Minimax Strikes Back

Quentin Cohen-Solal
LAMSADE, Université Paris-Dauphine, PSL, CNRS
Paris, France
quentin.cohen-solal@dauphine.psl.eu

ABSTRACT

Deep Reinforcement Learning reaches a superhuman level of play
in many complete information games. The state of the art algorithm
for learning with zero knowledge is AlphaZero. We take another
approach, Athénan, which uses a different, Minimax-based, search
algorithm called Descent, as well as different learning targets and
that does not use a policy. We show that for multiple games it
is much more efficient than the reimplementation of AlphaZero:
Polygames. It is even competitive with Polygames when Polygames
uses 100 times more GPU (at least for some games). One of the keys
to the superior performance is that the cost of generating state data
for training is approximately 296 times lower with Athénan. With
the same reasonable ressources, Athénan without reinforcement
heuristic is at least 7 times faster than Polygames and much more
than 30 times faster with reinforcement heuristic.

CCS CONCEPTS

+ Computing methodologies — Reinforcement learning; Game
tree search; Heuristic function construction; Planning for de-
terministic actions; Multi-agent planning; Neural networks.

KEYWORDS

Minimax ; Reinforcement Learning ; Zero Learning ; Games ; Tree
Search

ACM Reference Format:
Quentin Cohen-Solal and Tristan Cazenave. 2023. Minimax Strikes Back.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 — June
2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) [3, 13, 19] and its refinements
[6, 7, 24] are the current state of the art in complete information
games search algorithms. Historically, at the root of MCTS were
random and noisy playouts. Many such playouts were necessary
to accurately evaluate a state. Since AlphaGo [24] and AlphaZero
[25] it is not the case anymore. More precisely, strong policies and
evaluations are now provided, by neural networks that are trained
with Reinforcement Learning. These evaluations are stronger and
faster to calculate.

In AlphaGo and its descendants the policy is used as a prior in
the PUCT bandit to explore first the most promising moves advised
by the neural network policy. In addition, the neural evaluations
replace the playouts. Moreover, in AlphaGo, before the reinforce-
ment learning process, data from matches played between humans

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Tristan Cazenave
LAMSADE, Université Paris-Dauphine, PSL, CNRS
Paris, France
tristan.cazenave@dauphine.psl.eu

are used during a supervised learning process. It is not the case
with the latest version, i.e. AlphaZero, where a very high level of
play can be achieved without the use of knowledge. For example,
AlphaZero has surpassed the level of the program Stockfish 8 in
Chess (Grandmaster level) [25]. In this paper, we advocate that with
reinforcement learning, MCTS might not be the best algorithm any-
more. Minimax algorithms are serious challengers when equipped
with a strong evaluation function from reinforcement learning.

In this paper, we show that minimax-based algorithms are com-
petitive with MCTS-based algorithms, and even superior for at least
many games. More precisely, we make a comparison between a
recent Minimax-based reinforcement learning framework, called
Athénan, with AlphaZero, the state of the art of reinforcement
learning, which had not been done before. Unlike the AlphaZero
approach based on MCTS, Athénan uses two search algorithms,
which are variants of Minimax: Descent used during the learning
process and Unbounded Minimax used after the learning process.

The remainder of the paper is organized as follows. The sec-
ond section deals with related work. In particular, the section 2.2
presents the two learning algorithms we use in this paper: Athé-
nan and AlphaZero, but also the open source reimplementation of
the latter named Polygames. This section also compares their char-
acteristics. Sections 3 experimentally compares the two learning
algorithms. Section 4 is a discussion about the results and Section
5 concludes the article. Important note: Details of experiments, re-
moved for a reason of space, are described in Technical Appendix
[12], which includes the description of the used games, details about
the used neural architectures, the learning parameters, algorithms,
other experiments, and additional performance curves and tables.

2 BACKGROUND
2.1 Related Work

There are many search algorithms for perfect information games.
The two standard algorithms are Monte Carlo Tree Search and
Minimax with af pruning.

