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Abstract
Generalized Nested Rollout Policy Adaptation (GNRPA) is a Monte Carlo

search algorithm for single player games and optimization problems. In this paper
we propose to modify GNRPA in order to automatically learn the bias weights.
The goal is both to obtain better results on sets of dissimilar instances, and also
to avoid some hyperparameters settings. Experiments show that it improves the
algorithm for two different optimization problems: the Vehicle Routing Problem
and 3D Bin Packing.

1 Introduction
Monte Carlo Tree Search (MCTS) [20, 12] has been successfully applied to many
games and problems [3]. It originates from the computer game of Go [2] with a method
based on simulated annealing [4]. The principle underlying MCTS is learning the best
move using statistics on random games.

Nested Monte Carlo Search (NMCS) [5] is a recursive algorithm which uses lower
level playouts to bias its playouts, memorizing the best sequence at each level. At each
stage of the search, the move with the highest score at the lower level is played by the
current level. At each step, a lower-level search is launched for all possible moves and
the move with the best score is memorized. At level 0, a Monte Carlo simulation is
performed, random decisions are made until a terminal state is reached. At the end,
the score for the position is returned. NMCS has given good results on many problems
like puzzle solving, single player games [22], cooperative path finding or the inverse
folding problem [23].

Based on the latter, the Nested Rollout Policy Adaptation (NRPA) algorithm was
introduced [26]. NRPA combines nested search, memorizing the best sequence of
moves found, and the online learning of a playout policy using this sequence. NRPA
achieved world records in Morpion Solitaire and crossword puzzles and has been ap-
plied to many problems such as object wrapping [17], traveling salesman with time
window [10, 15], vehicle routing problems [16, 8] or network traffic engineering [13].
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GNRPA (Generalized Nested Rollout Policy Adaptation) [6] generalizes the way
the probability is calculated using a temperature and a bias. It has been applied to some
problems like Inverse Folding [7] and Vehicle Routing Problem (VRP) [27].

This work presents an extension of GNRPA using bias learning. The idea is to learn
the parameters of the bias along with the policy. We demonstrate that learning the bias
parameters improves the results of GNRPA for Solomon instances of the VRP and for
3D Bin Packing.

This paper is organized as follows. Section 2 describes the NRPA and GNRPA
algorithms, as well as its extension. Section 3 presents the experimental results for the
two problems studied : VRP and 3D Bin Packing. Finally, the last section concludes.

2 Monte Carlo Search
This section presents the NRPA algorithm as well as its generalization GNRPA. The
formula for learning the bias weights is introduced. A new optimization for GNRPA,
based on conventional ones, is then presented.

2.1 NRPA and GNRPA
The Nested Rollout Policy Adaptation (NRPA) [26] algorithm is an effective combina-
tion of NMCS and the online learning of a playout policy. NRPA holds world records
for Morpion Solitaire and crosswords puzzles.

In NRPA/GNRPA each move is associated to a ”move weight” stored in an array
called the policy. The goal of these two algorithms is to learn these weights thanks to
the solutions found during the search, thus producing a playout policy that generates
good sequences of moves.

NRPA/GNRPA use nested search. In NRPA/GNRPA, each level takes a policy as
input and returns a sequence and its associated score. At any level > 0, the algorithm
makes numerous recursive calls to lower levels, adapting the policy each time with the
best solution to date. It should be noted that the changes made to the policy do not
affect the policy in higher levels (line 7-8 of algorithm 1). At level 0, NRPA/GNRPA
return the sequence obtained by playout function as well as its associated score.

The playout function sequentially constructs a random solution biased by the weight
of the moves until it reaches a terminal state. At each step, the function performs Gibbs
sampling, choosing the actions with a probability given by the softmax function.

