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Abstract—We address the problem of scaling the generation
of plans in real-time to control the behaviors of several millions
of Non-Player Characters (NPCs) in video-games and virtual
worlds. Search-based action planning, introduced in the game
F.E.A.R. in 2005, has an exponential time complexity managing
at most several tens of NPCs per frame. A close study of the
plans generated in first-person shooters shows that: (1) states are
vectors of enumerated values, (2) both initial and final states can
be totally defined, (3) actions are both post-unique and unary, (4)
plans are totally ordered, and (5) actions occur only once in plans.
(1) to (5) satisfy the Simplified Action Structure (SAS) linear
time planning framework SAS-PUT1. We strengthen previous
claims on this framework saying that the associated linear time
algorithm P is capable of managing several millions of NPCs per
frame by testing it on three new realistic benchmarks that are
based on commercial video games.

Index Terms—Artificial Intelligence, Action Planning, SAS
Planning, Real-Time, Post-unique, Unary, Linear Time Algorithm

I. INTRODUCTION

F.E.A.R. , a first-person shooter (FPS) released in 2005, was
the first video game to use planning to generate character
behaviors in real time [1], [2]. The success of F.E.A.R. [3]
was such that it led to a wide diffusion of the use of planning
in FPSes [4]–[7]; this diffusion was notably facilitated by the
publication the following year of a development kit (SDK) that
contained the planner code [8]. Today, not only is the success
of F.E.A.R. still recognized [9], but the biggest productions,
reaching millions of players, do not hesitate to use planning
and to make it known [10]–[12], and this despite the real time
constraints which are more and more demanding.

In 2005, a game engine was running at about 30 frames
per second, that is 33 ms for the whole game logic: among
graphics, physics and gameplay mechanics, this leaves less
than a millisecond for the planner to generate plans for the
few characters that called the planner [13]; ten years later, the
move to 60 frames per second has only led to the reduction
of the available processing budget for planning. And today,
to satisfy the processing budget allocated to the planner,
studios explicitly limit the number of calls to at most a
few dozen [10], [12], [14] despite the increase in hardware
performance. Furthermore, the game situations are designed
in such a way that the number of characters is also limited,
thus reducing the number of calls to the planner. However,
the dynamics of the video game market pushes productions
to simulate increasingly large universes with, for the moment,

tens of thousands of characters in sight [15] and tomorrow
millions of them. The results of [16] suggest that GPUs are a
potential solution for such universes in cloud gaming; but what
about PCs or game consoles for which GPUs are dedicated to
graphics?

The time complexity of planning problems depends on the
one hand on language restrictions for representing the planning
problem [17] and on the other hand on which part of the
input is fixed [18]. From the F.E.A.R. SDK code, we can
observe that states are vectors of discrete values and that at
certain times, such as fights or routine tasks, the actions are
fixed and only the initial and final states are part of the input
of the planning problem. Furthermore, the vast majority of
the actions are unary [19], i.e., they change the value for
only one state variable. Finally, the actions are post-unique
by type (attack, defense, deletion, ...), i.e. one type of actions
is the only one to modify a given state variable; this makes
it possible to insert in the plan a generic defense action type,
for example, and to delay the choice of the type of defense at
the time of the plan execution. Answers to a questionnaire
filled up by several game AI developers validate that our
approach is still up to date: the modeling of planning problems
in commercial games is such that SAS with unary and post-
unique actions corresponds to the strong NP-Hard SAS-PU
class of problems [20].

