal. If
instead of choosing the right move at node d it chooses the left move it backs up [1 0 0]
and then the b node would have been evaluated better also with [1 0 0]. It illustrates that
choosing the local optimum at node d prevents from finding the real optimum at node
b. At Min nodes the algorithm chooses for each world the minimal outcome over all
children since it can choose the move it prefers most in each different world.

3 Vectors of Outcomes and Pareto Fronts

In this section we define Vectors and Pareto fronts that are used by the algorithms in the
next section.

3.1 Definitions for Vectors

Given n different possible worlds, a vector of size n keeps the status of the game for
each possible world. A zero (resp. one) at index i means that the game is lost (resp.
won) for world number i.

Associated to each vector there is another vector of booleans indicating which
worlds among the n are possible in the current state. At the root of the search all worlds
are possible but when an opponent makes a move, the move is usually only valid in
some of the worlds, the associated vector is then updated by changing from true to false
for these worlds.

The associated vector is used to define the domination between two vectors:

v1 ≥ v2 iff ∀i ∈ [1, n], v1[i] ≥ v2[i]
v1 dominates v2 iff they have the same associated worlds,
v1 ≥ v2 and ∃i ∈ [1, n] such that v1[i] > v2[i].

The score of a vector is the average among all possible worlds of the values con-
tained in the vector.

3.2 Pareto Front

A Pareto front is a set of vectors. It maintains the set of vectors that are not dominated
by other vectors. When a new vector is a candidate for insertion in the front the first
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thing to verify is whether the candidate vector is dominated by a vector in the front or
equal to another vector in the front. If it is the case the candidate vector is not inserted
and the front stays the same. If the candidate vector is not dominated it is inserted in
the front and all the vectors in the front that are dominated by the candidate vector are
removed.

For example consider the Pareto front {[1 0 0], [0 1 1]}. If the vector [0 0 1] is a can-
didate for entering the front, then the front stays unchanged since [0 0 1] is dominated
by [0 1 1]. If we add the vector [1 1 0] then the vector [1 0 0] is removed from the front
since it is dominated by [1 1 0], and then [1 1 0] is inserted in the front. The new front
becomes {[1 1 0], [0 1 1]}.

It is useful to compare Pareto fronts. A Pareto front P1 dominates or is equal to a
Pareto front P2 iff ∀v ∈ P2, ∃v′ ∈ P1 such that (v’ dominates v) or v’=v.

4 The αµ Algorithm

In this section we first explain how the algorithm deals with strategy fusion and non-
locality, we then give some optimizations and we eventually explain the details of the
search algorithm.

4.1 Search with Strategy Fusion

Let us assume that the defense knows the cards of the declarer and that the declarer
optimizes against all possible states that correspond to his information. The score of a
move for the declarer is the highest score of all vectors in the Pareto front of the move.
At a Max node the declarer computes after each move the union of the Pareto fronts of
all the moves that have been tried so far. Min has knowledge of the declarer cards so in
each world he takes the move that minimizes the result of Max. The code for Min and
Max nodes is given in algorithm 2. αµ is a generalization of PIMC since a search with
a depth of one is PIMC.

The parameter M controls the number of Max moves, when M = 0 the algorithm
reaches a leaf and each remaining possible world is evaluated with a double dummy
search. The stop function also stops the search if the game is already won no matter
what is played after. The parameter state contains the current state where all the moves
before have been played and which does not contain the hidden information. The param-
eter Worlds contains the set of all possible worlds compatible with the moves already
played. The transposition table contains the Pareto front and the best move found by
the previous search of a state. If the state has not yet been searched the Pareto front is
initialized as the empty set and the best move is not set. If at Min node, the set of all
possible moves in all possible worlds is calculated (lines 13-16). At each played move
the list of possible worlds is updated and a recursive call performed. The Pareto front re-
sulting from the recursive call is then combined with the overall front (lines 18-23). We
will explain later the min algorithm. Similar operations are performed for a Max node
except that the combination with the overall front is then done with the max algorithm
(lines 27-45). We explain the max algorithm in the next subsection. The optimizations
and detailed explanations of the algorithm are given in subsections 4.3 and 4.4.
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Algorithm 2 The αµ search algorithm with cuts and transposition table.
1: Function αµ (state,M,Worlds, α)
2: if stop(state,M,Worlds, result) then
3: update the transposition table
4: return result
5: end if
6: t← entry of state in the transposition table
7: if Min node then
8: mini← ∅
9: if t.front ≤ α then