Let wic be the weight associated with move c in step i of the sequence. In NRPA,
the probability of choosing move c at the index i is defined by:

pic =
ewic∑
k e

wik

GNRPA [6] generalizes the way the probability is calculated using a temperature τ
and a bias βic. The temperature makes it possible to vary the exploration/exploitation
trade-off. The probability of choosing the move c at the index i then becomes:

pic =
e

wic
τ +βic∑

k e
wik
τ +βik
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By taking τ = 1 and βik = 0, we find the formula for NRPA.
In NRPA, policy weights can be initialized in order to accelerate convergence to-

wards good solutions. The original weights in the policy array are then not uniformly
set to 0, but to an appropriate value according to a heuristic relevant to the problem to
solve. In GNRPA, the policy initialization is replaced by the bias. Furthermore, it is
sometimes more practical to use βij biases than to initialize the weights as we will see
later on.

When a new solution is found (line 8 of algorithm 1), the policy is then adapted to
the best solution found at the current level (line 13 of algorithm 1). The policy is passed
by reference to the Adapt function. The ”move weights” in the policy are updated as
in [6].

The current policy is first saved into a temporary policy array named polp before
modifying it. The policy copied into polp is then modified in the Adapt function, while
the current policy will be used to calculate the probabilities of possible moves. After
modification of the policy, the current policy is replaced by polp. The principle of the
Adapt function is to increase the weight of the chosen moves and to decrease the weight
of the other possible moves by an amount proportional to their probabilities of being
played (line 15 of algorithm 2).

The NRPA algorithm therefore strikes a balance between exploration and exploita-
tion. It exploits by shifting the policy weights to the best current solution and explores
by picking moves using Gibbs sampling at the lower level. NRPA is a general algo-
rithm that has been shown to be effective for many optimization problems. The idea of
adapting a simulation policy has been applied successfully for many games such as Go
[18].

It should be noted that in the case of optimization problems such as the VRP, we
aim at minimizing the score (consisting of a set of penalties). bestScore is therefore
initialized to +∞ (line 5 of algorithm 1) and we update it each time we find a new
result such that result ≤ bestScore (line 9 of algorithm 1).

2.2 Learning the bias
The advantage of the bias over weights initialization relies on its dynamic aspect. It
can therefore take into account factors related to the current state. The goal of the
extension proposed in this paper is to learn the parameters of the bias. For example, if
we consider a bias formula made up of several criteria, such as in [27], we obtain in the
case of 2 criteria β1 and β2: βic = w1 ∗ β1 + w2 ∗ β2, where β1 and β2 describe two
different characteristics of a move. For VRP, it can be the time wasted while waiting to
service a customer, the distance traveled, etc.

For some instances, a criterion is a sufficient feature, while others emphasize on
another. It is therefore difficult or even impossible to find a single formula that would
be appropriate for all instances. To tackle this problem, we propose a simple, yet ef-
fective modification of the GNRPA Algorithm, which we name Bias Learning GNRPA
(BLGNRPA). We aim at learning the parameters of the bias in order to improve the
results on different instances. The idea of learning the bias parameters w1 and w2 lies
in adapting the importance of the different criteria along with the policy to the specific
instance that we are trying to solve.
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Algorithm 1 The GNRPA algorithm.
1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: polp← policy
8: (result,new seq)← GNRPA(level − 1, polp)
9: if result ≥ bestScore then

10: bestScore← result
11: best seq← new seq
12: end if
13: Adapt (policy, best seq)
14: end for
15: return (bestScore, seq)
16: end if

The probability of choosing the move c at the index i with this bias is:

pic =
e

wic
τ +(w1×β1ic+w2×β2ic)∑

k e
wik
τ +(w1×β1ik+w2×β2ik)

Let Aik = e
wik
τ +(w1×β1ik+w2×β2ik).