Accessing the in-game planning data analyzed in [21], we
observe that plans in first-person shooters have two domain-
specific features: (1) they are totally ordered, (2) they have
only one occurrence of a given type of action: e.g., only one
action for threatening, reloading, taking cover, dodging, etc.
These two domain-specific features are taken into account in
the class of problems SAS-PUT1 [22], whose notation T1

compresses two output restrictions: “Totally ordered” (T) and
“Type set isomorphism” (T1). (T) satisfies (1) while (T1)
satisfies (2). In this paper, we first recall the SAS-PUT1

planning framework and describe the linear time algorithm
P phase by phase. We then show the performance of a C++
implementation of P on three realistic benchmarks which are
SAS-PUT1 versions of the commercial video games Red
Dead Redemption 2 [23], Assassin’s Creed: Origins [24] and
Horizon Zero Dawn [25].



A pre post prv Explanation
a0v0 v0 = 1 v0 = 0 ⟨u, u, u⟩ StoreHaystack
a1v0 v0 = 0 v0 = 1 ⟨u, 0, u⟩ TakeHaystack
a2v0 v0 = 1 v0 = 2 ⟨u, 0, u⟩ FillFeeder
a0v1 v1 = 1 v1 = 0 ⟨u, u, u⟩ DropBucket
a1v1 v1 = 0 v1 = 1 ⟨0, u, u⟩ TakeBucket
a1v2 v2 = 0 v2 = 1 ⟨u, 1, u⟩ FillBucket with Water
a2v2 v2 = 1 v2 = 2 ⟨u, 1, u⟩ FillTrough
v0 : Haystack, Dv0 = {0 : stored, 1 : inHands, 2 : inFeeder}.
v1 : Bucket, Dv1 = {0 : onTheF loor, 1 : inHands}.
v2 : Water, Dv2 = {0 : inSource, 1 : inBucket, 2 : inFeeder}.

TABLE I
THE HORSE BREEDER’S ACTIONS IN RDR-2.

A. Background

We use notations from [26] throughout this paper. The
Simplified Action Structure (SAS) and its Extended (SAS+)
version represent states with a set M of m variables each
of which can take at most n discrete values or be undefined;
we note Dv the set of values of state variable v. Three sets
of state variables are used to represent the conditions of an
action: (1) postconditions (post) define new values for some
state variables, (2) preconditions (pre) requires specific values
for all the state variables which values are modified in the post-
conditions, and (3) prevail conditions (prv) requires specific
values for some state variables which are not preconditions and
therefore are not postconditions either. An action is applicable
in a state iff its preconditions are consistent with their values
in that state; applying an action in a state changes the values
of all the state variables of its postconditions while prevail
conditions remain unchanged. SAS differs from SAS+ by
adding two restrictions which are relevant to our application
domain: an action can only change a state variable from one
defined value to another defined value (S6), and no initial or
goal state variable can be undefined (S7).

A plan is a sequence of actions such that any state resulting
from applying an action of the sequence is consistent with the
next action in the sequence; a plan solves the planning problem
made of the initial and goal states (s0, s⋆) and a set of action
types iff (1) any action in the plan is a distinct instance of
an action type of the planning problem, (2) the first action
is applicable in s0, (3) and applying the last action of the
sequence results in s⋆.

Actually, commercial video games that have implemented a
planner to control their Non-Playable Characters (NPCs) in
real-time [27] are facing the general intractability of plan-
ning [28]. They apply restrictions to frame their planner and
to respect the processing budget, but their planning problems
remain intractable [21], [29]. The approach of [26] and [22]
to break the intractability is to use restrictions to frame
the planning problems, instead, in order to create tractable
classes of problems. In particular, the class of problems SAS-
PUT1 [22], described in the next subsection, is relevant to our
framework.

B. The Class of Problems: SAS-PUT1

The class of problems SAS-PUT1 is composed of the
restrictions: (Post-uniqueness) no two distinct action types
can change the same state variable to the same value (P),
(Unaryness) each action type changes the value of exactly one
state variable (U), (Totally ordered) the action plan is totally
ordered (T) and (Type set Isomorphism) the same action does
not occur twice in the action plan (T1). The restrictions (P)
and (U) are input restrictions while (T) and (T1) are output
restrictions.

