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Abstract

For combinatorial search in single-player games nested
Monte-Carlo search is an apparent alternative to algorithms
like UCT that are applied in two-player and general games.
To trade exploration with exploitation the randomized search
procedure intensifies the search with increasing recursion
depth. If a concise mapping from states to actions is available,
the integration of policy learning has leads to nested rollout
with policy adaptation (NRPA).

In this paper we propose refinements to NRPA that improve
solution diversity. As in Beam-NRPA, High-Diversity NRPA
keeps a bounded number of solutions in each recursion level.
It includes several improvements that further reduce the run-
ning time of the algorithm and improve its diversity. We illus-
trate effectiveness in a number of applications.

Introduction

With the success of applying reinforcement learning to play
expert-level Backgammon (Tesauro 1995), the concept of
sampling the outcome of a game in random playouts has
been around. Later on, bandit-based Monte-Carlo planning
and UCT (Kocsis and Szepesvari 2006) extended the use of
playouts and changed the way in which computer play many
two-player and general games. The history of playing games
with an increasing level of performance is long, with the
current climax of Google Deep Mind’s AlphaGo defeating
a professional Go player in a match!.

Cazenave 2009 has invented nested Monte-Carlo search
(NMCS), a randomized search algorithm inspired by
UCT (Kocsis and Szepesvari 2006) but specifically designed
to solve single-player games. Instead of relying on a sin-
gle rollout at each search tree leaf, the decision-making in
level [ of the algorithm relies on a level (I — 1) search for
its successors. Besides playing games (Browne et al. 2004),
the NMCS algorithm solves mathematical problems (Bouzy
2006).

With nested rollout policy adaptation (NRPA), Rosin
came up with the idea to learn a policy within the recur-
sive procedure. As a randomized search procedure NRPA
has been very successful in solving a variety of optimiztation
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problems, including puzzles like morpion solitaire (Rosin
2011), but also hard optimization tasks in logistics like
constraint traveling salesman problems (Edelkamp et al.
2013) combined pickup-and-delivery tasks (Edelkamp and
Gath 2014b), vehicle routing (Gath, Herzog, and Edelkamp
2013), and container packing (Edelkamp and Gath 2014a)
problems.

Monte-Carlo tree search algorithms balance entering un-
seen areas of the search space (exploration) with working
on already establisehd good solutions (exploitation). Many
Monte-Carlo search algorithms including NRPA, however,
suffer from a solution process that has many inferior solu-
tions in the beginning of the search. If policies are learnt
too quickly, the number of different solutions reduces, and
if not strong enough they will not help sufficiently well to
enter parts of the search space with good solutions.

In other words, the diversity of the search remains lim-
ited. Beam NMCS is a combination of memorizing a set of
best playouts instead of only one best playout at each level.
This set is called beam and all the positions in the set are
developed. The algorithm has been parallelized and applied
to solve instances to morpion solitaire (Cazenave 2012).

Beam search carries over to improve NRPA, enforc-
ing an increased diversity in a set of solutions. In Beam-
NRPA (Cazenave and Teytaud 2012), for each level of the
search, instead of a singleton the algorithm keeps a bounded
number of solutions together with their policies in the re-
cursion tree. In selected applications like TSPTW problems,
Beam-NRPA improves over NRPA.

In this paper, we reengineer the implementation of Beam-
NRPA. We show that the solution quality of Beam-NRPA
(and NRPA) in some domain can be improved by applying a
selection of refinements. In particular, we study more closely
how to increase the diversity in Beam-NRPA. The proposed
search algorithm is called High-Diversity-NRPA, HD-NRPA
for short.

