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Abstract—Recent advances in research show interesting po-
tential in using deep neural networks to perform the task of
radar target detection. For radar applications, especially in the
military domain, the detection method is designed to follow the
Neyman-Pearson criterion with the aim to maximise the detection
probability while keeping the false detection rate controlled. While
standard CFAR (Constant False Alarm Rate) detection is designed
to fit this need, it is not the case of neural networks that do
not naturally prioritize detection over false alarm rate. In this
paper, we propose an overview and a comparison of different loss
functions, namely Tversky Loss and a loss based on constrained
optimization, for training deep CNNs on the problem of radar
target detection, with the objective to get a better compromise
between false alarm rate and detection. We then demonstrate
that the models obtained with these methods outperform the
baseline CNN model as well as classic CFAR detectors. The
developed models are compared on the detection probability
(PD) and false alarm probability (PFA) criteria on exoclutter1

environments. Model evaluation on thermal noise is an important
step for validating a detector and is rarely explored in related
research. It is found that training the neural network with a
loss function constrained by the expected false alarm probability
provides higher detection probability at a fixed PFA than the
baseline models. The advantages and shortcomings of training
the detector with the Tversky loss function are also highlighted.

Index Terms—Radar, target detection, deep learning, optimiza-
tion

I. INTRODUCTION

Target detection is one of the most fundamental problems
in radar signal processing. On exoclutter environments, target
detection consists in solving the following binary decision
problem :{

H0 : y(t) = ν(t) : absence of target
H1 : y(t) = x(t) + ν(t) : presence of target

(1)

where y(t) is the received signal, ν(t) is the thermal noise
signal and x(t) is the signal of the target. This paper addresses

1Exoclutter refers to a situation where there is an absence of unwanted
echoes.

detection in the setting of a Pulse-Doppler radar. The problem
of target detection is optimally solved with statistical signal
processing methods such as CFAR [1], but these methods
require strong assumptions about environment and target unicity
that, in real situations, are not always observed.

The use of deep learning applied to radar target detection
has risen in recent years, having shown promising results.
However, a critical aspect that remains underexplored is the
ability to build reliable detectors and provide performance
guarantees. Our work contributes to filling this gap in research
by investigating ways to train the model with the goal of
satisfying a constraint on PFA. Moreover, scarce are the
research works solely focusing on deep learning-based detector
performance evaluation over exoclutter environments. This
crucial assessment needs to be performed in order to validate
neural detectors operationally.

It is found that radar detection performance improves when
training the neural network with different loss functions than
the ones that have been focused on in related research.

II. RELATED WORKS

In recent years, the ever-increasing available computation
power and existence of large datasets have enabled deep learn-
ing models to revolutionize the way numerous problems are
approached, including natural language processing, time series
forecasting, computer vision, etc. In particular, convolutional
neural networks (CNNs) have been successfully used to perform
different vision tasks, such as image classification ( [2], [3],
[4]) or segmentation ( [5], [6], [7]).

The problem of radar target detection on range-Doppler maps,
in the operational setting used in this paper, can be expressed
as a single-point image segmentation problem. Indeed, after
signal processing, the target appears as a singular point in
a 2D array. As such, the use of classic image segmentation
architectures applied to radar signal processing is of particular
interest. After neural network inference, the post-processing
chain performs non-max suppression in order to prevent
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eventual small inaccuracies of around one pixel in the predicted
segmentation map.

Today, radar target detection is performed using Constant
False Alarm Rate (CFAR) detectors [1]. These detectors
estimate the variance of thermal noise in a neighbourhood
of the cell under test (CUT) and announce a detection if the
value of the CUT is superior to a certain threshold, which
is normalized with respect to the estimation of local noise
power. The threshold is computed with respect to the estimated
noise variance. CFAR detectors, under strong assumptions,
are statistically optimal. However, the assumptions in which
CFAR detectors are optimal (absence of clutter2 and/or side
lobes, unicity of target, range resolution superior to target
size. . . ) are seldom met, resulting in suboptimal target detection
performance. Even tough techniques (GO-CFAR, SO-CFAR...)
[8] have been developed to mitigate this, there exists a margin to
develop detectors more polyvalent than CFAR-based detectors.