MCTS has its roots in computer Go [13]. It was theoretically de-
fined with the UCT algorithm [19] that converges to the Nash equi-
librium and uses a well defined bandit, Upper Confidence Bounds
(UCB), which minimizes the cumulative regret at each node [2].
Theoretical bandits were soon replaced with empirical bandits, giv-
ing better results. First the RAVE algorithm [15] improved greatly
on UCT for the games of Go and Hex [9]. A later refinement is
GRAVE that improves on RAVE for many different games [6] and
is used for General Game Playing, for example in Ludii [4]. MCTS
was combined with neural networks in AlphaGo, surpassing pro-
fessional level in the game of Go [24]. The search algorithm used in
AlphaGo is MCTS with PUCT, a bandit that uses the policy given by
the neural network to bias the moves to explore. Later AlphaGo was
redesigned to learn from zero knowledge, leading to AlphaGo Zero

[26]. It was then applied to other games, namely Shogi and Chess,
with the more general AlphaZero program [25]. Many teams have
replicated the AlphaZero approach for Go and for other games:
Elf/OpenGo [28], Leela Zero [23], Crazy Zero by Rémi Coulom,
KataGo [29], Galvanise Zero [14], and Polygames [8].

As we use Polygames as a sparring partner, we will give more
details about it. Polygames (MIT License) replicates the AlphaZero
approach and has been successfully applied to many games. There
are multiple innovations in Polygames. It can train neural networks
with an architecture independent of the size of the board. To do
so it uses a fully convolutional policy, meaning that there is no
dense layer between the last convolutional planes and the policy.
The value head is also independent of the size of the board since
it uses global average pooling before the dense layers connected
to the evaluation output neuron. It is much more difficult to train
a network for Hex 19 (board size 19 X 19) or Havannah 10 than
training it on a smaller size board. Polygames did succeed in these
games by scaling its neural networks trained on smaller sizes to
the difficult board sizes. It played on the Little Golem game server
and beat the best players at these games that were considered too
difficult for Zero Learning (i.e. learning without using knowledge
except the game rule). Other innovations of Polygames include a
pool of neural networks during self-play matches in order to avoid
catastrophic forgetting.

The other kinds of algorithms used in computer games are the af3
family of algorithms, whose apogee took place with Deep Blue [5],
the first program beating a world chess champion. «ff dominated the
field of perfect information games until the advent of MCTS in 2006.
Still, many current strong Chess programs use af [16]. The latest
versions are combined with NNUE neural networks [22]. There
has been a lot of research on the optimizations of af [21]. Many of
them deal with move ordering since move ordering can drastically
improve the search time of af [18]. In [27], ¢ff was also combined
with a policy within a reinforcement learning architecture and it
reaches a good level at Hex (the policy is used to prune actions in
order to reduce the branching factor).

The search algorithms we use to learn and play games are close
to Unbounded Best-first Minimax Search [20]. There is very little
study on this algorithm and it seems little or not applied in practice,
except in the work of [10]. In that work, variants and improvements
of Unbounded Minimax are proposed with several complementary
techniques of zero learning that do not require the use of policies.
The proposed overall architecture, called Athénan (or also the De-
scent framework), exceeds the state-of-the-art level of play at the
game of Hex (size 11, 13, and 19) and other games. In the context of
the experiments of [10], Athénan is the best zero learning approach
not using a policy: in particular, replacing the used variant of Un-
bounded Minimax, called Descent Minimax (or Descent for short),
by Unbounded Minimax, by af, or by MCTS (with UCT) gives less
good results. Moreover, in the experiments of that work, another
variant of Unbounded Minimax, called Unbounded Minimax with
Safe decision, is shown better than Unbounded Minimax and than
ap for confrontations (“What is the best search algorithm for win-
ning a game?” is a different question than “What is the best search
algorithm to learn faster?”). In [11], it has been proved that, with
enough time, Descent Minimax and Unbounded Minimax find the
best game strategy (multiplayer generalizations are also proposed).