The paper is structured as follows. First, we revisit NRPA
and Beam-NRPA. Then, we turn to the proposed implemen-
tation refinements that increase the performance of these
search algorithms. Next, we look at options to increase the
diversity in the search, both in the generic search algorithm
and its policy adaptation subroutine. We show the impact
of the new approach in three challenging problem domains:
the same game, the vehicle routing problem (both with mini-



procedure NRPA(level [, policy p)
begin
if [ = 0 then
Best < Playout(p)
else
PP
Best «+ (Init,())
for:=1,...,N
r <~ NRPA(l — 1,p})
if 7 better than Best then
Best < r
Adapt(Best, p, p})
return Best
end

Figure 1: Nested rollout with policy adaptation. To cover
both minimization and maximization problems, score order-
ing is imposed by means of implementing Init, better, and
best. L is implemented as a sorted list.

mization objective function), and the snake- and coil-in-the-
box problems (with maximization objective function).

NRPA

NRPA is a randomized optimization scheme that belongs to
the wider class of Monte-Carlo tree search (MCTS) algo-
rithms (Browne et al. 2004). The main concept of MCTS
is the random playout or rollout of a position, whose out-
come, in turn, changes the likelihood of generation succes-
sors for subsequent trials. Other prominent members in this
class of reinforcement learning strategies are upper confi-
dence bounds applied to trees (UCT) (Kocsis and Szepesvari
2006), and nested monte-carlo search (NMCS) (Cazenave
2009). MCTS is the state-of-the-art in playing two-player
games such as Go or Hex (Huang et al. 2013) or puz-
zles like the Pancake problem (Bouzy 2015), and has been
applied also to other problems than games like mixed-
integer programming, contraint problems, mathematical ex-
pression, function approximation, physics simulation, co-
operative pathfinding, as well as planning and schedul-
ing (Bouzy 2013).

What makes NRPA (Rosin 2011) different to UCT and
NMCS is the concept of learning a policy through an ex-
plicit mapping of encoded moves to selection probabilities.
The algorithm helped finding a new world record in morpion
solitaire, and high-quality solutions in crossword puzzles. As
we will see, NRPA is a general search procedure and applies
to many games as well as practical domains.

The pseudo-code of the recursive search procedure is
shown in Fig. 1. NRPA has two main parameters that trade
exploitation with exploration: the number of levels [ and the
branching factor IV of successors in the recursion tree.

Beam-NRPA

Beam-NRPA is an extension of NRPA that maintains B in-
stead of one best solution in each level of the recursion.
The motivation behind Beam-NRPA is to warrant search

procedure Beam-NRPA(level [, policy p)
begin
if [ = 0 then
(score, rollout) < Playout(p)
return (score, rollout, p)
Beam; + (Init,(),p)
fori=1,...,N
L« 0
for ¢ < (score,rollout,p) € Beamy
L+ LU{t}
T < Beam-NRPA(l — 1, p)
for t' + (score’,rollout’,p') € T then
Adapt(rollout’,p’, p)
L+ LU{t'}
Beam; <+ B best in Beam; U L
return Beam
end

Figure 2: Beam nested rollout with policy adaptation.

progress by an increased diversity of existing solutions to
prevent the algorithm from getting stuck in local optima.

The basic implementation of the Beam-NRPA algorithm
has been proposed by (Cazenave 2012) and is shown in
Fig. 2. Each solution is stored together with its score and
the policy that was used to generate it. Better solutions are
inserted into a list, which is kept sorted wrt. to the objective
to be optimized.

As the NRPA recursion otherwise remains the same, the
number of playouts to a search with level L and (iteration)
width N rises from N* to (N - B)~. To control the size of
the beam, we allow different beam widths B; in each level
[ of the tree2. At the end of the procedure, B; best solutions
together with their scores and policies are returned to the
next higher recursion level. For each level [ of the search,
one may also allow the user to specify a varying iteration
width V;. This yields a complexity of the algorithm Beam-

NRPA of performing HzL:1 N, B; rollouts.

Refinements
We propose several refinements to Beam-NRPA.

Dropping Policy Information

First, we have observed that copying the policy in each roll-
out of Beam-NRPA is a rather expensive operation that can
dominate the runtime of the entire algorithm.