The formula for the derivative of f(x) = g(x)
h(x) is :

f ′(x) =
g′(x)× h(x)− g(x)× h′(x)

h(x)2

So the derivative of pic relative to w1 is:

δpic
δw1

=
β1icAic ×

∑
k Aik −Aic ×

∑
k β1ikAik

(
∑

k Aik)2

δpic
δw1

=
Aic∑
k Aik

× (β1ic −
∑

k β1ikAik∑
k Aik

)

δpic
δw1

= pic × (β1ic −
∑

k β1ikAik∑
k Aik

)

The cross-entropy loss for learning to play a move is Ci = −log(pic). In order to
apply the gradient, we calculate the partial derivative of the loss: δCi

δpic
= − 1

pic
. We

then calculate the partial derivative of the softmax with respect to the weight:

∇w1 =
δCi

δpic

δpic
δw1

= − 1

pic
× pic(β1ic −

∑
k β1ikAik∑

k Aik
) =
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∑
k β1ikAik∑

k Aik
− β1ic

If we use α1 and α2 as learning rates, we update the weight with (line 16 of algo-
rithm 2):

w1 ← w1 + α1(β1ic −
∑

k β1ikAik∑
k Aik

)

Similarly, the formula for w2 is (line 17 of algorithm 2):

w2 ← w2 + α2(β2ic −
∑

k β2ikAik∑
k Aik

)

Algorithm 2 The new generalized adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: w1temp ← w1

4: w2temp ← w2

5: state← root
6: for move ∈ sequence do
7: polp[code(move)]← polp[code(move)] + α

τ
8: w1temp ← w1temp + β1(move)
9: w2temp ← w2temp + β2(move)

10: z ← 0
11: for m ∈ possible moves for state do
12: z ← z + e

policy[code(m)]
τ +w1β1(m)+w2β2(m)

13: end for
14: for m ∈ possible moves for state do

15: polp[code(m)]← polp[code(m)]− α
τ ×

e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z

16: w1temp ← w1temp − α1β1(m) e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z

17: w2temp ← w2temp − α2β2(m) e
policy[code(m)]

τ
+w1β1(m)+w2β2(m)

z
18: end for
19: state← play(state, b)
20: end for
21: policy ← polp

Optimizations for GNRPA exist and are presented in[6]. A new optimization in-
spired by the previous ones is presented below.

2.2.1 Avoid recomputing the biases

In some cases, the computation of the bias for all possible moves can be costly. In the
same way as the optimization presented in [6], we avoid recomputing all the possible
moves by storing the values of the bias in a β matrix during the playout function.
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The biases of the possible moves have already been calculated during the playout that
found the best sequence. The optimized playout algorithm memorizes in a matrix code
the biases of the possible moves during each step of the sequence construction in the
playout function.

3 Experimental Results
We now present experiments with bias weights learning for 3D Bin Packing and Vehicle
Routing.

3.1 3D Bin Packing
The 3D Bin Packing Problem is a combinatorial optimization problem in which we
have to store a set of boxes into one or several containers. The goal is to minimize
the unused space in the containers and put the greatest possible number of items into
each of them, or, alternatively, to minimize the number of container used to store all
the boxes.

We based our experiments on the problem modeled in the paper [30].
We kept the same capacity for the unique container and the same intervals for the items
dimensions. However, as opposed to the paper, we worked on the offline variation of
3D Bin Packing, where the set of boxes are known a priori and taken into account in a
given order. Also, the boxes dimensions are considered to be integers.

3.1.1 Heuristics

We used two heuristics proposed in the paper cited above. The first heuristic is the
Least Surface Area Heuristic (LSAH) that aims to minimize the surface area of the
Bin that could hold all the items that we need to pack. The candidates are selected
in the structured coordinates (Empty Maximal Space-EMS). It is described by a linear
program detailed in the following article [19].

The second one is the Heightmap Minimization (HM) heuristic which is described
in the following article [29]. It aims at minimizing the volume increase of the object
pile as observed from the loading direction.

3.1.2 The bias

The BLGNRPA uses these two heuristics to compute the bias using the following for-
mula: 1/Score− of − the− heuristic and updating the weights of each move.