Radar signal processing has also been subject to deep
learning-based innovation. Deep learning has been successfully
used to perform radar waveform recognition [9], automatic
target recognition [10], among others. The works of [11], [12]
leverage convolutional neural networks (CNNs) to detect targets
in the 4D space (range, Doppler, azimuth and elevation), while
[13] and [14] focus on CNN detectors on range-Doppler maps.
The works of [15] implement a Faster R-CNN network ( [16])
in order to automatically detect marine targets.

The development of neural networks capable of guaranteeing
a fixed PFA has also been the object of research. Research by
[17] promotes a CFAR neural detector by training a network
to minimize a statistical distance between the network output
of two examples belonging in the H0 hypothesis (Equation
1). The work of [18] leverages a CNN that detects and
masks a target from a range-Doppler map in order to improve
the noise estimation performed by a classic CFAR detector.
Finally, [19] introduces a novel constrained loss function
related to the Neyman-Pearson criterion for marine target
detection. The network of [19] outperforms CFAR detector
and a CNN trained using the cross-entropy loss. We propose
to extend this comparison of a constrained loss against other
loss functions. Furthermore, even though we aim to develop a
polyvalent detector, the scope of our analysis is restrained to
the exoclutter scenario, where comparing detection and false
alarm performances is straightforward.

III. METHODOLOGY

A simulation model that is able to generate realistic radar
echoes is used to create the data necessary for training the
model. The radar signal generation tool is validated and
generates data which is representative of real data. The benefits
of using such a generator are threefold : first, our ability
to generate data is only limited by computation and time
constraints. Second, it can be chosen to produce data that

2Clutter is defined as unwanted echos received by the radar, e.g. coming
from the ground. In our operational setting, ground clutter is expected to cover
roughly half of the range-Doppler map.

represents the distribution of real-world applications. Finally,
the correctness of the ground truth labels is guaranteed.

The data consists in 100000 range-Doppler maps on which
have been added 5 simulated targets. The number of 5 is chosen
with the aim of increasing the number of positive examples
in the training dataset, thus reducing data imbalance. Varying
the number of targets on a training example, by, for example,
randomly choosing a number of targets during simulation, and
shifting the variance of thermal noise might be of interest in
future work. The range-Doppler maps are generated according
to a number of scenarii, including both endoclutter and
exoclutter situations. The motivation for training the model on
various noise and clutter profiles resides in the will to create a
model able to generalize detection on exoclutter environments
to more complex ones. Each target has a distance and velocity
that is randomly drawn inside the operational domain according
to a bivariate uniform law. Additionally, the SNR (signal-to-
noise ratio) of the generated images is tuned by varying the
radar cross section (RCS) of the targets, thus effectively varying
the reflected power received by the radar.

Research works such as [10] and [11] have shown that
neural networks, and especially CNNs, are adapted to the task
of radar target detection. In accordance with these findings, a
CNN architecture is used to perform the task. As the problem
of target detection on range-Doppler maps can be formulated
as an image segmentation problem, a classic U-Net encoder-
decoder structure [6] is leveraged. The U-Net architecture
consists in several encoding stages that express the input in a
lower-dimensional latent space, which are followed by decoding
stages that take the input back to its original resolution. Any
two pair of encoding and decoding stages of the same rank k
are connected by a shortcut connection, that brings back the
necessary spatial information. The shortcut connection is an
Add operator taking as inputs the features map for rank k of
the encoder and decoder. The range-Doppler maps are resized
to the classical tensor dimensions of 256× 256 and given as
input to the model. The architecture of the network is detailed
in Figure 1. The sigmoid activation function is applied to the
final layer activation values, outputting a value between 0 and
1 representing a confidence value of classifying the pixel as
background noise or as a target. The neural network has a total
of 2, 121, 481 parameters.

The network is trained on the aforementioned simulated
range-Doppler maps. A training / validation split of 80/20%
is used. The test data is generated on-the-fly, and therefore
has not been used during training. It consists in a singular
target in a simulated exoclutter environment. Neural network
testing is performed with 20,000 generated images. The
performance metrics such as detection probability PD and
false alarm probability PFA are computed after the detection
post-processing chain used in the radar detection pipeline. As
such, these metrics are representative of detection performance
in real scenarii.