2.2 Deep Reinforcement Learning Algorithms
Compared in this Paper

We detail in this section the two zero learning frameworks used in
the experiments of this article.

2.2.1 Polygames Learning Algorithm. Polygames uses its search al-
gorithm, MCTS with PUCT, to generate matches, by playing against
itself. It uses the information from these matches to update its neu-
ral network. This neural network is used by the search algorithm to
evaluate states by a value and by a policy (i.e. a probability distribu-
tion on the actions playable in that state). For each finished match,
the network is trained to associate with each state of the state se-
quence of this match the result of the end of that match (which is
—1 for aloss, 0 for a draw, and +1 for a win). It is also trained, at
the same time, to associate with each state a particular policy. In
that “target” policy, the probability of an action is proportional to
N7 where N is the number of times this action has been selected
in the search from that state and 7 is a parameter. Note that, during
each Polygames learning process, several games are performed in
parallel and their evaluations are batched in order to be evaluated
in parallel on the GPU.

2.3 More Details about AlphaZero/Polygames

During a learning process using AlphaZero (and thus Polygames),
as long as there is time left, a new match phase is performed. A
phase consists of a match against oneself, where in each turn the
move to be played is decided after carrying out a search with MCTS
+ PUCT. MCTS is similar to Unbounded Minimax. The first main

Function descent_iter(s, S, T, fp, ft)
if terminal(s) then
S —SU{s}
o(s) < fi(s)
else
if s ¢ S then
S «— SU{s}
foreach a € actions(s) do
if terminal(a(s)) then
S« SuU{a(s)}
v(s,a) < fi (a(s))
v(a(s)) < o(s,a)
else
| o(s,a) < fy(als))
ap < best_action(s)
u(s,ap) < descent_iter(ap(s), S, T, fp, i)
ap < best_action(s)
v(s) < ov(s, ap)
return v(s)

Function descent(s, S, T, fy, fi, 7)

t=time()

while time()—t < r do descent_iter(s, S, T, fp, ft)
return S

Algorithm 1: Descent algorithm (symbol definitions in Table 1).

Symbols ‘ Definition

actions (s) action set of the state s for the current player

terminal (s) true if s is an end-game state

a(s) state obtained after playing the action a in the state s
time () current time in seconds
s states of the partial game tree
(and keys of the transposition table T)
T transposition table (contains state labels as v or P)
P(s) target policy of state s computed from the search data
D learning data set
T search time per action
tmax chosen total duration of the learning process
o(s) value of state s from the game search
o(s,a) value obtained after playing action a in state s
adaptive evaluation function (of non-terminal game
Jo(s) tree leaves ; first player point of view)
evaluation of terminal states, e.g.
fi(s)

game gain (first player point of view)

. . decides the action to play in the state s
action_selection(s, S, T) . . .
depending on the partial game tree, i.e. on S and T

updates the parameter 0 of fp in order
update(fp, D) P P fo

for fp(s) is closer to o for each (s,v) € D

Table 1: Index of symbols

difference is that the value of a state is not the minimax value in
the partial game tree but the average of the leaves in the subtree
starting from that state. The second main difference is that the tree
is constructed not in choosing states of higher value, but states
optimizing the value plus an exploration term depending on the
policy of the neural network and the number of selection of actions
during the search. After the match, the match state sequence data
is added to the previous data (only the most recent data points are
kept). Periodically, training is performed from a sample of this data
set. The main part of this algorithm is described in Algorithm 2.