Tab. I presents an example of this class of problems: the
Horse Breeder, which is a benchmark based on Red Dead
Redemption 2 (RDR-2). The actions are unary because their
post-condition affects only one state variable, and they are
post-unique because the same post-condition does not occur
twice. Due to these two restrictions, (P) and (U), each action
is identifiable with the pair (vi, p). We thus identify them with
the format apvi as it can be seen in the column “A” of Tab. I.
This problem is (T1): for any instance (s0, s⋆) of the problem,
the minimal solution plan, i.e. the solution plan having the
least number of actions between s0 and s⋆, does not contain
the same action twice. Eventually, the actions of the problem
are partially-ordered, but any partial-ordered plan can easily
be totally ordered with a topological sort [30] so as to respect
the output restriction (T).

C. Linear time algorithm: P
Any SAS-PUT1 planning problem can be solved by a

correct and complete linear-time algorithm denoted P [22].
P benefits from a pre-processing that takes advantage of (P)
and (U). During this pre-processing, an identifier, two prede-
cessor sets, and two getters-setters of possible successors are
assigned to each action. Actions are also stored in a hashing
table. P plans backwards using the identifiers of the actions
and their predecessor sets in order to find a minimal and totally
ordered solution plan solving the planning problem formed by
s0 and s⋆. To do so, P works in 3 phases:

Phase 1: For each vi ∈ M, if s0[vi] ̸= s⋆[vi], then P builds
a chain of actions on vi between s0[vi] and s⋆[vi]. A chain of
actions on vi is a sequence of post-unique and unary actions
totally ordered with respect to their post-pre dependency only.
For example with Tab. I, ⟨a1v0

, a2v0⟩ is a chain of actions
between v0 = 0 to v0 = 2, and ⟨a1v2 , a

2
v2⟩ is a chain of actions

between v2 = 0 and v2 = 2. At the end of phase 1, we have a
partial-ordered plan (D,⪯pre), with D the set of actions that
are part of a chain of actions and a partial-order ⪯pre that
represents the post-pre dependencies between the actions of
D.

Phase 2: P checks the prevail-conditions of each action a
of D using the set of predecessors of a having a post-prv
dependency. For each predecessor predprv(a), if predprv(a)
is already in D, then predprv(a) is simply ordered before a
with the partial-order ⪯prv: pred(a) ⪯prv a. A successor of
the predecessor by post-pre dependency succpre(predprv(a))
may threaten the prevail-condition of a, in that case a
must be ordered before succpre(predprv(a)): a ⪯threat



succpre(predprv(a)). If predprv(a) is not in D, then P builds
a chain of actions between the start and the unsatisfied prevail-
condition of a. The last action of this chain will be predprv(a)
and it is ordered before a. Then P builds a chain of actions
between the unsatisfied prevail-condition of a and the start.
The first action of this chain, if not empty, is the successor of
predprv(a) and threatens the prevail-condition of a, therefore
a is ordered before succpre(predprv(a)). The actions of the
two newly built chains are added to D and their prevail-
conditions must be checked as well. At the end of phase 2,
we have a correct and minimal partial-ordered plan (D,⪯),
with D the set of actions found during phase 1 and 2, and ⪯
a partial-order grouping ⪯pre, ⪯prv and ⪯threat.

Phase 3: P topologically sorts (D,⪯) to return (D,≺), a
minimal and totally-ordered action plan with ≺ the total-order
between the actions of D.

