Cosine Annealing, Mixnet and Swish Activation for
Computer Go

Tristan Cazenave, Julien Sentuc, and Mathurin Videau

LAMSADE, Université Paris-Dauphine, PSL, CNRS, France
Tristan.Cazenave@dauphine.psl.eu

Abstract. The architecture of neural networks in neural based computer game
programs influences greatly the strength of the game playing programs. We present
developments on the recently tested Mobile Network architecture that has good
results for the game of Go. The three proposed improvements deal with the opti-
mization process, the activation function and the convolution layers. These three
modifications improve the accuracy of the policy and the error of the evaluation,
as well as the playing strength of a computer Go program using the resulting
networks.

1 Introduction

Important breakthroughs in Computer Go have been achieved in the past years. These
advances were made possible by the advent of Convolutional Neural Network (CNN)
and development of Monte-Carlo Tree Search. Because of their versatility, CNN archi-
tectures are constantly evolving. Thus, the purpose of this article is to use these recent
changes to improve supervised learning in Computer Go. We also hope that these im-
provements will transfer to the Reinforcement Learning setup.

Classically, CNN for Go have more than one head. At least, these networks use
a policy head, to prescribe moves, and a value head, to evaluate the board quality in
terms of future incomes. This output configuration has been popularized by the ground-
breaking AlphaZero [7]. In 2017, AlphaGoZero reached a superhuman level without
initial knowledge except the game rules. Thereafter, DeepMind’s algorithm AlphaZero
achieved comparable results for Chess and Shogi. This achievement has been made
possible by the use of deep reinforcement learning from self-play.

Closer to our work, various architecture has been evaluated for learning to play Go
in a supervised way. Typically, the dataset used for the supervised learning is constituted
of superhuman games produced by Deep Reinforcement Learning agent like AlphaZero
or Katago. In our study, we used Katago to constitute our dataset.

KataGo [9] like Alpha Zero only learns from neural-net-guided Monte Carlo Tree
Search self-play. KataGo improves learning compared to AlphaGo Zero. Mainly, it con-
verges to superhuman level much faster than comparable methods such as Alpha Zero,
ELF/OpenGo or Leela Zero. It uses different optimizations strategies like using a low
number of playouts for most of the moves in a game to gather more data about the value
in a shorter time, or using additional training targets to regularize the network. An in-
novation in the Katago program is to use GlobalAverage Pooling in some layers of the
network in conjunction with residual layers.

2 T. Cazenave et al.

Architectures of the Neural Network used in Deep Reinforcement Learning has
been shown to have a great impact on the performances of the resulting playing en-
gines. For example, the use of residual networks increased Alpha GO’s ELO by 600.
Residual Networks used in Alpha Zero were compared to Mobile Networks [4] with
policy and value heads different from the Alpha Zero ones, for instance a fully convo-
lutional policy head and a global average pooling value head. These mobile networks
are more efficient in terms of computation and parameters than their classic CNN coun-
terparts. Also, further improvement of mobile networks have been tested [3]. The main
architecture change is the introduction of the Squeeze and Excitation block, adding
channel attention to the network. Mobile Networks presented better results than Resid-
ual Networks, both for small and large networks on the Leela dataset composed of
games played at a superhuman level [4]. They had a better accuracy and value error.

2 Improving Supervised Learning

Here, we present different improvements made to increase performance. They rely on
three different aspects of the training : optimization, activation function and architec-
ture.

2.1 Cosine Annealing

Better optimization schema can lead to better results. Indeed, by using a different opti-
mization strategy, a neural net can end in a better optimum. In this paper, this is achieved
by using Stochastic Gradient Descent with warms Restart (SGDR) [5]. In particular, the
learning rate is restarted multiple times. This way, the objective landscape is explored
further and the best solution of all restart is kept. Furthermore, using a peculiarly ag-
gressive learning rate strategies like cosine annealing (Equation 1) can lead to better
convergence.
= i+ Ok~)1+ OS(2) n
?
with 7, the learning rate at time ¢, T,,,- the number of step since the last restart and 7 the
current number of cycles done. Thus, 7} indicates the number of steps allowed for the
cycle i and i’ , !, the range of values the learning rate can take during the cycle i.
We compare this cosine annealing with what we call division annealing. Division
annealing, simply divide the learning rate by a constant at predefined epochs.