Its purpose is to adapt itself to the current situation of the problem and make it
easier to choose the next legal move through learning with the bias. It enables having
a priority on moves given the current state.

3.1.3 Modeling the problem

To represent each possible move, we use the coordinates (x, y) where the bottom-left
corner of the lower side of the object will be placed. To encode the rotation, we use the
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Table 1: Results of LSAH, HM, NRPA,GNRPA and BLGNRPA on the 3D Packing
problem

Method/Set w1 w2 Set1 Set2 Set3 Set4 Set5 Set6
Uti. N Uti. N Uti. N Uti. N Uti. N Uti. N

LSAH 0.502 39 0.527 15 0.623 27 0.675 24 0.431 15 0.641 30
Heightmap 0.502 39 0.463 14 0.623 27 0.738 27 0.836 31 0.565 27
NRPA 0.743 46 0.836 27 0.843 38 0.852 31 0.868 33 0.807 37
GNRPA 1.00 1.00 0.796 48 0.836 27 0.887 41 0.852 31 0.868 33 0.807 37
BLGNRPA 1.00 1.00 0.808 50 0.916 28 0.887 41 0.913 33 0.868 33 0.807 37
GNRPA 2.68 10.84 0.808 50 0.836 27 0.887 41 0.852 31 0.868 33 0.807 37
BLGNRPA 2.68 10.84 0.808 50 0.916 28 0.887 41 0.913 33 0.868 33 0.892 39

dimensions of the object along the three axes (x, y and z) for every possible rotation.

3.1.4 Results

The results are shown in the Table 1. The first column of each set refers to the utilization
ratio of the container and the second one to the number of boxes that were put in it.
NRPA, GNRPA and BLGNRPA outperform LSAH and Heightmap heuristics across all
instances. GNRPA obtained better scores than NRPA on 2 instances (Set 1 and 3) and
the same score on the other 4 when using w1 = 1 and w2 = 1. With this initialization
of the bias weights, BLGNRPA improves the results of GNRPA on 3 instances (Set
1,2 and 4) and obtains the same score on the 3 others. The final average bias weights
found by BLGNRPA over all instances (w1 = 2.68 and w2 = 10.84) were then used to
initialize GNRPA and BLGNRPA (line 6 and 7 in Table 1). First, we can see that the
use of the average of the weights found by BLGNRPA improved the GNRPA score on
one of the sets (Set 1).As for the initialization of the weights of the bias to 1, BLGNRPA
(with w1 = 2.68 and w2 = 10.84) performs better than GNRPA (with w1 = 2.68 and
w2 = 10.84) on 3 sets (Set 2,4 and 6) and obtains the same score on the 3 others.
Finally, using the average bias weights for BLGNRPA improves the results for the last
set (Set 6). This suggests that using better starting weights improves the results of the
algorithm.

3.2 The Vehicle Routing Problem
The Vehicle Routing Problem is one of the most studied optimization problems. It was
first introduced in 1959 by G.B. Dantzig and J.H. Ramser in ”The Truck Dispatching
Problem” [14]. The goal is to find a set of optimal paths given a certain number of
delivery vehicles, a list of customers or places of intervention as well as a set of con-
straints. We can therefore see this problem as an extension of the traveling salesman
problem. In its simplest version, all vehicles leave from the same depot. The goal is
then to minimize an objective function, generally defined by these 3 criteria given in
order of importance: the number of customers that were not serviced, the number of
vehicles used, and finally the total distance traveled by the whole set of vehicles. These
3 criteria may be assigned specific weights in the objective function, or a lexicographic
order can be taken into account. The vehicle routing problem is NP-hard, so there is
no known algorithm able to solve any instance of this problem in polynomial time.
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Although exact methods such as Branch and Price exist, approximate methods like
Monte-Carlo Search are nonetheless useful for solving difficult instances. Many com-
panies with a fleet of vehicles find themselves faced with the vehicle routing problem
[9]. Many variations of the vehicle routing problem have therefore appeared through
the years. This paper focuses on the CVRPTW which adds a demand to each customer
(e.g., the number of parcels they have purchased) and a limited carrying capacity for
all vehicles. Each customer also have a time window in which he must be served. The
depot also has a time window, thus limiting the duration of the tour.