For the details of the algorithm, the reader shall refer to [22].
Let consider the problem (s0 = ⟨0, 0, 0⟩, s⋆ = ⟨0, 0, 2⟩) for the
Horse Breeder (Tab. I). During phase 1, P builds only
one chain of actions: ⟨a1v2

, a2v2⟩, because s0[v2] ̸= s⋆[v2].
We have D = {a1v2 , a

2
v2}. During phase 2, a1v2 has one

predecessor by post-prv dependency: a1v1
, which is not in

D. Therefore, P builds a chain from s0[v1] to prv(a1v2)[v1]:
⟨a1v1⟩. The last and only action of the chain a1v1 is ordered
before a1v2 : a1v1 ⪯prv a1v2 . Then P builds the chain from
prv(a1v2)[v1] to s0[v1]: ⟨a0v1⟩. a0v1 is the first action of the
chain and is a successor of a1v1

. a0v1 threatens prv(a1v2)[v1],
therefore: a1v2 ⪯threat a0v1

. This order ensures a1v2 will be
topologically sorted before a0v1 during phase 3. a0v1 and a1v1
are added to D. Then, a2v2 ∈ D has the same prevail-condition
as a1v2 , thus, like a1v2 , a0v2 is ordered after a1v1 and before
a0v1 . The actions a0v1 and a1v1

do not have any defined prevail-
conditions. During phase 3, P performs a topological sort to
return the totally-ordered plan: ⟨a1v1

, a1v2 , a
2
v2 , a

0
v1⟩, which is

the minimal solution plan solving the problem. To summarize
this example, the Horse Breeder needs the bucket in hands
to fill the bucket then the horse trough, and the threat is that the
Horse Breeder drops the bucket before any filling actions,
which would obviously not be correct.

II. REALISTIC BENCHMARKS AND RESULTS

In this section we introduce 3 concrete benchmarks that we
created inspired by the following commercial video games:
Red Dead Redemption 2 (RDR-2) [23], Assassin’s Creed:
Origins (ACO) [24] and Horizon Zero Dawn (HZD) [25].
The benchmarks are named after those of the games. We
present the world representation, some operators and some
starts and goals for each game. Each planning problem thus
formed is solved with plans of 1 to 10 actions. The section is
organized as followed: RDR-2, ACO and HZD are introduced;
Then, we present the experiments we carried out to study
the performances of P . Finally, we explain the results and
conclude.

A. Realistic Benchmarks

a) Red Dead Redemption 2 (RDR-2): It was released
by Rockstar Studios® in October 2018 [23]. It is an action-
adventure and open-world video game that takes place in
Southern United States in the late Wild West era, in 1899. The
player plays as Arthur Morgan, an outlaw member of the Van
Der Linde gang who must deal with the decline of the Wild
West whilst attempting to survive several different adversaries
like the government forces, the rival gangs, etc. This very
successful video game [31] has NPCs of great quality which
improves credibility and dynamism of the virtual world of
RDR-2 [32].

Videos of NPCs’ daily life can be found on-line and show
the details of their behaviors. At the time stamp 5:36 of the
video [33], we follow a Horse Breeder that is off to work.
He goes to feed his horses by filling the water trough first and
then the feeder. Tab. I presents a possible SAS-PUT1 set of
actions for the Horse Breeder. Similar to the video, our
version of the Horse Breeder can interact with a bucket
and the haystacks in order to fill the water trough and the
feeder for his horses. Then, his work goal is to feed the
horses: s⋆(FeedHorses) = ⟨2, 0, 2⟩. The main difficulty in this
representation is to ensure the NPCs do not carry a haystack
and the bucket at the same time as it is physically demanding.
Hence the prevail-conditions: prv(a1v0)[v1] = prv(a2v0)[v1] =
0 and prv(a1v2)[v1] = prv(a2v2)[v1] = 0. With the goal
s⋆(FeedHorses), it is not possible for the Horse Breeder
to fill the feeder first, however. The planner will necessary
return a plan whose first subgoal is to fill the water trough
then the feeder. Because the action FillHorseFeeder sets
(v0 = 2) permanently, which means the prevail-condition
of TakeBucket can never be satisfied after FillHorseFeeder
while planning. If we want to fill the feeder first anyway, then
we need two subgoals: s⋆(FillFeeder) = ⟨2, 0, s0[v2]⟩ and
s⋆(FillTrough) = ⟨s0[v0], 1, 2⟩. Once the Horse Breeder
has finished the goal s⋆(FillFeeder), then he no longer carries
an haystack. Therefore, the achievement of s⋆(FillFeeder) set
v0 to the value 0. Same for s⋆(FillTrough), once achieved
v2 can be reset to 0 for the Horse Breeder. It works the
same way with s⋆(FeedHorses). In a way, the state variables
HayStack and Water can be seen as targetable objects. Once
in the feeder, the haystack is no longer targetable. That is, the
Horse Breeder has to target another one if he wants to
repeat the process. This is the same thing for the water, once
in the water trough, it is no longer usable and the Horse
Breeder needs to find a water source to refill the bucket.
Hence, if the Horse Breeder calls the planner again to
s⋆(FeedHorses) with new targeted items, then s0[v0] = 0 and
s0[v2] = 0 necessarily.