10: return mini
11: end if
12: allMoves← ∅
13: for w ∈Worlds do
14: l← legalMoves (w)
15: allMoves = allMoves ∪ l
16: end for
17: move t.move in front of allMoves
18: for move ∈ allMoves do
19: s← play (move, state)
20: W1 ← {w ∈Worlds : move ∈ w}
21: f ← αµ (s,M,W1, ∅)
22: mini← min(mini, f )
23: end for
24: update the transposition table
25: return mini
26: else
27: front← ∅
28: allMoves← ∅
29: for w ∈Worlds do
30: l← legalMoves (w)
31: allMoves = allMoves ∪ l
32: end for
33: move t.move in front of allMoves
34: for move ∈ allMoves do
35: s← play (move, state)
36: W1 ← {w ∈Worlds : move ∈ w}
37: f ← αµ (s,M − 1,W1, front)
38: front← max(front, f )
39: if root node then
40: if µ(front) = µ of previous search then
41: break
42: end if
43: end if
44: end for
45: update the transposition table
46: return front
47: end if
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4.2 Dealing with Non-locality

Max nodes At Max nodes each possible move returns a Pareto front. The overall Pareto
front is the union of all the Pareto fronts of the moves. The idea is to keep all the possible
options for Max, i.e. Max has the choice between all the vectors of the overall Pareto
front.

Min nodes The Min players can choose different moves in different possible worlds.
So they take the minimum outcome over all the possible moves for a possible world.
So when they can choose between two vectors they take for each index the minimum
between the two values at this index of the two vectors.

Now when Min moves lead to Pareto fronts, the Max player can choose any member
of the Pareto front. For two possible moves of Min, the Max player can also choose any
combination of a vector in the Pareto front of the first move and of a vector in the Pareto
front of the second move. In order to build the Pareto front at a Min node we therefore
have to compute all the combinations of the vectors in the Pareto fronts of all the Min
moves. For each combination the minimum outcome is kept so as to produce a unique
vector. Then this vector is inserted in the Pareto front of the Min node.

An example of the product of Pareto fronts is given in figure 3. We can see in the
figure that the left move for Min at node a leads to a Max node b with two moves. The
Pareto front of this Max node is the union of the two vectors at the leaves: {[0 1 1], [1 1 0]}.
The right move for Min leads to a Max node c with three possible moves. When adding
the vectors to the Pareto front of the Max node c, the algorithm sees that [1 0 0] is
dominated by [1 0 1] and therefore does not add it to the Pareto front at node c. So the
resulting Pareto front for the Max node c is {[1 1 0], [1 0 1]}. Now to compute the Pareto
front for the root Min node we perform the product of the two reduced Pareto fronts of
the children Max nodes and it gives: {[0 1 0], [0 0 1], [1 1 0], [1 0 0]}. We then reduce
the Pareto front of the Min node and remove [0 1 0] which is dominated by [1 1 0] and
also remove [1 0 0] which is also dominated by [1 1 0]. Therefore the resulting Pareto
front for the root Min node is {[0 0 1], [1 1 0]}.

We can also explain the behavior at Min nodes on the non-locality example of figure
2. The Pareto front at Max node d is {[1 0 0], [0 1 1]}. The Pareto front at Max node e
is {[0 0 0], [1 0 0]}. It is reduced to {[1 0 0]} since [0 0 0] is dominated. Now at node
b the product of the Pareto fronts at nodes d and e gives {[1 0 0], [0 0 0]} which is also
reduced to {[1 0 0]}. The Max player can now see that the b node is better than the c
node, it was not the case for the strategy fusion algorithm without Pareto fronts.