In fact, further code analysis showed that the policy up-
date is always performed wrt. the currently best solution
found in a level and the policy one level up, so that it is
not required to store the policy attached each solution, as
long as we keep B; best policies alive for each level [ of the
recursive search procedure.

Employing Faster Adaptation

For a faster processing of policy adaptation, we avoid the
regeneration of successors by providing all the informa-

2Common values for B; in a level 4 search are (1,10, 10, 10)



procedure NRPA-Adapt-Improve(level [, policy p, policy
P
begin
for c; € Codey
p'le] < p'la] +a
z+0
for ¢’ € Succey;
z + z + exp(p[c])
for ¢’ € Sucey;
Ple] < P[] = a-exp(pld])/z
end

Figure 3: An implementation of policy adaptation for NRPA
that refers to recorded data for successor information, « is
the learning rate, usually o = 1.

tion that is needed at the time we construct the solution in
the rollout. Hence, we store the sequence of codes Code,
and successor node codes Succ; for each best solution (rel-
ative to a level ) produced, where the code is a user-
specified domain-specific address into the policy table cal-
culated based on the current state and the current move exe-
cuted in this state (Rosin 2011).

The implementation in Fig. 3 shows that this strategy is al-
ready applicable to the original NRPA algorithm. It leads to
minor extensions to the implementation of the generic play-
out function: each time a successor is checked for availabil-
ity the corresponding code is stored.

We see that the update in Adapt affects only the codes
of the good solution to be adapted and its successor codes,
to balance the postive effect put on choosing it as negative
effect to all of its successors.

Avoiding Memory Defragmentation

To avoid fragmented access to the memory and operating
system calls to provide memory, high-speed algorithm im-
plementations often avoid dynamic memory allocation or
have their own memory maintenance and allocators.
Beam-NRPA pre-allocates the information in the beam in
static arrays and operates on the stored information directly.
Besides faster insertion and deletion this allows to follow the
progress of the search by showing the top k£ < B, elements.

Improving the Diversity

Beam-NRPA itself is inspired by the objective of higher
diversity in the solution space of NRPA. In larger search
spaces NRPA often got stuck with inferior solutions. It sim-
ply takes too long to backtrack to less determined policies in
order to visit other parts in the search space.

The beam is stored in a bounded number of buckets. The
information contained in the buckets of a beam is visualized
in Fig. 7. Instead of the moves executed in a rollout we store
the Code of the chosen move and the code of its successors
Succ. Additionally, the length of the rollout and its score is
stored for each bucket in the beam.

Improving Diversity in the NRPA Driver

When looking at a beam, a natural question is to warrant
that the solutions kept in the beam are substantially different.
This can be imposed by a matching the best obtained rollout
with of the ones stored in the beam. Duplicate solutions wrt.
this criterion are excluded from the beam. Fig. 4 provides a
pseudo-code implementation.

The application of a filter to improve diversity is imple-
mented in method Similar. We expect that s; = s; implies
Similar(s;, s;) and Stmilar(s;,s;) = Similar(s;, s;).
The output is a truth value (interpreted as a number in
{0,1}). The beam is scanned for similar states, and if
present, the new insertion request is rejected. Such similarity
can be implemented on top of the score of the solution, the
solution length, or other features of the rollout. The example
implementation in Fig. 5 looks at the score and the length of
the rollout.

The concept of similarity implies a formal characteriza-
tion of solution diversity.

Definition 1 (Diversity) Let S be a set of solutions of an
optimization problem with and let Similar be a pairwise
similarity score between every two solution s; and s; with
1 <4,5 < |S|, then the diversity is defined as the sum of the
pairwise similarities, i.e.,

div(S) = Z Similar(s;, s;).

5;,5;€S

This means that if the solutions are pairwise similar the
diversity is low. A similar concept is that of pre-sortedness in
an input array by adding the pairwise number of inversions.