Similar to the Horse Breeder, we have designed 6
more NPC types for RDR-2: the Farrier, whose goals
are s⋆(Shoeing the horse) and s⋆(Forge horseshoes); the
Native hunter, whose goal is to s⋆(Hunt); the Bandit,
whose goal is to s⋆(Rob a bank); the Innkeeper, whose
goals are to s⋆(Serve a drink) and s⋆(Assing a room); the



A Pre Post Prv Explanation
a1v0 v0 = 0 v0 = 1 ⟨u, u, u, u, u, u, 0⟩ BuyFood(?pos)
a2v0 v0 = 1 v0 = 2 ⟨u, u, u, u, u, u, u⟩ Eat
a1v1 v1 = 0 v1 = 1 ⟨u, u, u, u, u, u, 0⟩ BuyDrink(?pos)
a2v1 v1 = 1 v1 = 2 ⟨u, u, u, u, u, u, u⟩ Drink
a0v2 v2 = 1 v2 = 0 ⟨u, u, u, 0, u, u, 0⟩ Store (?item,?pos)
a1v2 v2 = 0 v2 = 1 ⟨u, u, u, 0, u, u, 0⟩ Take (?item,?pos)
a0v3 v3 = 1 v3 = 0 ⟨u, u, u, u, u, u, u⟩ StopWandering
a1v3 v3 = 0 v3 = 1 ⟨u, 2, u, u, u, u, 0⟩ HaveAWalk
a0v4 v4 = 1 v4 = 0 ⟨u, u, u, u, u, u, u⟩ StopDebate
a1v4 v4 = 0 v4 = 1 ⟨u, u, u, u, u, u, u⟩ Debate(?with, ?pos)
a1v5 v5 = 0 v5 = 1 ⟨u, u, u, 0, 0, u, 0⟩ Rest (?pos)
a0v6 v6 = 1 v6 = 0 ⟨u, u, u, u, u, u, u⟩ EndWork
a1v6 v6 = 0 v6 = 1 ⟨2, 2, 1, 0, u, u, u⟩ Work (?item, ?pos)
v0 : Hunger, Dv0 = {0 : noFood, 1 : hasFood, 2 : fed}.
v1 : Thirst, Dv1 = {0 : noDrink, 1 : hasDrink, 2 : hydrated}.
v2 : hasItem, Dv2 = {0 : false, 1 : true}.
v3 : Wandering, Dv3 = {0 : false, 1 : true}.
v4 : Debating, Dv4 = {0 : false, 1 : true}.
v5 : isRested, Dv5 = {0 : false, 1 : true}.
v6 : Working, Dv6 = {0 : false, 1 : true}.

TABLE II
THE CITIZEN’S ACTIONS IN ACO.