3.2.1 Solomon Instances

This work uses the 1987 Solomon instances [28] for the CVRPTW problem. Solomon
instances are the main benchmark for CVRPTW to evaluate the different algorithms.
The benchmark is composed of 56 instances, each of them consisting of a depot and
100 customers with coordinates included in the interval [0,100]. Vehicles start their
tours with the same capacity defined in the instance. A time window is defined for
each client as well as for the depot. The distances and the durations correspond to the
Euclidean distances between the geometric points.

The Solomon problems are divided into six classes, each having between 8 and 12
instances. For classes C1 and C2 the coordinates are cluster based while classes R1 and
R2 coordinates are generated randomly. A mixture of cluster and random structures is
used for the problems of classes RC1 and RC2. The R1, C1, and RC1 problem sets
have a short time horizon and only allow a few clients per tour (typically up to 10).
On the other hand, the sets R2, C2 and RC2 have a long time horizon, allowing many
customers (more than 30) to be serviced by the same vehicle.

3.2.2 Use of the bias

In this paper, we used the dynamic bias introduced in [27]. It is made up of 3 parts.
First, the distance, like previous works [1]. Second, the waiting time on arrival. Third,
the ”lateness”. This consists in penalizing an arrival too early in a time window. The
formula used for the bias is thus :

βic = w1 ∗ βdistance + w2 ∗ βwaiting + w3 ∗ βlateness,

with w1, w2, w3 > 0.

βdistance =
−dij

maxkl(dkl)

βlateness =
−(ddj −max(dij + vt, btj))

biggest time window

βwaiting = 0 if vt+ dij > btj

βwaiting =
−(btj − (dij + vt))

biggest time window
if i ̸= depot

βwaiting =
−(btj −max(ftw, dij + vt))

biggest time window
if i = depot
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where dij is the distance between customer i and j, btj is the beginning of customer
j time window, ddj the end of customer j time window, vt is the departure instant and
ftw is the beginning of the earliest time window. In the previous formulas, using
−value instead of 1

value enables zero values for the waiting time or the lateness. To
avoid too much influence from βwaiting at the start of the tour, where the waiting time
can be big, we used max(ftw, dij + vt). The idea is to only take into account the
”useful time” lost. The underlying principle behind learning the bias weights for VRP
is to increase the importance of the different criteria depending on the instance. For
some instances, distance is the major factor (if for example the time windows are very
large). For others, the emphasis will be put on wasted time in order to reduce the
number of cars needed. The idea is therefore to adapt the bias formula to make it more
relevant for the corresponding instance.

It should be noted that since the bias is dynamic, it is necessary to calculate it many
times. As a result, the bias must be updated quickly to reduce the impact on the running
time.

3.2.3 Results

In this section, the parameters used for testing NRPA, GNRPA and BLGNRPA are
3 levels, α = 1 and 100 iterations per level. For BLGNRPA, α1, α2 and α3 (for
βdistance, βwaiting and βlateness) are all initially set to 1 and the bias weights are
learned at all level. We compare BLGNRPA with all the bias weights initially set to
0 (that we denote BLGNRPA(0)) with NRPA (GNRPA with all the weights set to 0).
We also compare BLGNRPA with weights initialized to the vector of weights W (that
we denote BLGNRPA(w)) and GNRPA. For both algorithm, the weights are either
initialized or set to the values used in [27]. The weights used are therefore w1 = 15,
w2 = 75 and w3 = 10. The results given in table 2 are the best runs out of 10 with
different seeds. The running times for NRPA, GNRPA, BLGNRPA are close to each
other and smaller than 1800 seconds.