One important aspect is that adaptation is now applied
in every iteration, while before it was applied only for im-
proved solutions. This increases the number of calls signifi-
cantly but allows more information to be passed between the
members in the beam. If the parameters are chosen carefully,
the efforts for the playouts and for executing policy adaption
are roughly the same.

We also skip some O iterations before we start learn-
ing. The motivating objective is the secretary problem, in
which the best secretary out of n rankable applicants should
be hired for a position. Applicants are interviewed one after
the other and the final decision has to be made immediately
after the interview. The optimal stopping rule rejects the first
n/e applicants after the interview and then stops at the first
applicant, who is better than every applicant interviewed so
far3.

Diversity is an objective that has to be dealt with care.
In some domains the solution length (like the snake-in-the-
box) already is the score, so that only solutions of different
lengths are kept in the beam. This may limit the number of
good solutions in the beam (too) drastically. As a solution to
this problem, we propose to include other state features into
the fractional part of the solution.

A good compromise has to be found. Using the entire state
vector for similarity detection requires comparing regener-
ated solutions, which can be slow, or storing the full state in

3we experimented with a value of 10%.



procedure HD-NRPA (level [, policy p)

begin
forb=1,...,B
scorey , < Init
if [ = 0 then

Scorep,1 < Playout(p)
return Scoreg
fori=1,...,N;
score < HD-NRPA(l — 1, p)
if score better than Score; p,then
fort =1,...,DB;,_, then
if — Similar(Score; r, Length i, 1) then
and Score;_1 ;s better than Score; p,then
insert (Score;_1,y, Length;_1 4,
Code;_1 1y, Sucei—1 ) into Beamy
if (i > ©) then
HD-Adapt (I, p})
return Score;
end

Figure 4: Beam-NRPA with high diversity.

procedure Similar(score s, length r, level [)
begin
forb=1,..., B
if Score;, = s A Length;, = r then
return true
return false
end

Figure 5: Example of applied similarity measure.

the rollout to be retrieved in later calls of the policy adapta-
tion, which would results in a significant overhead in space
and time.

Improving Diversity in the Policy Adaptation

We refine the beam search by a reduction of elements eligi-
ble to be included in the beam. Therefore, we use (c;, ¢;) €
Beamy 1.1 to denote that the best rollout code (defined
by (¢, ¢;)) in a given level is already present in the prefix
of the beam to bucket b in level /. This avoids overly stress-
ing good solutions that have already influenced the policy
to be learnt. We also do not want to update elements twice.
The according code is shown in Fig. 6. The main function
HD-Adapt calls the function HD-Other which works as a
filter, and collects the codes of moves that should be used to
change the policy.

We used simple arrays for the data structure to check
that a code and set of successor codes is contained in the
beam and thus learnt already. Profiling revealed that a sig-
nificant part of the running time is spent here. Surely, a
hash map would be more efficient for checking (c;,¢;) €
Beamy 1. ,—1 . However, the algorithm has to be modified
as the hash map then has to support deletion, given that ele-
ments in the buckets being dominated by incoming solutions
are removed from the beam, and, thus, do no longer serve for

procedure HD-Other(level [, index b, 7, j)
begin
L+ 0
for cj € SUCC”M'
if (¢;,¢;) ¢ Beamy 1. ,—1 then
L+ LU {Cj}
fort =b+1,...,B;, ¢ € Codeyy
if Ci = Cjr then
for c;; € Suceyy i
ifciy ¢ LA (¢jr,¢;) ¢ Beamy 1. p—1 then
L+ Lu{j}
return L
end

procedure HD-Adapt(level I, policy p, policy p’)
begin
pep
forbel,....B
for c; € Code,
if ¢; ¢ Beam, 1. p—1 then
P [ei] + plei] + «
L + HD-Other(l, b, 1, j)
z+0
force L
2 2 + exp(ple])
force L
p'le] < p'le] — - exp(ple]) /2
end

Figure 6: Policy adaptation within HD-NRPA.

duplicate detection in form of membership queries.