Dancer, whose goal is to s⋆(Dance); and, finally, the Drunk
Citizen, whose goal is to s⋆(Forget). In total, there are 56
actions, 30 state variables and the biggest variable domain has
5 different values.

b) Assassin’s Creed: Origins: It is an action role playing
video game developed by Ubisoft® Montreal and released in
October 2017 [24]. The tenth installment of the Assassin’s
Creed serie sets in Egypt, near the end of the Ptolemaic period
(49–43 BC), where the player plays as a Medjay named Bayek
of Siwa. In order to make their magnificent open-world feel
more alive and believable, the developers went in great detail
with their NPCs, giving them autonomy and freedom through
a Goal-Oriented AI system [34]. Soldiers, citizens, and even
the fauna, have goals and needs that the player can witness or
feel while playing [35].

As there are a lot of different types of citizens in ACO,
we have decided to create a base-NPC named Citizen.
It is possible to create more specific NPCs that can inherit
the citizenship. As an example, the Horse Breeder of
RDR-2 could be implemented in ACO and it can inherit
the actions of the Citizen. We gave our Citizen the
possibility to eat, drink, buy some food, wander, debate and
work (Tab. II). Although our action representation is quite
generic, we have added some parameters to some of them
(BuyFood, BuyDrink, Store, Take, Debate, Rest and Work)
so as to allow some contextualization. For instance, if the
NPC is a musician who like to play in the street, then we
can contextualize: Work(?Luth,?MarketPlace). We can also
represent a group of musicians: it is merely a set of NPCs
playing different instruments at the same place. We added
these parameters in order to illustrate that it is possible to
contextualize an action without modifying the overall SAS
representation. Furthermore, we want to point out that MoveTo
actions must not be represented in any SAS-PU representation.
MoveTo actions are related to pathfinding, representing them
in any SAS-PU representation is almost impossible as it is

A Pre Post Prv Explanation
a1v0 v0 = 0 v0 = 1 ⟨u, u, u, 1, 1, 0, 0⟩ ScanOreDeposit(?from)
a1v1 v1 = 0 v1 = 1 ⟨1, u, u, u, u, 0, 0⟩ ShareOrePos(?list)
a1v2 v2 = 0 v2 = 1 ⟨1, u, u, 1, 1, 0, 0⟩ HarvestOre(?type,?pos)
a2v2 v2 = 1 v2 = 2 ⟨u, u, u, 1, 1, 0, 0⟩ RefineOre
a3v2 v2 = 2 v2 = 3 ⟨u, u, u, 1, 1, 0, 0⟩ StoreRefinedOre(?pos)
a1v3 v3 = 0 v3 = 1 ⟨u, u, u, u, u, 0, 0⟩ Rest(?pos)
a1v4 v4 = 0 v4 = 1 ⟨u, u, u, 1, u, 0, 0⟩ Repair
a0v5 v5 = 1 v5 = 0 ⟨u, u, u, u, u, u, 0⟩ ScanDisturbance
a0v6 v6 = 1 v6 = 0 ⟨u, u, u, u, u, u, u⟩ Attack
v0 : oreDepositFound, Dv0 = {0 : false, 1 : true}.
v1 : oreDepositPosShared, Dv1 = {0 : false, 1 : true}.
v2 : harvestRoutine,
Dv2 = {0 : none, 1 : oreHarvested, 2 : oreRefined, 3 : oreStored}.
v3 : isCharged, Dv3 = {0 : false, 1 : true}.
v4 : system, Dv4 = {0 : damaged, 1 : operational}.
v5 : disturbanceExist, Dv5 = {0 : false, 1 : true}.
v6 : isThreatened, Dv6 = {0 : false, 1 : true}.

TABLE III
ACTIONS OF THE A-M IN HZD.

very likely to not respect the post-uniqueness. A position to
reach can merely be added as a parameter. Indeed, almost
every action is preceded by a MoveTo, so it can implicitly be
added inside the animation of the action.