Network training is performed on a Nvidia GTX 1080 Ti
using the Adam optimizer and a learning rate decreasing from
7 × 10−3 to 5 × 10−5 for 150 epochs. Model values with



Fig. 1. Architecture of U-Net

Fig. 2. Evolution of training and validation loss for the baseline CNN model

the lowest validation set loss are selected, in order to reduce
overfitting. The training and validation loss evolution curves
for the baseline CNN model trained with the Dice loss function
is shown in Figure 2. We have not encountered any specific
difficulties for model training, as weight convergence remains
stable for any training run.

Loss function

A large number of research works applying CNNs to the
task of radar target detection use popular loss functions such as
cross-entropy, weighted cross-entropy or the Dice coefficient
for training. Even though these choices are valid and lead to
good detection performances, they are not designed to fit the
very specific radar detection problem. As such, it remains to be
seen whether training the network with a different loss function
can improve PD at a fixed PFA over baseline models. It has
been previously shown [20] that using the Dice coefficient (2)
as a loss function during model training leads to improved
segmentation accuracy over weighted cross-entropy loss in the
case of imbalanced data. Due to the sparse nature of the data,
where the positive-to-negative label ratio is 7.6× 10−5, it has

been chosen to use Dice coefficient as a baseline.

D(ŷ, y) =
2
∑N

i ŷiyi∑N
i ŷ2i +

∑N
i y2i

(2)

where ŷi and yi are respectively predicted pixels and ground
truth pixels. N is the total number of pixels in an image. ŷi
belongs to the interval ]0; 1[, while yi belongs to the set {0, 1}.
When using mini-batch stochastic gradient descent, which is
the case of this research work, the value D is calculated as the
average of the Dice coefficient for every image in a batch of
size m. The CNN trained using the Dice Loss DL = 1−D
as a cost function will be referred to further as NN-Dice.

We formulate the hypothesis that convolutional neural
networks trained using the Dice coefficient as a loss function
show limits in performance due to the fact that the Dice
coefficient aims to maximize the intersection over union of
ground truth and prediction pixels. As such, the loss function
assigns the same weight to false negatives (missed detections)
and false positives (false alarms). As the results presented in
Section IV show, a network trained using the Dice coefficient
results in a high-precision and low-recall detector. It is then of
interest to train a detector that exhibits a higher recall, while
staying under the required maximum number of false alarms.

We introduce the use of the Tversky Loss [21] during training
of the model. Tversky Loss is an extension of Dice loss with
added coefficients which enable to control the importance
that is given to false positives and false negatives during
training. Tverksy Loss has been investigated in automotive
radar applications in [22]. Using previous notation, the Tversky
Index TI can be written as follows :

TI =

∑N
i ŷiyi∑N

i ŷiyi + α
∑N

i ŷi(1− yi) + (1− α)
∑N

i (1− ŷi)yi

The cost function that is optimized during training is
TL(ŷ, y) = 1 − TI(ŷ, y). It may be noticed that

∑N
i ŷiyi

represents true positives (TP),
∑N

i ŷi(1− yi) false positives
(FP) and

∑N
i (1 − ŷi)yi false negatives (FN). Thus, the

parameter α may be used to give more or less importance
to one or the other during training.

The hyperparameter α is found using a grid search and
selecting the model that maximizes PD at a fixed PFA. To the
best of the authors’ knowledge, Tversky Loss has not been
used during the training of neural networks in the context of
radar target detection.

The neural network trained using TL will be referred to as
NN-Tversky. As it shall be demonstrated in the results section,
using Tversky Loss improves the detection probability of the
algorithm. However, even though the false alarm rate remains
inferior to the value at which the CFAR detector is calibrated,
it remains unclear how to guarantee an expected false alarm
rate for neural detectors.