2.2 MixNet

Traditional depthwise convolution suffers from the limitations of single kernel size.7an
et al. [8] proposed to replace the vanilla depth-wise convolution with MixConv. Their
module takes advantage of bigger kernel size in the convolution. The idea is to mix up
multiple kernels of different sizes in a single depthwise convolution operator in order to
capture different types of patterns at different scales from input images. They achieved
significant performance gain in image classification compared to mobilenet-v3 on both
ImageNet classification and COCO object detection. Even better, they showed that mix-
ing kernel size allows using bigger kernels.

Cosine Annealing, Mixnet and Swish Activation for Computer Go 3

2.3 Swish Activation

Non-linearity plays an important role in neural network. Without them, they lose their
expressiveness power. It also has an important impact on the neural net training. In par-
ticular, the activation shape the derivatives of the network. These important properties
motivated Ramachandran et al. [6] to search for good activation functions. From their
research, they discovered the Swish activation function :

x - sigmoid(z)

This activation, used as drop down replacement for ReLU, gives significant improve-
ment on diverse tasks and networks.

3.0

—— Swish
2.5 —— RelU
2.0
1.5
1.0

0.5

0.0

-0.5

Fig. 1: Swish function plot

3 Experimental Results

In all experiments, instead of learning the final result of a game, the value head is labeled
with the) value coming from MCTS. We use a simple mixed convolution composed
of half of 3 x 3 kernels and half of 5 x 5 kernels. The dataset is composed of self played
games from Katago [9]. The label, for the policy head, is a one for the move played by
Katago and zeros for other moves. The label, for the value head, is the evaluation of
the position given by the Monte Carlo Tree Search of Katago. A value between 0 and 1
giving the probability of winning for White.

3.1 Training with cosine annealing

In early experiments, we tested multiple learning rate parameters using learning rate
restart leads to no improvement. Figure 2 makes the comparison of cosine annealing

4 T. Cazenave et al.

— cosine —— cosine
0.550 4 010 — divide

— divide
0525 4 0.09

0.300 008

0.475 4

Accuracy
MSE Loss

0.450 4

0.06

0.425 4

0.400 4

0.375 4

0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Fig. 2: Cosine annealing versus division annealing for the accuracy and the MSE of the
16 blocks mobile network. The learning rate of division annealing is divided by 10 at
epoch 100, 150 and 200.

with division annealing for the two best run. Cosine annealing ends up with better ac-
curacy and MSE. Moreover, the learning curve for cosine annealing is smoother, for
instance there are no bumps on the learning curve because of learning rate changes. So
in the following experiments, we use cosine annealing without restarts, there is only
one cycle.

3.2 Training small networks with Mixnet and Swish activation

0.575 1 — cosine — cosine

—— cosine.mix

— cosine.mix
—— cosine.mix.swish
—— cosine.5x5

0.550 { —— cosine.mix.swish
—— cosine.5x5

0.525 4
0.500 4 0.08

0.475 4

Accuracy
MSE Loss

0.450 4 0.06
0.425 4

0.400 o

0.375 4

0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Fig. 3: Mobile network with kernels 3 x 3 and 5 x 5, Mixnet and Mixnet with Swish
activation for the accuracy and the MSE of the 16 blocks mobile network.

Figure 3 compares 16 blocks mobile networks, Mixnet and Mixnet with Swish ac-
tivation. We see that Mixnet with Swish has better results than Mixnet alone, and that
Mixnet alone has better result than using only 3 x 3 kernels. Notice that Mixnet also has
similar results to a mobile network with 5 x 5 kernels, despite having less parameters.

Cosine Annealing, Mixnet and Swish Activation for Computer Go 5

3.3 Training big networks with Mixnet and Swish activation

— cosine.mix

0.60 4 — cosine.mix.swish — cosine.mix.swish

0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Fig. 4: Mobile network, Mixnet and Mixnet with Swish activation for the accuracy and
the MSE of the 48 blocks mobile network.

We have tested the Swish activation instead of the Rectified Linear Unit activation
(ReLU) in the inverted residual blocks. Figure 4 compares 48 blocks mobile network,
with 3 x 3 kernels only, Mixnet, and Mixnet with Swish activation. Mixnet with Swish
activation is better than Mixnet which is better than 3 x 3 kernels only.