For our experiment, we give the Citizen one initial state
s0 = ⟨0, 0, 0, 0, 0, 1, 0⟩ which corresponds to the beginning
of a day. He has not wandered, debated nor worked yet. He
is rested, however, and he is thirsty and hungry. We give
him 8 goals such as s⋆(Work) = ⟨2, 2, 1, 0, s0[v4], 1, 1⟩ or
s⋆(BuySupplies) = ⟨1, 1, s0[v2], s0[v3], s0[v4], s0[v5], 0⟩
or s⋆(EatAndDebateWhileWandering) =
⟨2, 2, s0[v2], 1, 1, s0[v5], 0⟩. During the experiment,
Citizens are asked to find an action plan from s0 to
one of these goals.

c) Horizon Zero Dawn: It is an action role play game de-
veloped by Guerrilla Games® and released in early 2017 [25].
The player plays a huntress named Aloy in a world full of
high-tech colossal machines that have appeared at the fall of
human civilization. These machines are categorized in classes:
the acquisition class, whose role is to harvest resources; the
combat class, whose role is to guard vulnerable machines from
hunters; the recon class, whose initial role was to search for
suitable terraforming land, they finally serve as guards and
lookouts in the game; the transport class, whose role is to help
acquisition machines to move large amount of resources. There
are other types of machines whose description can be found
in [36]. In this paper, we only present a SAS-PUT1 version of
the acquisition machines, which we henceforth denote A-M.
A-Ms harvest resources of the HZD world. Their role is crucial
as they assist the terraforming program and allow for the
further construction of machines. This description, however,
is more folkloric than anything else as this is not what really
happens in-game. Although there exist stunning combat scenes
in HZD, which are mainly due to great animations, the overall
behavior of the machines can be disappointing to those who
seek consistency with the life goal of these machines. Through
planning, however, it is possible to give more depth in their
behavior to fit their life goals better. Tab. III, for instance,



gives a possible SAS-PUT1 representation for the A-M.
In our experiment, the A-Ms only have one goal:

s⋆(Harvest) = ⟨1, 1, 3, 1, 1, 0, 0⟩. Depending on the initial
state, the A-M must find an adapted action plan to accom-
plished its only goal. We defined 6 different initial states for
our simulation. For example: s0 = ⟨1, 1, 1, 1, 0, 0, 1⟩ which
means the A-M knows some ore positions, these positions
are shared with its counterpart and it has already harvested
some. The A-M is also charged, damaged and under attack.
The solution plan in this example is ⟨a0v6 , a

1
v4 , a

2
v2 , a

3
v2⟩, i.e.

the A-M’s plan is to fight back, then repair itself before going
back to work. Another possible start is s0 = ⟨0, 0, 0, 1, 1, 0, 0⟩
which states that the A-M is ready to work but it has not
started yet and does not know the position of ore deposits. The
minimal solution plan is ⟨a1v0 , a

1
v1 , a

1
v2 , a

2
v2 , a

3
v2⟩, that is the

A-M’s plan is to search for ore deposit, share the ore position
and, finally, harvest, refine and store the ore.

B. Results

The experiments were performed with the following con-
figuration: AMD Ryzen™ 7 2700X (8-Core) CPU (3.7GHz),
32Gb of RAM and Windows 10 (64 bits); P was written in
C++14 with default settings for Microsoft Visual Studio 2019.
The question we wish to answer is: “How many NPCs, in
RDR-2, ACO or HZD respectively, can get a real time plan
by our C++ implementation of P ?”. For each benchmark, with
respect to their description given in subsection II-A, P has to
provide a minimal solution plan to an increasing number of
NPCs as quickly as possible. The goals (or starts) given to the
NPCs, among those defined, varied at each call of P . Then,
the runtime of P to return all the requested plans should not
exceed 1.67ms, which represents the real-time constraint of
a 60 FPS1 video game2. The results of these experiments are
given in Figure 1 and in Table IV. The x-axis of Figure 1
gives the number of NPCs asking for a plan, and the y-
axis gives the runtime in millisecond of P to provide all the
requested plans. Each point of the Figure is the average of
about 20 repetitions. As an example, the red triangle located
at coordinate (2, 720, 000; 1.0) means that the task of P was
to provide 2, 720, 000 plans in real-time to NPCs in RDR-2,
and, after repeating this task 20 times, the average runtime
of P is 1.0ms. The blue squares represent the HZD data, the
red triangles those of RDR-2 and the yellow crosses those of
ACO.