4.3 Optimizations

In this section we explain how to speedup search.

Skipping Min nodes A one ply search at a Min node will always give the same result as
the Pareto front at that node since the Double Dummy Solver has already searched all
worlds with an αβ. The Min player can choose the move for each world and therefore
will have the same result as the αβ for each world.
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Fig. 3: Product of Pareto fronts at Min nodes.

a {[0 0 1], [1 1 0]}

b {[0 1 1], [1 1 0]}

[0 1 1] [1 1 0]

c {[1 1 0], [1 0 1]}

[1 1 0] [1 0 1] [1 0 0]

This is why we only keep the number M of Max moves to be played in the search.
The search will never stop after a Min move since recursive calls at Min node do not
decrease M . This is intended since the results of the search after a Min move are the
same as before the Min move.

Iterative Deepening and Transposition Table Iterative deepening starts with one Max
move and increases the number of Max moves at every iteration. The number of Max
moves is the number of Max nodes that have been traversed before reaching the cur-
rent state. The results of previous searches for all the nodes searched are stored in a
transposition table.

An entry in the transposition table contains the Pareto front of the previous search
at this node and the best move found by the search. The best move is the move with the
greatest probability.

When a search is finished at a node, the entry in the transposition table for this node
is updated with the new Pareto front and the new best move.

Comparing Pareto Fronts at Min Nodes When a Pareto front P1 dominates another
Pareto front P2 it is safe to ignore the move associated to P2 since it adds no options to
P1. If it is true for the current front P2 at a Min node it will also be true when searching
more this Min node since P2 can only be reduced to an even more dominated Pareto
front by more search at a Min node.

The Early Cut If a Pareto front at a Min node is dominated by the Pareto front of the
upper Max node it can safely be cut since the evaluation is optimistic for the Max player.
The Max player cannot get a better evaluation by searching more under the Min node
and it will always be cut whatever the search below the node returns since the search
below will return a Pareto front smaller or equal to the current Pareto front. It comes
from the observation that a world lost at a node can never become won.

Figure 4 gives an example of an early cut at a Min node. The root node a is a Max
node, the first move played at a returned {[1 1 0], [0 1 1]} which is backed up at node a.
The second move is then tried leading to node c and the initial Pareto front calculated
with double dummy searches at node c is [1 1 0]. It is dominated by the Pareto front of
node a so node c can be cut.
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Fig. 4: Example of an early cut at node c.

a

b {[1 1 0], [0 1 1]} c [1 1 0]→ cut

The Root Cut If a move at the root of αµ for M Max moves gives the same probability
of winning than the best move of the previous iteration of iterative deepening forM−1
Max moves, the search can safely be stopped since it is not possible to find a better
move. A deeper search will always return a worse probability than the previous search
because of strategy fusion. Therefore if the probability is equal to the one of the best
move of the previous shallower search the probability cannot be improved and a better
move cannot be found so it is safe to cut.

4.4 Detailed Algorithm

αµ with transposition table and cuts is a search algorithm using Pareto fronts as evalu-
ations and bounds. The algorithm is given in algorithm 2.

The evaluation of a state at a leaf node is the double dummy evaluation for each
possible world. An evaluation for a world is 0 if the game is lost for the Max player and
1 if the game is won for the Max player (lines 2-5).

The algorithm starts with getting the entry t of state in the transposition table (line
6). The entry contains the last Pareto front found for this state and the best move found
for this state, i.e. the move associated to the best average.