False alarm control

Radar detection systems operate under the constraint of
producing a fixed number of false alarms during a period
of time. The classical value is set at 1 false alarm (FA) per



Fig. 3. PFA at varying detection thresholds for the Dice loss function

minute. On exoclutter backgrounds, the dynamic threshold
computation guarantees —notwithstanding CFAR loss—a
statistically maximal PD at a fixed PFA. Thus, CFAR detectors
are, in that sense, reliable. However, deep learning detectors
do not classically take into account the constraint on PFA.
Neural detectors trained using Dice Loss or Tversky Loss can
be calibrated with respect to PFA by applying a threshold
filter over the output layer activations : indeed, the network’s
output layer activations represent the classification of each
pixel as a confidence value between 0 (background noise)
and 1 (target). Applying a threshold transforms these values
into a binary prediction map. In order to determine this
threshold, the neural network is then evaluated on a test set S1

containing varying thermal noise profiles but no target. The
pre-threshold confidence indexes of the network are stored
and PFA is computed applying a sliding threshold to these
values. The threshold is finally selected according to the desired
PFA. A representation of this false alarm threshold tuning for
the network trained using the baseline Dice loss function is
presented in Figure 3.

The research work of [19] shows that it is possible to develop
a loss function based on the Neyman-Pearson criterion in order
to train a neural network with respect to a fixed constraint, in
our case the false alarm probability. The goal of this constrained
optimization is to penalize the neural network for producing
an unwanted number of false alarms. As such, the constrained
detection problem (P) may be formulated as the following :

minimizew L(ŷ, y) = TL(ŷ, y)

s.t. FP (ŷ, y) ≤ s
(P)

where w are the neural network weights, TL(ŷ, y) is the
Tversky Loss TL for prediction ŷ and ground truth y, and
FP (ŷ, y) =

∑N
i ŷi(1− yi). The inequality constraint can be

reformulated as an equality one:

minimizew L(ŷ, y) = TL(ŷ, y)

s.t. g(ŷ, y) = (
1

s
(FP (ŷ, y)− s))2 = 0

This cost function differs from the one used in [19] in
the fact that the network is also penalized for producing a

number of false alarms that is largely inferior to the threshold.
Indeed, setting the penalty to 0 for FP (ŷ, y) < s may result
in convergence to local minima where both PFA and PD are
close to 0. Particularly, when s is very low, the network may
struggle to address the constraint and fall into those local
minima. Furthermore, incentivizing the model to produce a
number of false alarms closer to the threshold incorporates
the idea of threshold calibration that is performed on classical
CFAR methods.

The constraint g(ŷ, y) may now be incorporated alongside the
objective function, in order to go from a constrained problem to
an unconstrained one. As such, the updated objective function
LP , using Tversky Loss as a proxy for detection probability,
is :

LP (ŷ, y, λ) = TL+ λg(ŷ, y) (3)

where λ is an estimate of the Lagrange multiplicator. The neural
network trained using Equation 3 will be further referred to as
NN-Lagrange.

IV. RESULTS

Fig. 4. PFA at various thresholds for NN-Tversky

Figure 4 shows the false alarm probability PFA for different
threshold values, for CNN detectors trained using the Tversky
loss function with α ∈ {0.1, 0.2, ..., 0.9}. It may be observed
that, for high values of α, the PFA stays high and only
decreases at a large threshold value. The differences between
PFA curves for various α is of interest in the setting of radar
target detection, as it shall be expanded upon in Section V.
For the scenario of this research work, with a singular target
on an exoclutter environment, it is decided to choose NN-
Tversky with the following hyperparameters : α = 0.6 and
threshold = 0.8.

Figure 5 displays PFA curves against threshold value for
the detectors that have been chosen for comparison : NN-Dice,
NN-Tversky and NN-Lagrange. PFA for thresholds 0 and 1
are not computed, since values are identical for all models
and would hamper figure readability. One may notice that NN-
Lagrange exhibits a larger PFA variation across the threshold
values in the computed range ([0.05; 0.95]) than NN-Dice and



Fig. 5. PFA at various thresholds

NN-Tversky - that is, NN-Lagrange can produce a higher
range of PFA values by threshold setting than the other loss
functions which seem limited to a narrower range. The final
layer activation threshold values are chosen according to the
expected number of false alarms.