Case Study: Same Game

The same game (Fig. 8) is an interactive game frequently
played on hand-held devices. The input a board with k col-
ored tiles in an arrangement of n. X m (usually, n = m = 15
and k& = 5). Tiles can be removed, if they form a connected
group of [ > 1 elements. The reward of the move is (I — 2)?
points. If a group of tiles is removed, others fall down. If a
column becomes empty, others move to the left, so that all
non-empty columns are aligned. The objective is to maxi-
mize the total reward until no more move is possible. Total
clearance yields an additional bonus of 1,000 points.

For a growing size of the board, the problem is known to
be hard (Biedl et al. 2001). It is solvable in polynomial time
for one column of tiles but NP-complete for two or more
columns and five or more colors of tiles, or five or more
columns and three or more colors of tiles.

Successor generation and evaluation of the score has to
reach out for the tiles that have the same color. Fig. 9 illus-
trates a recursive implementation for counting the number of
successors. To assist the compiler, in the tuned implementa-
tion of the same game we use an explicit stack for build-
ing the moves. Termination can be checked faster by testing
each of the four directions of every tile location for having
the same color.

Let us briefly look to the efficiency of the implementa-
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Figure 8: Initial and terminal position in the same game.

tion. Let n? be the board’s total number of cells and ¢ be the
number of tiles in a given move. The critical aspect is the
adjustment of the board according to the gravity of tiles. For
each tile remove we bubble the blank upwards.

e LegalMoves (Fig. 10), once applied for each state: The
construction of on move including all stack operations is
proportional to the size ¢ of each color group O(t), by the
virtue of recording tiles visiting for one state the total of
generatng all successors is O(n?).

e Play (Fig. 11), once applied for each state: Besides the
removal executing a move is proportional to . Removal
of a tile group with adjustment in one column (one for
each move): O(mt), for an amortized total of O(n?) in
the playout, as at most n? tiles can be removed. Removal
of one column (selective execution): O(n?), but the work
amortizes, at most n columns that can be removed in the
playout. Prior to the removal we sort the tiles affected in
each move, which in total (based on the fact that N =
Ny + ...+ Ni implies 3= | N;1g N; = O(Nlg N)) is
bounded by O(n?1gn?) = O(n?1gn).

procedure Count(index i, color ¢)
begin
if Outside(i, j) V color[i] # ¢V visited]i]
return 0
visited[i] + 1
return 1+ Count(i + 1, ¢)+ Count(i — 1, ¢)+
Count(i + n, ¢)+ Count(i — n, c)
end

Figure 9: Counting tiles of color c present at 7.

e Terminate (Fig. 12), once applied for each rollout: O(n?).

The selection of successors is based on the computation
of legal moves and the roulette rule selection, where the lat-
ter is dominated by the former. In summary, we obtain the
following result.

Theorem 1 (Complexity Same Game Playout) Let n X n
be the board’s dimensions of a same game. The time for gen-
erating a solution of length | in one playout is bounded by
O(In? + n?).

There are simple refinements to the above algorithm to
improve practical performance, but the do not affect the
overall complexity of the algorithm.

Table 1 shows the scores in a level 4 (iteration 100) HD-
NRPA and 30 x level 3 (iteration 100) HD-NRPA searches
both obtained with beam width 10 and initial offset for learn-
ing 10. This is compared to NRPA and NMCS. An entire
level 4 search uses selective policy and has been reported
in (Cazenave ), while 30 level 3 searches finish in about two
hours on our computer®.

The sum of the high scores of HD-NRPA is 81706 (+144
if the 30 level 3 searches are included). While this is best
wrt. all published results on the game, it is still inferior to
the results published in the Internet’. Little is known about
the holders of these records. However, we could exchange
emails with a record holder who told us he is using beam
search with a complex domain specific evaluation function.

We can see that improving the diversity generally gives
better results than NMCS and NRPA, even though, through
randomization, there are problem instances where the oppo-
site is true.