2.3.1 Athénan Standard Learning Algorithm. Athénan, the learning
framework of [10], is based on a variant of Unbounded Minimax
called Descent Minimax (or Descent for short), which consists in
exploring the sequences of actions until terminal states. In com-
parison, Unbounded Minimax and MCTS explore the sequences
of actions only until reaching a leaf state. An iteration of Descent
(an analyzed sequence of actions) thus consists in a deterministic
complete simulation of the rest of the game. The exploration is thus
deeper while remaining a best-first approach. This allows the val-
ues of terminal states to be propagated more quickly to (shallower)
non-terminal states. Descent is formally described in Algorithm 1.

Unlike Polygames, the learned target value of a state is not the
end-game value but its minimax value in the partial game tree built
during the match. This information is more informative, since it
directly contains part of the knowledge acquired during the previ-
ous matches. In addition, contrary to Polygames, learning is carried
out for each state of the partial game tree constructed during the
searches of the match (not just for each state of the states sequence
of the played match). In other words, with Polygames, there is one
learning target per search whereas with Athénan, there are several

learning targets per search. Therefore, there is no loss of informa-
tion with Athénan: all of the information acquired during the search
is used during the learning process. As a result, Athénan generates
amuch larger amount of data for training from the same number of
played matches than AlphaZero / Polygames. Thus, unlike the state
of the art which requires to generate matches in parallel to build its
learning dataset, this approach does not require the parallelization
of matches (and the parallelization of Athénan is not done in the
experiments of this article).

During confrontations, the used search algorithm is Unbounded
(Best-First) Minimax with Safe decision, denoted UBFM;. It is a
variant of Unbounded Best-First Minimax which performs the same
search. More precisely, it iteratively extends the best sequence of
actions in the partial game tree (i.e. it adds at each iteration the leafs
of the principal variation of the partial game tree). Note that, on the
one hand, the best action sequence generally changes after each
extension. On the other hand, in general, the worse the evaluation
function is, the wider the exploration is. The difference between
them is as follows: with Unbounded Minimax, the action to play,
chosen after each search, is the one with the best value, while with
this variant, the chosen action is the one that is the most explored.

Finally, this approach is optionally based on a reinforcement
heuristic, that is to say an evaluation function of terminal states
more expressive than the classical gain of a game (i.e. +1/0/ —1).
The best proposed general reinforcement heuristics in [10] are
scoring and the depth heuristic (the latter favoring quick wins and
slow defeats).

Note that this approach does not use a policy, so there is no
need to encode actions. Consequently, this avoids the learning
performance problem of neural networks for games with large

Function AlphaZero_main_algorithm(tmax, 7)
to « time()
while time() -ty < tmax do
fork € {1,...,K} do
s «initial_game_state()
S0
T<{}
G« {s}
while —terminal(s) do
S, T «mcts(s, S, T, fp, fi, 7)
a «action_selection(s, S, T)
s «—a(s)
G «— GU {s}

D —{(s". (ft(s), P(s")) | s" € G}

update(fy, D)

Algorithm 2: Main algorithm of AlphaZero (see Table 1 for the
definitions of symbols ; K is the number of matches performed
between two updates, some of these matches are executed in
parallel ; G is the sequence of states of the current match).

number of actions (i.e. very large output size). In addition, although
Athénan does not performed matches in parallel, it batches all the
child states of an extended state together to be evaluated at one
time on the GPU [10] (with Descent and Unbounded Minimax).

2.4 More Details about Athénan

During a learning process using Athénan, as long as there is time
left, a new match phase is performed. A match phase consists of a
match against oneself, where in each turn the move to be played is
decided after carrying out a search with Descent. The move to be
played after the search is chosen according to an action selection
method, depending on the result of the search. In these experiments,
the used action selection method is the ordinal law (actions are
chosen randomly according to the order of their value) [10] with
the exploitation parameter €’ chosen at random uniformly between
0 and 1 each time a new action must be decided. After each match
phase, the data from the associated partial game tree is added to the
previous data (here, only the data of the last 100 matches are kept).
Then, a training phase is carried out from a sample of this data set.
Specifically, smooth experience replay is used [10]. The main part of
this algorithm is described in Algorithm 3. The full formalization is
described in [10].