If the state is associated to a Min node, i.e. a Min player is to play, the algorithm
starts to get the previously calculated Pareto front from the transposition table (line 8).
Then it looks for an early cut (lines 9-11). If the node is not cut it computes the set of
all possible moves over all the valid worlds (lines 12-16). It then moves the move of the
transposition table in front of the possible moves (line 17). After that it tries all possible
moves (line 18). For each possible move it computes the set W1 of worlds still valid
after the move and recursively calls αµ (lines 19-21) . The parameters of the recursive
call are s, the current state,M the number of Max moves to go which is unchanged since
we just played a Min move,W1 the set of valid worlds aftermove, and an empty set for
alpha to avoid deeper cuts. The front returned by the recursive call is then combined to
the current front using the min function (line 22). When the search is finished it updates
the transposition table and returns the mini Pareto front (lines 24-25).

If the state is associated to a Max node it initializes the resulting front with an empty
set (line 27). Then as in the Min nodes it computes the set of all possible moves and
moves the transposition table move in front of all the possible moves (lines 28-32).
Then it tries all the moves and for each move computes the new set W1 of valid worlds
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and recursively calls αµ with M − 1 since a Max move has just been played and front
as alpha since a cut can happen below when the move does not improve front (lines
33-36). The resulting front f is combined with front with the max function (line 37).
If the score of the best move (µ(front)) is equal to the score of the best move of the
previous search and the node is the root node then a Root cut is performed (lines 38-
42). When the search is finished the transposition table is updated and front is returned
(lines 44-45).

The search with strategy fusion is always more difficult for the Max player than the
double dummy search where the Max player can choose different moves in the different
possible worlds for the same state. Therefore if a double dummy search returns a loss in
a possible world, it is sure that the search with αµ will also return a loss for this world.

If the search is performed until terminal nodes and all possible worlds are consid-
ered then αµ solves the strategy fusion and the non locality problems for the game
where the defense has perfect information.

If the search is stopped before terminal nodes and not all possible worlds are con-
sidered then αµ is a heuristic search algorithm. The algorithm is named αµ since it
maximizes the mean and uses an α bound.

5 Experimental Results

In our experiments we fix the bid so as to concentrate on the evaluation of the card
play. We use duplicate scoring. It means that the different evaluated programs will play
the same initial deals against the same opponents. When αµ is the declarer it will play
against two PIMC as the defense. In the following we note αµ(1) for αµ with one Max
move and αµ(3) for αµ with three Max moves. In order to compare αµ as a declarer to
PIMC as a declarer we compare αµ(3) as a declarer to αµ(1) as a declarer since αµ(1)
is PIMC. In most of the experiments αµ with 20 possible worlds plays against PIMC
with 20 possible worlds as the defense. All results are computed playing the same initial
deals with the same seed for each deal, meaning that as long as the card played are the
same, the generated possible worlds for αµ(1) and αµ(3) are the same. The Pareto
fronts stay small in practice. For Bridge it is very often the case with random deals that
a world champion and a weak player score the same. It is more informative to compute
statistics on deals with different results. Challenges in Bridge are played with carefully
selected deals not random ones.

Table 1 gives the results for games that have a different result for αµ(1) and αµ(3).
We only keep the games that are either won for αµ(1) and lost for αµ(3) or lost for
αµ(1) and won for αµ(3). We stop the experiment when 200 such games have been
played. The winrate of αµ(3) is significantly greater than αµ(1). For example with 32
cards, αµ(3) wins 62% of the time with a standard deviation of 3.4%.

PIMC (i.e. αµ(1)) is already a very strong player as a declarer so improving on
it even slightly is difficult. We can conclude that looking three Max moves ahead is
beneficial and that αµ(3) improves on PIMC.

In practice the number of vectors in the Pareto fronts always stayed very small in
the games it played.
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Table 1: Comparison of αµ(3) with PIMC for games that have a different result. 3NT contract.
Cards M Worlds Games Winrate σ

32 1 20 200 0.380 0.034
32 3 20 200 0.620 0.034
36 1 20 200 0.455 0.035
36 3 20 200 0.545 0.035
40 1 20 200 0.450 0.035
40 3 20 200 0.550 0.035
52 1 20 200 0.420 0.035
52 3 20 200 0.580 0.035

Table 2 gives the percentage of games played by αµ(3) that are different from the
games played by αµ(1) it also gives the percentage of the total number of games that
have different results. In practice when generating the initial deals randomly, many deals
are not interesting: they are either easily won or completely lost. The two algorithms
play the same cards on these deals as there is no interesting alternative. This is the
reason why we only keep the games where the algorithms have different results so as to
evaluate the difference between the two algorithms.