Case Study: Snake-in-the-Box

The snake-in-the-box problem is a longest path problem
in a d-dimensional hypercube. The design of a long snake
has impact for the generation of improved error-correcting
codes. During the game the snake increases in length, but

“We used one core of an Intel® Core™ i5-2520M CPU @
2.50GHz x 4. The computer has 8 GB of RAM but all invo-
cations of the algorithm to any problem instance used less than
10 MB of main memory. Moreover, we had the following software
infrastructure. Operating system: Ubuntu 14.04 LTS, Linux ker-
nel: 3.13.0-74-generic, the compiler: g++ version 4.8.4, and the
compiler options: ~03 -march=native -funroll-loops
—-std=c++11 -Wall

Shttp://www. js—games.de/eng/games/samegame



procedure LegalMove(Move moves]||, length [)
begin
suces < 0
visited < (0..0)
if only one move for tabu color then
tabu < blank
fori=0.n%—1
if color|i] # blank then
if ~wisited]i] then
moves|[succs] < buildMove(7)
if [moves[succs]| > 1 then
if color[i] = tabu then
if [moves[suces]| < 2A 1> 10
suces < suces + 1
else succs < succs + 1
if succs = 0 then
fori=0.n%—-1
if color[i] ¢ {blank,tabu} then
if —wvisited]i] then
moves[succs] < buildMove(¢)
suces — suces + |moves[suces]| > 1
if succs = 0 then
visited < (0..0)
fori=0.n>—1
if color[i] # blank then
if ~wisited|i] then
moves[succs] + buildMove(7)
suces — suce + |moves|[succs]| > 1)
return succs
end

Figure 10: Generating the successors in the same game.

must not approach any of its previous visited vertices with
Hamming distance 1 or less.

The formal definition of the problem and its variants as
well as heursitic search techniques for solving it are studied
by (Palombo et al. 2015). The HD-NRPA implementation
applies bit manipulation to integers in 0..2% — 1. Information
on snake visits are kept in a perfect hash table of size 2¢. One
optimal solution of length 50 for d = 7 is as follows: 0, 1,
33, 35,43, 42, 10, 26, 27, 25, 57, 56, 48, 52, 53, 55, 63, 62,
126, 122, 123, 115, 113, 81, 80, 88, 92, 93, 95, 87, 86, 22,
6,7, 15, 13, 12, 44, 108, 104, 105, 73, 75, 67, 66, 98, 102,
103, 101, 69, 68,

There are known generalization to the problem. First, in-
stead of having a Hamming distance of at least k¥ = 2 for
the incrementally growing head to all previous nodes of the
snake (except the ones preceding the head), one may im-
pose a minimal Hamming distance k£ > 2 to all previous
nodes (inducing a Hamming sphere that must not be revis-
ited). In Fig. 3 we give the best-known solutions lengths for
the (k, n) snake problem, where an asterisk (*) denoting that
the optimal solution is known. Our validation of the results
in generating a solution with HD-NRPA that matches the
given bound is indicated with a v. For the first problem not
solved, the best solutions are shown in brackets (all within
one hour, (11,5) = 39 within two days of computation in

procedure Play(Move mowve)
begin
Sort(move)
for i in 0../move| — 1
Remove(7)
c+0
fori =0.n—1
if column c is empty
RemoveColumn(c)
else
c—c+1
Score < Score + (Jmove| — 2)?
if board is empty
Score < Score 4+ 1000
end
end

Figure 11: Executing a move in the same game.

procedure Terminal()
begin

fori =0.n%2 -1

if color[i] # blank then
if possibleMove(i) then
return O

return 1

end

Figure 12: Termination criterion in the same game.

about 3.3 billion rollouts).

There is another variant, which asks for a closed cycle, by
means that the snake additionally has to bite its own tail at
the end of its journey. The algorithm’s implementation has
to take care that this is in fact possible. In Fig. 3 we give the
best-known solutions lengths and our validation results. In
summary, using HD-NRPA we could validate all but three
optimal solutions in the snake- and coils-in-the-box prob-
lems. Approximate soluition lengths for the first unsolved
problem are shown in brackets. Unfortunately, we have not
generated any solution better than the known bounds.