Function Athénan_main_algorithm(tmax, 7)
to < time()
while time()—ty < tpax do
s «initial_game_state()
S0
T —{}
while —terminal (s) do
S, T «descent(s, S, T, fy, fi, 7)
a «action_selection(s, S, T)
s «— a(s)

D « {(s,0(s)) | s €S}
update(fy, D)

Algorithm 3: Main algorithm of Athénan (see Table 1 for the
definitions of symbols).

3 COMPARISON OF ZERO REINFORCEMENT
LEARNING ALGORITHMS

In this section, we experimentally compare the two learning algo-
rithms Polygames (see Section 2.2.1) and Athénan (see Section 2.3.1).
First, in the context of 8 games, we compare the data efficiency of
the two algorithms, i.e. the amount of data generated during the
self-play matches which are learned in order to self-improve. Sec-
ond, we compare the win performances of the two algorithms in the
same context (in particular, the algorithms use the same resources).
They are rated against MCTS. Then, a longer training is performed
on Hex 13 and the algorithms are evaluated against Mohex 2.0 [17],
the best publicly available Hex program. Finally, the Polygames
networks, that have won numerous medals during the TCGA 2020

layer # C-network [Ry-network [Ry-network ‘
1 conv. + ReLU | convolution convolution
e conv. + ReLU | 2 res. blocks 8 res. blocks
N -2 | conv. + ReLU 1X 1 conv. dense + ReLU

N -1 | dense + ReLU | dense + ReLU | dense + ReLU
N dense layer

dense layer dense layer

Table 2: Description of 3 neural architectures of value net-
works, called C-network, R;-network, and R;-network. Each
residual block is composed of a ReLU followed by a convolu-
tion followed by a ReLU followed by a convolution. Output
contains one neuron. Other parameters are: kernel is 3 X 3,
filter number is F, number of neurons in dense layers is D,
padding is used with R;-network but not with C-network.

l Game ‘ F ‘ D ‘ Game ‘ F ‘ D ‘
Surakarta | 132 | 845 Breakthrough 132¢ | 477
Othello | 132 | 477 | Outer-Open-Gomoku | 132 | 111
Hex 13 132 | 155 Havannah 8 132 | 111
Connect6 | 132 | 65 Havannah 10 132 | 65

Table 3: The filter number in convolutional layers and the
number of neurons in dense layers of the R;-networks used
with Athénan, detailed for the 8 games.

tournament, confront Athénan networks that have used drastically
less computational power for their learning processes. In each of
these experiments, Athénan is strongly better than Polygames.

3.1 Technical Details

We expose in this section the technical details common to the
experiments of Sections 3.2, 3.3, and 3.4. Recall that full details of
experiments of this paper are in Technical Appendix [12].

3.1.1 Parameters. For each learning process with Athénan, the
batch size of the stochastic gradient descent B is 3000, smooth
experience replay is used with the following parameters: y = 100
and § = 3. The neural architecture is the same for each game: a
Ry-network (see Table 2). The number of parameters in each neural
network is of the order of 5 - 10°. This implies that the number
of filters F and number of dense neurons D are different for each
game. The corresponding numbers are described in Table 3.

The action distribution used during the learning process is the
ordinal law [10]. It is used with a uniform random variable between
0 and 1 as exploration parameter (the variable value changes after
each search performed for determining the next action to play;
therefore no simulated annealing is used).

Network architectures used for Polygames are adaptations of
the architecture being used with Athénan, in order to add a policy
while keeping an analogous number of parameters in the neural
network (see the Supplementaries document for the details).

Evaluations of Section 3.3 are performed against the basic MCTS
algorithm based on UCT (it uses 160 rollouts). For each learning
process (i.e. each learned neural network), each evaluation consists
of 400 games (200 in first player and 200 in second player).

3.1.2 Computational Resources. In this section, we present the
used computational resources for the experiments of this paper.