Each curve grows linearly and this linearity is explained
by the fact the worst-case time complexity of P is not a
function of the number of NPCs. The slope of these curves is
merely the ratio of the runtime growth to the number of NPCs
growth, which means that the slope highlights the difficulty
of P to solve a problem. The steeper the slope, the more
difficult the problem. HZD is thus the hardest problem for
P , followed by RDR-2 then ACO. Table IV highlights the
causality of this difficulty and gives a value to these slopes.

1FPS: Frame per Second.
260FPS means two frames are separated by 16.67ms. Plus, only 10% of

the processing budget are granted for AI, hence the threshold 1.67ms.

Benchmark Linear combination of x avg(|R|)
HZD 0.0676405 + (3.7637 · 10−7)x 12.6667
RDR-2 0.0313575 + (2.46048 · 10−7)x 8.16667
ACO 0.0157308 + (1.54132 · 10−7)x 6.6667

TABLE IV
RUNTIME PERFORMANCES OF P WRT. THE LINEAR COMBINATIONS OF THE

NUMBER OF NPCS (x) CONSTRUCTED WITH THE SAME DATA AS FIG. 1.

Let R the set of orders between the actions of the solution
plan, Table IV gives the average number of orders (avg(|R|))
of each benchmark. This table also gives the linear regression
of each data set, and the argument x refers to the number
of NPCs. The linear regressions are the linear functions of
the three curves in Figure 1, they give us the slope value of
each curve. The results of this table are sorted in descending
order of avg(|R|) and the slopes are sorted equivalently, which
entails that the slopes are correlated with the average number
of orders between the actions. It is consistent with the worst-
case time complexity of P which is linear in the number of
actions in the problem (|A|) plus the number of orders between
the actions of A (|RA|): O(|A|+ |RA|) [22]. In other words,
the more orders, the more difficult for P . It explains why
HZD is the most difficult problems for P despite being the
one with the less state variables and with the less operators.
It is in fact more constrained than the other two, and besides,
these many constraints are directly linked to the number of the
defined prevail-conditions (cf. Table III). Finally, the key result
of these data is that our C++ implementation of P was able to
provide a plan of 1 to 10 actions to 3.4 millions of NPCs in less
than 1.5ms, for each of the three realistic benchmarks, which
is impressive and definitely respect the real-time constraint.

III. CONCLUSION

Our benchmarks prove that it is possible to represent
realistic problems with the class of problems SAS-PUT1. The
creation of actions can be tricky, however, as some conces-
sions may be required to stay within the class of problems.
Nonetheless, it is worth the effort because such problems are
solved by P which, once optimized, can provide a plan of 1
to 10 actions to millions of NPCs in real-time.

One of the reasons explaining the runtime performances of
P is the pre-processing, or setup. We have setup a very rig-
orous memory management (malloc, memset, hashing table),
and we have allocated and filled data structures as much in
advance so as to not lose time while planning. This setup
helped to get the smooth curves in Figure 1. Then, our C++
implementation of P uses pointers and references, i.e. it plans
with light objects, and this added to the qualibration of the
memory space made during the setup certainly played a role
in these performances.

Eventually, the main conclusion in light of these perfor-
mances is that planning in real-time, with plans having up to
10 actions, is feasible with P on CPU and on a large scale
with current technologies.
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Fig. 1. The performances of P solving RDR-2, ACO and HZD.
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“La planification sas sous forme de tri topologique,” in CNIA 2022:
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