Case Study: VRP

In the vehicle routing problem (VRP) we are given a fleet
of vehicles, a depot, and a time delay matrix for the pair-
wise travel between the customers’ locations, service times,
time windows and capacity constraints, the task is to find a
minimized number of vehicles with a minimized total dis-
tances that satisfies all the constraints. Clearly, by choos-
ing only one vehicle, VRP extends the capacitated travel-
ing salesman with time windows. We chose instances to the
Solomon VRPTW benchmark for our experiments®. It con-
taints a well-studied selection of (N=)100-city problem in-
stances. Different solvers have contributed to the state-of-
the-art.

®https://www.sintef.no/projectweb/top/
vrptw/solomon-benchmark http://web.cba.neu.
edu/~msolomon/problems.htm



1D [ NMCS(4) NRPA(4) HD-NRPA(4) HD-NRPA(3)
1 3121 3179 3145 3133
2 3813 3985 3985 3969
3 3085 3635 3937 3663
4 3697 3913 3879 3887
5 4055 4309 4319 4287
6 4459 4809 4697 4663
7 2949 2651 2795 2819
8 3999 3879 3967 3921
9 4695 4807 4813 4811
10 3223 2831 3219 2959
11 3147 3317 3395 3211
12 3201 3315 3559 3461
13 3197 3399 3159 3115
14 2799 3097 3107 3091
15 3677 3559 3761 3423
16 4979 5025 5307 5005
17 4919 5043 4983 4881
18 5201 5407 5429 5353
19 4883 5065 5163 5101
20 4835 4805 5087 5199
Sum 77934 80030 81706 74753
Table 1: Results in the same game.

k/d [ 2 3 4 5 6 7
3 4%y 3*y 3%y 3*y 3*y 3*y
4 T*v S*y 4*y 4%y 4*y 4%y
5 13*v THv 6*v S*v S5*v S*v
6 26*v 13*y 8*v THv 6*v 6*v
7 50%vy 21*y 11%v 9*y 8*v THv
8 | 98*%(95) 35%y 19%v 11*v 10*v 9*y
9 190  63(55) 28*y 19*y 12%v  11*v

10 370 103 47*(46) 25%y 15%v  13%*y
11 707 157 68 39%y 25%y  15%y
12 1302 286 104 56(54) 33*y  25%y
13 2520 493 181 79  47(46) 31v

Table 2: Best known results in snakes-in-the-box validated
with HD-NRPA.

VRPs in practice are complex. For example, instead of
the straight-line distances shortest path on a road network
have to be precomputed, leaving a distance matrix to be for-
warded to the VRP solver. Often concurrent pickups while
delivering items to customers are requested, which have a
immediate effect to the violation of capacity constraints.
Similarly, for courier express services, items are collected at
one site and brought to another. Additionally, there are same-
day delivery requirements and reglementations of drivers
breaks. The point we want to stress is that all of these addi-
tional constraints can be added into a VRP solver based on
random playouts like NRPA, as it incrementally generates a
tour.

Our implementation of the problem is based on the sim-
ple observation that a tour with V' vehicles can be generated
by a single vehicle, where the time (makespan) and the ca-
pacity of the vehicle are reset at each visit of the depot. Of
course, in difference to all other cities the depot is allowed

k/d [ 2 3 4 5 6 7
3 6*v 6*v 6*v 6*v 6*v 6*v
4 8*v 8*v 8*y 8*v 8*v 8*v
5 14%y 10%*v 10%*v 10%v  10*v  10*v
6 26*v 16*v 12%y 12%y 12%  12%y
7
8
9

48*v 24*y 14*v 14*v 14*  14%v
96*(92) 36*v 22*y 16*v 16*  16*v
188 64(55) 30*v 24v*  18*%v  18%v