We also compare our results with the OR-Tools library. OR-Tools is a Google
library for solving optimization problems. It can solve many types of VRP problems,
including CVRPTW. OR-Tools offers different choices to build the first solution.
In our experiments, we used ”PATH CHEAPEST ARC” parameter. Starting from a
start node, the algorithm connects it to the node which produces the cheapest route
segment, and iterates the same process from the last node added. Then, OR-Tools uses
local search in order to improve the solution. Several options are also possible here.
We used the ”GUIDED LOCAL SEARCH”, which guides local search to escape local
minima. OR-Tools is run for 1800 seconds on each problem.

The results are compared with the lexicographical approach, first taking into ac-
count the number of vehicles used NV and then the total distance traveled Km. The
best score among the different algorithms is put in bold and when the best known score
is obtained an asterisk is added at the end of the vehicle number.

BLGNRPA(0) performed better than NRPA on all instances. NRPA only obtained
the same result for the easiest instance c101, for which NRPA and BLGNRPA(0) got
the best known solution. NRPA obtained the best known solution only on instance
c101 while BLGNRPA(0) got the best known solution for 10 instances and the best
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results among all algorithms for 17 of the 56 instances. BLGNRPA(0) obtained similar
or even better results than GNRPA and BLGNRPA(W) on some instances such as most
of the C-type instances, on instances r101, r111, etc. However, it also gets much worse
results for other instances (r107, rc201,...). For some instances, the initialization of the
bias weights with w1 = 15, w2 = 75 and w3 = 10, that we found manually thanks to
many tries, is clearly not the most suitable. For example, on instance r101, previous
experiments showed that a good set of weights for the instance is w1 = 20, w2 = 20
and w3 = 0. Interestingly, for BLGNRPA(0) the weights at the end of the best run are
w1 = 21.07, w2 = 19.44 and w3 = 1.42. However, we could not guarantee the same
favorable behavior on all instances, due to the random aspect of the algorithm, and also
due to the amount of time required by the learning process in order to reach appropriate
weights values.

We observe that BLGNRPA has a better score than GNRPA on 36 instances, the
same score on 12 instances and a worse one on 8 instances. Therefore, learning the
weights of the bias seems to improve the results of GNRPA. OR-Tools obtains a better
result on the majority of the instances. However, GNRPA got a better score than OR-
Tools for 12 instances and an equivalent score for 9 of them, BLGNRPA(W) got a
better score than OR-Tools for 18 instances and also an equivalent score for 9 of them.

We can see that for both GNRPA and BLGNRPA the results are better on instances
of class R1 and RC1 than on instances of class R2 and RC2. Instances of classes R2 and
RC2 have their time window constraints weakened (larger time windows). Whenever
dealing with weak constraints, local search performs better than Monte Carlo search
with or without the learning of the bias weights. This observation was also made in
[11] [27].

4 Discussion
The use of a bias in the softmax has some similarities with the formula used in Ant
Colony Optimization (ACO) [21, 25, 24, 31] since a priori knowledge of a fixed bias
associated to actions is also used in ACO with a kind of softmax. The originality of
our approach is that we learn the parameter that multiplies the prior bias associated to
actions, dynamically and on each instance. We also provide a theoretical and mathe-
matical derivation of the way the parameters of the bias are updated.

Different kind of algorithms are used for different variations on the VRP. For ex-
ample, in the recent DIMACS challenge on VRP, the number of vehicles was not taken
into account to evaluate solutions. This makes difficult a fair comparison with our
algorithm (the total distance of the tours might be reduced with one more vehicle).