For the performed training runs and confrontations, we use the
following hardware: GPU Nvidia Tesla V100 SXM2 32 Go, 2 to
10 CPU (processors Intel Cascade Lake 6248 2.5GHz) on RedHat.
There is an exception, for the performed confrontations against
Polygames tournament networks (confrontations of Section 3.5),
we use the following hardware: GeForce GTX 1080 Ti, 2 to 8 CPU
(Intel(R) Xeon(R) CPU E5-2603 v3 1.60GHz) on Ubuntu 18.04.5 LTS.

Athénan programs (Descent Minimax, Unbounded Minimax, ...)
are coded in Python (using tensorflow 1.15). Games and Search
in Polygames are coded in C/C++. For confrontations, Polygames
num_actor parameter is 8 (threads doing MCTS).

3.2 Comparison of Generated Learning Data

In this section, we experimentally compare the number of state
data, the number of state evaluations, and the number of neural
network evaluations performed during an Athénan training and
a Polygames training, each during 15 days. In total, 8 trainings
were carried out with Athénan and 5 with Polygames for each
of the following games: Connect6, Outer-Open-Gomoku, Hex 13,
Havannah 8, Havannah 10, Othello, Breakthrough, and Surakarta.

We start by comparing the number of evaluations. In average,
the neural network evaluations of Athénan is 12.7 times smaller
than that of Polygames. In addition, the average number of state
evaluations of Athénan is 2.5 times smaller than that of Polygames.
In other words, Polygames is more efficient to perform evaluations.
However, this is not an intrinsic characteristic, because this differ-
ence is mainly explained by two facts. First, Athénan is coded in
Python but searches and game mechanisms for Polygames are coded
in C/C++, which allows it to be 2 to 5 times faster (the speed differ-
ence depends on the game ; for example in Python, at Othello, game
calculations take more than 82% of the time of the learning process).
Second, Polygames performs many matches in parallel, whereas
Athénan, in its implementation, is purely sequential (except for
evaluating the children of a state: these evaluations are simultane-
ously performed on the GPU). Thus, the matches parallelization of
Polygames gives a potentially larger number of evaluations for the
same period of time (Polygames evaluations are also simultaneously
performed on the GPU). The detailed numbers for each game are
described in Table 4. In summary, in this experiment, Polygames
performs more evaluations but it could be counterbalanced by im-
plementing Athénan in C/C++ or by parallelizing it.

Now we compare learned states: the number of state data used
during the learning process. Athénan generates 296 times more
learned states than Polygames (despite performing fewer evalua-
tions as we saw in the previous paragraph). This is due to the fact
that Athénan uses tree learning;: it learns all the data generated
during the search, i.e. it learns all the partial game tree build during
the search. By contrast, Polygames / AlphaZero only learns a sum-
mary of this search, namely a policy and a state value for the state
analyzed during the search. Note that since determining a policy for
a state requires that its children be sufficiently explored, it does not
seem possible to learn a policy for each state of the search (i.e. for
each state of the partial game tree). In other words, it does not seem
possible to perform tree learning for the policy with AlphaZero /

Polygames. The same remark applies for the state value. Indeed,
since the learning target for the state value is the endgame value,
it would be the same for all the states of the tree, which is more
likely to negatively impact the training in creating over-fitting than
improving learning. In other words, naively modifying AlphaZero /
Polygames to use a terminal tree learning and tree learning for the
policy in order to decrease the cost of data generation should not
improve performance. However, it is possible to change the learning
target, i.e. replace the endgame value by the search state value and
thus to perform classic tree learning. This has been studied in the
context of MCTS without policy, and the results are much worse
than with Descent Minimax and tree learning (i.e. with Athénan
standard algorithms) [10].