Fig. 6. Detection probability as a function of SNR

Model CFAR NN-Dice NN-Tversky NN-Lagrange

PFA(×10−7) 1.64 0.951 1.15 0.573

TABLE I
PFA VALUES FOR DIFFERENT DETECTORS

It can be seen, from Figure 6, that NN-Lagrange provides
the best detection performances across all methods. All neural
detectors improve PD over the CFAR detector, which detection
probability is decreased by the CFAR loss resulting from a
potentially imprecise noise variance estimation due to the
limited number of noise samples. NN-Lagrange noticeably
outperforms NN-Tversky and NN-Dice. Indeed, while the

Fig. 7. Comparison of the inclusion of TL vs DL in the constrained objective
function

latter two have seen their final layer activation threshold fine-
tuned using detection on targetless thermal noise, NN-Lagrange
incorporates the constraint on the number of false alarms during
training. It is then straightforward to note that there is less
information loss with NN-Lagrange. It may also be seen that
NN-Tversky boasts a slightly higher detection performance
than NN-Dice. Again, this is due to the fact that the network
has been trained to produce a higher number of detections,
which can be leveraged by fine-tuning the detection threshold.

Table I shows the false alarm probability PFA for the
compared models. It can be appreciated that all neural network
detectors exhibit a lower PFA than CFAR. PFA values gravitate
around the same operating point, with the exception of NN-
Lagrange, which remarkably achieves both the highest PD and
the lowest PFA. The relative improvements of the studied loss
functions over CFAR can thus be validated.

Ablation study

An ablation study is performed in order to understand the
choice of the Tversky Loss TL instead of the Dice Loss
DL in the objective function for the constrained optimization
problem (P). Two networks are compared : NN-Lagrange,
which has been introduced earlier, and a neural network trained
by replacing the Tversky Loss TL by the Dice Loss DL :

LP (ŷ, y, λ) = DL+ λg(ŷ, y) (4)

Figure 7 shows that, for an identical PFA, the network trained
using TL in the objective function displays a higher PD than
the detector trained with DL. This difference in PD is explained
by the fact that the former network proposes more detection
candidates due to the nature of TL when α is close to 1. This
higher number of detection candidates has no influence on
PFA due to the constraint.



V. DISCUSSION

As it has been discussed in Section IV, NN-Tversky shows,
at a fixed PFA, higher detection performance than NN-Dice.
This superiority may be explained by the fact that the parameter
α Tversky Loss incorporates provides an additional degree of
liberty during the network calibration process. One is able to
select both the optimal α and the optimal final layer activation
threshold in order to maximize detection probability at a fixed
PFA. This versatility can also be used to calibrate the network
on other more difficult environments, containing perturbations
and/or interactions. However, selecting an optimal value of
α requires network retraining, while selecting an optimal
threshold is performed after training. Whether model training
for a specific α may be performed in little time, using, e.g.,
transfer learning, will be the subject of further investigations.

However, the hyperparameters yielding optimal performance
for NN-Tversky are empirically found and tuned and are
not backed by theoretical guarantees. NN-Lagrange addresses
this shortcoming by bringing a notion of stability, as the
network is trained to respect a given PFA. However, we
show that the constraint, while satisfied during training, is
not guaranteed to be at inference, because the loss function
is not computed. Giving theoretical PFA guarantees for CNN
detectors at inference time is still the object of research.

It is interesting to notice that, even though the network has
been trained on a dataset containing thermal noise as well as
ground clutter, in hopes of having a model capable of gener-
alizing to complex environments, the detection performances
do not decrease compared to a network that has been trained
on thermal noise alone. This can be explained by the fact that
adding ground clutter or other perturbations brings robustness
to the model.

VI. CONCLUSION

In this paper, a deep learning model trained to perform radar
target detection is proposed. Original loss functions that are
not commonly used in deep learning-based model training for
radar signal processing are introduced and their contributions to
improvements on detection probability and false alarm control
are highlighted.

The detection performances of the studied networks are
determined on a singular target detection over exoclutter
background scenario, which is the environment on which
the performance gains are supposed to be minimal compared
to the classical CFAR methods. It is shown that the neural
detectors outperform the CFAR baseline in this setting. The
next step, detection performance evaluation over more com-
plex environments (presence of ground clutter, interferences,
multiple targets, real data) will be the object of future research.
Improvements of using neural detectors over CFAR detectors
are expected to be much greater, as it has been noticed through
early experiments.
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