3.4 Playing

Table 1 gives the experiments done for comparing the different networks. Each line
is the result of 400 games between two networks using given constants and numbers
of playouts at each move. Each player plays 200 games as Black and 200 games as
White. Both players use the Batch MCTS search algorithm [2]. In order to randomize
the starting position of each game, the first 20 moves are played randomly according
to the probabilities given by the policy. The properties of the Max players are given
in columns 2 to 7. Blocks is the number of blocks of the mobile network, Planes is
the number of planes in the trunk, M is the use of Mixnets, S is the use of the Swish
activation, C is the PUCT constant and Playouts is the number of playouts at each move.
Columns 8-13 are the properties of the Min player.The last two columns are the winrate
of the Max player and the standard deviation of the winrate.

Lines 1-5 give the experiments used to find the best PUCT constant for the 16 blocks
mobile network. Each constant is played against the upper constant. We observe that
every constant between 0.05 and 0.30 is worse than the upper constant while 0.40 beat
0.50. We assume the best constant for 100 playouts and the 16 blocks network is 0.40.

Lines 6-9 compare the 16 blocks mobile network with Mixnet and Swish activation
with a constant 0.40 to the 16 blocks mobile network with Mixnet only. Various con-
stants are tested for the Mixnet only network and the best constant for this network is
0.20 yielding a winrate of 0.5850 for the Mixnet with Swish activation network. We can
conclude that the Swish activation makes the 16 blocks mobile network stronger.

6 T. Cazenave et al.

Lines 10-14 compare the 16 blocks mobile network with Mixnet and Swish acti-
vation with a constant 0.40 to the 16 blocks mobile network with no Mixnet and no
Swish activation. The best constant for the second network is 0.20 yielding a winrate of
0.6950 for the first network. It is higher than the 0.5850 winrate obtained with Mixnet.
We can conclude, Mixnet improves the strength of the 16 blocks mobile network.

Lines 15-16 show that 0.40 is also a good constant for the 48 blocks mobile network.
We will use it in the next experiments.

Lines 17-22 compare the 48 blocks mobile network with Mixnet and Swish activa-
tion with a constant 0.40 to the 48 blocks mobile network with Mixnet only. The best
performance for the second network is obtained with the 0.20 constant which gives a
0.5600 winrate for the first network. Swish activation is also beneficial to the 48 blocks
mobile network.

Lines 23-27 compare the 48 blocks mobile network with Mixnet and Swish activa-
tion with a constant 0.40 to the 48 blocks mobile network without Mixnet and without
Swish activation. The best performance for the second network is obtained with the
0.30 constant which gives a 0.6450 winrate for the first network. This is a worse result
for the second network than with Mixnet, so Mixnet improves the strength of the 48
blocks mobile network.

Table 2 gives the accuracy, the MSE, the GPU and the CPU speed in terms of
batches of size 32 processed per seconds for different networks. We did not train the
residual networks on our new dataset, so we only give the speeds for residual net-
works [1]. In previous experiments, both the accuracy and MSE of residual networks
were largely behind those of mobile networks [3]. The mobile.16.64 line is a mo-
bile network with 16 inverted residual blocks and 64 planes in the trunk. The mo-
bile.mix.swish.48.128 network is a mobile network with mixed convolutions, Swish
activation, 48 inverted residual blocks and 128 planes in the trunk.

We can observe that the GPU speed of the networks with mixed convolutions and
Swish activation is a little smaller than the speed of the original mobile networks. The
accuracy and the MSE are better.

Cosine Annealing, Mixnet and Swish Activation for Computer Go

Table 1: Making the networks play.