5 Conclusion
In this paper, we introduced a new method to learn the bias weights for the GNRPA
algorithm with BLGNRPA. This new method partially removes the need to choose
hand-picked weights for GNRPA. However, GNRPA and BLGNRPA have several lim-
itations. First they are less efficient on weakly constrained problems as we presented
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Table 2: The different algorithms tested on the 56 standard instances
NRPA BLGNRPA(0) GNRPA BLGNRPA(w) OR-Tools Best Known

Instances NV Km NV Km NV Km NV Km NV Km NV Km
c101 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94
c102 10 1,011.40 10 843.57 10 843.57 10 843.57 10* 828.94 10 828.94
c103 10 1,105.10 10 844.86 10 843.02 10 828.94 10* 828.06 10 828.06
c104 10 1,112.66 10 831.88 10 839.96 10 828.94 10 846.83 10 824.78
c105 10 896.93 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94
c106 10 853.76 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94
c107 10 891.22 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94
c108 10 1006.69 10* 828.94 10* 828.94 10* 828.94 10* 828.94 10 828.94
c109 10 962.35 10 834.85 10 834.85 10 836.60 10 857.34 10 828.94
c201 4 709.75 3* 591.56 3* 591.56 3* 591.56 3* 591.56 3 591.56
c202 4 929.93 3 609.23 3 611.08 3 611.08 3* 591.56 3 591.56
c203 4 976.00 3 599.33 3 611.79 3 605.58 3 594.23 3 591.17
c204 4 995.19 3 595.65 3 614.50 3 597.74 3 593.82 3 590.60
c205 3 702.05 3* 588.88 3* 588.88 3* 588.88 3* 588.88 3 588.88
c206 4 773.28 3* 588.49 3* 588.49 3* 588.49 3* 588.49 3 588.49
c207 4 762.73 3 592.50 3 592.50 3 592.50 3* 588.29 3 588.29
c208 3 741.98 3* 588.32 3* 588.32 3* 588.32 3* 588.32 3 588.32
r101 19 1,660.01 19* 1,650.80 19* 1,650.80 19 1,654.67 19 1,653.15 19 1,650.80
r102 17 1,593.73 17 1,499.20 17 1,508.83 17 1,501.11 17 1489.51 17 1,486.12
r103 14 1,281.89 14 1,235.31 13 1,336.86 13 1,321.17 13 1,317.87 13 1,292.68
r104 11 1,098.30 10 1,000.52 10 1,013.62 10 996.61 10 1,013.23 9 1,007.31
r105 15 1,436.75 14 1,386.07 14 1,378.36 14 1385.76 14 1,393.14 14 1,377.11
r106 12 1,364.09 12 1,269.82 12 1,274.47 12 1,265.97 13 1,243.0 12 1,252.03
r107 11 1,241.15 11 1,079.96 10 1,131.19 10 1,132.95 10 1,130.97 10 1,104.66
r108 11 1,106.14 10 953.15 10 990.18 10 941.74 10 963.4 9 960.88
r109 12 1,271.13 12 1,173.57 12 1,180.09 12 1,171.70 12 1,175.48 11 1,194.73
r110 12 1,232.03 11 1,116.64 11 1,140.22 11 1,094.84 11 1,125.13 10 1,118.84
r111 12 1,200.37 11 1,071.84 11 1,104.42 11 1,073.74 11 1,088.01 10 1,096.72
r112 10 1,162.47 10 965.43 10 1,013.50 10 974.56 10 974.65 9 982.14
r201 5 1,449.95 5 1,250.16 4 1,316.27 4 1,293.38 4 1,260.67 4 1,252.37
r202 4 1,335.96 4 1,124.91 4 1,129.89 4 1,122.80 4 1,091.66 3 1,191.70
r203 4 1,255.78 4 930.58 3 1,004.49 3 970.45 3 953.85 3 939.50
r204 3 1,074.37 3 765.47 3 787.69 3 772.22 3 755.01 2 852.52
r205 4 1,299.84 3 1,047.53 3 1,043.81 3 1,052.15 3 1,028.6 3 994.43
r206 3 1,270.89 3 982.50 3 990.88 3 959.89 3 923.1 3 906.14
r207 3 1,215.47 3 871.66 3 900.17 3 878.91 3 832.82 2 890.61