10 358 102 46*v 28v*¥  20%v  20%v
11 668 160  70(64) 40v*  30*v  22%v
12 1276 288 102 60(56) 36*v  32%y
13 2468 494 182 80 50*v  36%v

Table 3: Best known results in coils-in-the-box and validated
with HD-NRPA.

to be visited more times. In the implementation the ¢-th visit
to the depot gets the ID ¢ and has to be revisited. The tour
again has size N + V' but the range of stored index of a city
has increased from This imposes an order to set of depot IDs
in every tour to 0,1,...,V — 1,0. This form of symmetry
reduction saves about factor V! for the permutations of the
depot visits. The solver has the selective strategy that when-
ever a candidate city invalidates reaching another city it is
discarded from the successor set. We selected a level 5/50
search with threshold zero to start learning.

We could repeat the experiment of solving r101 in our im-
plementation and found the optimal solution of cost 1650.79
in about 20 minutes after 625 thousand playouts. With 20 ve-
hicles we a found slightly better solutions than this one, but
the published results often assume a hierarchical objective
of first reducing the number of vehicles, and only after that,
reducing the score.

With about 2.5 days of computation we could solve the
r102 problem. After 215.125 million rollouts in total, we
then found a new high score 1486.664889, slightly improv-
ing the reported best solution. The sequence of cities we
found was 73, 22, 72, 54, 24, 80, 12, 0, 65, 71, 71, 20, 32,
70, 0,92, 37,98, 91, 16, 86, 85,97, 13, 0, 83, 45, 61, 84, 5,
60, 89, 0, 94, 96, 99, 6, 0, 50, 33, 30, 51,9, 67, 1, 0, 14, 44,
38,43, 100, 95, 0, 27, 69, 76, 79, 68, 0, 52,7, 11, 19, 49, 48,
82,0,28,29,78,34,35,3,77,0, 62, 88, 8,46, 17, 93, 59, 0,
36,47, 18, 0, 39, 23, 67, 55, 4, 25, 26, 0, 63, 64, 90, 10, 31,
0,87,57,2,58,0,40,53,0,42, 15,41, 75, 56, 74, 21, 0.

In about a week of computation and more than 550 mil-
lion rollouts we could not finish solving the r103 problem.
Our best solution was 1332.77670, while the best known
has value 1292.68. The learning process of the cost func-
tion is visualized in Fig. 13. We see that even after consid-
erable time of no visible progress, there is continuation in
the solving process. Fig. 14 compares the different single-
agent Monte Carlo search processes for the first 100 thou-
sand playouts of the r101 problem. We see that HD-NRPA
shows the fastest learning progress.

Conclusion

Nested Monte-Carlo tree search is a class of random search
algorithms that has lead to a paradigm shift in Al game play-
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Figure 13: Learning curve solving a VRP with HD-NRPA
(y-axis shows the change in the score, x-axis denotes the
number of completed level 4 search).

1.8e+06

STmpleNessted ——
HD-BEAM

NRPA ----:-

1.6e+06 \

1.4e+06

1.2e+06 \

le+06 \—\

800000

Solution Quality

600000 ¥~

400000 R,

200000 e stang

e eennnnnnns I - - - e B -« - e+

x5 e n e - |

0 L

Number of Rollouts [N]

Figure 14: Comparing the learning in VRP of Nested MCS,
NRPA, and HD-NRPA.

ing from enumeration to randomization, and nested rollout
policy adaptation (NRPA) has proven to be a viable option to
solve hard combinatorial problems, combining random ex-
ploration with learning.

In this paper we proposed HD-NRPA, designed to add
more diversity to the NRPA search, making it faster in sev-
eral domains. A number of implementation refinements and
a more careful handling of the diversity of solutions in the
beam made the algorithm perform convincingly across three
domains. For the same game we exemplified the interface
with the generic solver and analyze the complexity of one
playout. Besides elaborating on the proposed setting and its
impact, for the eager algorithm engineer, we also provide
pseudo-code implementations.
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