Blocks Planes M'S C Playouts Blocks Planes M S C Playouts Winrate o
1 16 64 yy0.05 100 16 64 yy0.10 100 0.4250 0.025
2 16 64 yy0.10 100 16 64 yy0.20 100 0.4775 0.025
3 16 64 yy0.20 100 16 64 yy0.30 100 0.4700 0.025
4 16 64 yy0.30 100 16 64 yy 040 100 0.4925 0.025
5 16 64 yy 040 100 16 64 yy0.50 100 0.5025 0.025
6 16 64 yy040 100 16 64 yn 040 100 0.6375 0.024
7 16 64 yy 040 100 16 64 y n 0.30 100 0.6125 0.024
8 16 64 yy040 100 16 64 yn0.20 100 0.5850 0.025
9 16 64 yy 040 100 16 64 yn0.10 100 0.6425 0.024
10 16 64 yy040 100 16 64 nn 0.50 100 0.8250 0.019
11 16 64 yy 040 100 16 64 nn 040 100 0.7475 0.022
12 16 64 yy 040 100 16 64 nn 0.30 100 0.7125 0.023
13 16 64 yy0.40 100 16 64 nn 0.20 100 0.6950 0.023
14 16 64 yy040 100 16 64 nn0.10 100 0.7500 0.022
15 48 128 y y 0.30 100 48 128 y y 040 100 0.4900 0.025
16 48 128 y y 0.40 100 48 128 y y 0.50 100 0.5200 0.018
17 48 128 y y 0.40 100 48 128 yn0.50 100 0.7125 0.023
18 48 128 y y 0.40 100 48 128 yn 040 100 0.6300 0.024
19 48 128 y y 040 100 48 128 yn0.30 100 0.5775 0.025
20 48 128 y y 0.40 100 48 128 yn0.20 100 0.5600 0.025
21 48 128 y y 0.40 100 48 128 yn0.10 100 0.5850 0.025
22 48 128 y y 040 100 48 128 y n0.05 100 0.6475 0.024
23 48 128 y y 0.40 100 48 128 nn0.50 100 0.7050 0.023
24 48 128 y y 0.40 100 48 128 nn 040 100 0.6700 0.024
25 48 128 y y 0.40 100 48 128 nn0.30 100 0.6450 0.024
26 48 128 y y 0.40 100 48 128 nn0.20 100 0.6525 0.024
27 48 128 y y 040 100 48 128 nn0.10 100 0.6925 0.023
Table 2: Accuracy and speed.
Network Accuracy MSE GPU Speed CPU Speed
residual.20.256 20.78 1.30
residual .40.256 12.62 0.68
mobile.16.64 55.61 0.0367 30.70 6.11
mobile.mix.16.64 56.64 0.0349 26.58 4.11
mobile.mix.swish.16.64 57.40 0.0331 21.60 275
mobile.48.128 61.97 0.0230 13.06 0.75
mobile.mix.48.128 62.37 0.0223 10.35 0.54
mobile.mix.swish.48.128 62.95 0.0208 7.73 0.42

7

8 T. Cazenave et al.

4 Conclusion

We proposed three improvements to Mobile Networks for Computer Go. They improve
both the supervised training and the architecture of the network by using Swish acti-
vation and mixed convolutions. The large network using mixed convolutions and the
Swish activation has a winrate of 0.6450 against a similar network not using them. This
brings a 104 Elo improvement. Also, the network trained with cosine annealing has bet-
ter accuracy and evaluation error than the network trained dividing by 10 the learning
rate.

It would be interesting to experiment these improvements in other games and also
in the deep reinforcement learning framework.

Acknowledgment

This work was granted access to the HPC resources of IDRIS under the allocation 2021-
ADO011012539 made by GENCIL.

This work was supported in part by the French government under management of
"Agence Nationale de la Recherche" as part of the “Investissements d’avenir” program,
reference ANR19-P31A-0001 (PRAIRIE 3IA Institute).

References

1. Cazenave, T.: Residual networks for computer go. IEEE Transactions on Games 10(1), 107—
110 (2018)

2. Cazenave, T.: Batch monte carlo tree search. Arxiv (2021)

3. Cazenave, T.: Improving model and search for computer Go. In: IEEE Conference on Games
(2021)

4. Cazenave, T.: Mobile networks for computer Go. IEEE Transactions on Games (2021)

5. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016)

6. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint
arXiv:1710.05941 (2017)

7. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.: A general rein-
forcement learning algorithm that masters chess, shogi, and go through self-play. Science
362(6419), 1140-1144 (2018)

8. Tan, M., Le, Q.V.: Mixconv: Mixed depthwise convolutional kernels. arXiv preprint
arXiv:1907.09595 (2019)

9. Wu, D.J.: Accelerating self-play learning in go. CoRR abs/1902.10565 (2019)

	Cosine Annealing, Mixnet and Swish Activation for Computer Go