Table 2: Percentage of different games for αµ(3) for the 3NT contract.
Cards Worlds Different Different Results

32 20 10.4% 2.4%
36 20 16.4% 3.8%
40 20 23.6% 5.8%
52 20 40.9% 10.6%

We now compare the times to play moves with and without Transposition Tables and
cuts. Table 3 gives the average time per move of different configurations of αµ playing
entire games. The initial deals used for this experiment are the first 100 initial deals
of the previous experiment for a total of 2 600 cards played. TT means Transposition
Table, R means Root Cut, E means Early Cut. We can observe that a Transposition
Table associated to cuts improves the search time. For M = 1 the search time is 0.159
seconds. For M = 3 without transposition table and cuts the average search time per
move is 55 seconds. When using a transposition table associated to early and root cuts
it goes down to 3 seconds.

We also made experiments with the 7NT contract. In this contract the declarer has to
win all the tricks. When a trick is won by the defense the search can stop as the contract
is lost. Table 4 gives the results for 2, 3 and 4 Max moves and 20 and 40 possible
worlds. We compute statistics on the games that have different results for PIMC and
αµ out of the 10 000 games played for each experiment. For example the first line
gives the comparison of αµ with two Max moves and 20 worlds against PIMC with 20
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Table 3: Comparison of the average time per move of different configurations of αµ on deals with
52 cards for the 3NT contract.

Cards M Worlds TT R E Time

52 1 20 0.118
52 2 20 n n n 1.054
52 2 20 y y n 0.512
52 2 20 y n y 0.503
52 2 20 y y y 0.433
52 3 20 n n n 10.276
52 3 20 y y n 3.891
52 3 20 y n y 1.950
52 3 20 y y y 1.176

worlds for 10 000 games, 283 of these 10 000 games give different outcomes for the
two algorithms, 64.3% of these 283 games are won by αµ and lost by PIMC. For the
40 worlds experiments αµ with 40 worlds is compared to PIMC with 40 worlds.

Table 4: Comparison of αµ versus PIMC for the 7NT contract, playing 10 000 games.
Cards M Worlds 6= results Winrate σ

52 2 20 283 0.643 0.0285
52 3 20 333 0.673 0.0257
52 4 20 374 0.679 0.0241
52 2 40 324 0.630 0.0268
52 3 40 347 0.637 0.0258
52 4 40 368 0.655 0.0248

6 Conclusion and Future Work

We presented αµ, which is a heuristic search algorithm for incomplete information
games. In order to highlight its advantages, we tested αµ on the card play of Bridge,
which is known to be difficult for classical search algorithms such as PIMC according
to the strategy fusion and non-locality problems. To solve the non-locality problem αµ
uses Pareto fronts as evaluations of states and combines them in an original way at Min
and Max nodes. To solve the strategy fusion problem it plays the same moves in all the
valid worlds during search. Experimental results for the 3NT contract and even more
for the 7NT contract show it significantly improves on PIMC, which is a breakthrough
in the field of Computer Bridge.

We also presented the use of a transposition table as well as the early and the root
cut for αµ. When searching three Max moves ahead it enables the search to be faster
while returning the same move as the longer search without the optimizations.
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In future work we expect to use partition Search with αµ and to speed it up with
other cuts and optimizations. We plan to carry out new experiments with αµ for the
defense, and with real scores instead of only win/loss. We also plan to parallelize the
algorithm. The algorithm is easy to parallelize strongly, for example parallelizing the
DDS calls at the leaves or parallelizing the search for the different moves at the root.
The sequential times are not indicative of the time limits once parallelized. Finally, a
promising approach for improving αµ is to make inferences linked to the strategy of
the opponents in order to reduce the set of possible worlds.
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