r208 3 1,027.12 3 726.34 2 779.25 2 737.50 2 734.08 2 726.82
r209 4 1,226.67 3 954.02 3 981.82 3 960.40 3 924.07 3 909.16
r210 4 1,278.61 3 970.30 3 995.50 3 991.87 3 963.4 3 939.37
r211 3 1,068.35 3 821.79 3 850.33 3 798.84 3 786.28 2 885.71
rc101 15 1,745.99 15 1,636.50 14 1,702.68 15 1,636.50 15 1,639.54 14 1,696.95
rc102 14 1,571.50 13 1,497.11 13 1,509.86 13 1,496.16 13 1,522.89 12 1,554.75
rc103 12 1,400.54 11 1,265.80 11 1,287.33 11 1,273.28 12 1,322.84 11 1,261.67
rc104 11 1,264.53 10 1,147.69 10 1,160.55 10 1,146.36 10 1,155.33 10 1,135.48
rc105 15 1,620.43 14 1,553.43 14 1,587.41 14 1,563.18 14 1,614.98 13 1,629.44
rc106 13 1,486.81 12 1,385.21 12 1,397.55 12 1,388.80 13 1,401.73 11 1,424.73
rc107 12 1,338.18 11 1,238.04 11 1,247.80 11 1,233.76 11 1,255.62 11 1,230.48
rc108 11 1,286.88 10 1,150.68 10 1,213.00 10 1152.61 11 1,148.16 10 1,139.82
rc201 5 1,638.08 5 1,354.84 4 1,469.50 4 1,469.16 4 1,424.01 4 1,406.94
rc202 4 1,593.54 4 1,260.11 4 1,262.91 4 1,203.10 4 1,161.82 3 1,365.65
rc203 4 1,431.32 4 1,010.99 3 1,123.45 3 1,141.27 3 1,095.56 3 1,049.62
rc204 3 1,260.05 3 841.48 3 864.24 3 822.39 3 803.06 3 789.46
rc205 5 1,578.73 4 1,359.74 4 1,347.86 4 1,333.95 4 1,315.72 4 1,297.65
rc206 4 1,412.26 3 1,294.77 3 1,208.52 3 1,246.48 3 1,157.2 3 1,146.32
rc207 4 1,395.02 4 1,066.06 3 1,164.99 3 1,124.15 3 1,098.61 3 1,061.14
rc208 3 1,182.55 3 911.34 3 948.82 3 906.01 3 843.02 3 828.14
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in the results section. In addition, GNRPA/BLGNRPA are designed for complete in-
formation problems. Finally, the bias must be simple to compute. Indeed, for a GNR-
PA/BLGNRPA search, the bias must be calculated 100level × c̄ times, where c̄ is the
average number of moves considered in the playout function. In order to have a fast
and efficient search, the computation of the bias must therefore be fast.

The results we obtained show that the learning of the bias improves the solutions
for GNRPA. For 3D Bin Packing, BLGNRPA got a better score on 3 out of the 6 sets
and the same score on the 3 others. For VRP, BLGNRPA provided better solutions
than GNRPA on 36 out of the 56 instances, the same score on 12 instances and a
worse one on 8 instances. For both problems, it seems that having the bias parameters
already initialized with good values for BLGNRPA improves the results compared to
initializing the values to 0 or 1.

These preliminary results look promising, so in future work we plan to test some en-
hancements of the GNRPA on BLGNRPA such as the Stabilized GNRPA (SGNRPA).
Similarly to the Stabilized NRPA, in SGNRPA the Adapt function is not systematically
run after each level 1 playout, but with an appropriate periodicity. Finally, we plan to
work on finding better values for the bias weights initialization, possibly by running a
preliminary phase consisting of solely learning the bias weights but not the BLGNRPA
policy.
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