In conclusion, the cost of state data generation is 50 to 700 times
better with Athénan than with Polygames depending on the game
(296 times better on average over the tested games), despite the
fact that it performs 2.5 times fewer states evaluations. Moreover,
recall that using a language other than Python with Athénan would
further improve its performance, most likely by a factor of at least
2. Note also that the matches with Athénan are not parallelized
(unlike AlphaZero / Polygames), and parallelizing them would also
increase the number of data.

3.3 Win comparison with Same Resources

In this section, we compare the learning performances of Athénan
with the learning performances of Polygames, with respect to the
win percentages against MCTS.

This comparison is notably based on the gain of using Athé-
nan rather than Polygames, which is the difference in their win
performances:

Definition 1. The gain of using the algorithm A rather than the
algorithm A’ is % ((wa —14) — (war — 14)) where wy (resp. l4) is
the win (resp. loss) percentage of A.

Several trainings, each during 15 days, have been performed for
each of the following games: Surakarta, Hex 13, Connect6, Outer-
Open-Gomoku, Breakthrough, Othello 8, Havannah 8, Havannah
10. In total, 5 repetitions were performed with Polygames and 8 rep-
etitions were performed with Athénan for each game (4 repetitions
without reinforcement heuristic and 4 repetitions with reinforce-
ment heuristic). As the number of repetitions is small, we use the
following advanced statistical evaluation procedure: stratified boot-
strap confidence interval [1] which allows one to evaluate learning
processes over several tasks even with a low number of repetitions.

The final global performances of the learning processes based on
Athénan and Polygames against a 160-rollouts MCTS with UCT (i.e.
without any knowledge nor learned policy) are described in Figure
1. The details for each of the 8 games are described in Figure 2.
The curves describing the evolution of the performances of the two
algorithms throughout the training are described in Figure 3.

In conclusion, the performances of Athénan are much better
than those of Polygames. The performance superiority of Athénan
is even more marked when a reinforcement heuristic is used (we
already knew that reinforcement heuristic is an improvement of the
combination of Descent Minimax and tree learning, i.e. an essential
component of Athénan [10]). In particular, on the one hand, the
gain of using Athénan without reinforcement heuristic rather than

Win and loss percentages

86.2
EE polygames
Athénan without R.H.
BN Athénan with R.H.
80+ 74.1
59.2
z
= 60
£
g
g 36.4
=
g 40
o
&
253
13.5
204
0- T T
win loss

Figure 1: Performance of Athénan (resp. Polygames) against
MCTS with UCT at the end of the 15 days of training aver-
aged over the 8 games. Their stratified bootstrap confidence
intervals are indicated by the black lines. Athénan results are
detailed in function of the use of a reinforcement heuristic
(abbreviated R.H.).

Polygames is 35.8% (see Def. 1). On the other hand, the gain of using
Athénan with reinforcement heuristic rather than Polygames is
60.75%. Regarding learning speed, Athénan without reinforcement
heuristic achieves in only 2 days the performance of Polygames
after 15 days of training, i.e. there is a factor of 7. Moreover, Athénan
with reinforcement heuristic achieves this performance in much
less than half a day, there is a factor of 30 (see the curve in Figure 3).

3.4 Win Comparison with Same Resources
during a Long-Term Learning Process

In this section, we compare again the learning performances of
Athénan with the learning performances of Polygames with respect
to win percentages, but for a longer training (113 days), and only at
Hex 13, evaluating them this time against Mohex 2.0 [17], champion
program at Hex from 2013 to 2017 at the Computer Olympiads.
Mohex 2.0 is the strongest hex program which is freely available.

For this, we have continued the learning processes of the previ-
ous section carried out on Hex 13 with Athénan and with Polygames.
Then, we have thus evaluated them against Mohex 2.0, at different
stages of their learning processes (an evaluation has been performed
approximately every 4 days).

The evolution of the average win percentages of Athénan (with
and without reinforcement heuristic) against Mohex 2.0 during the
training is shown in Figure 4. Athénan with reinforcement heuristic
goes rather far beyond the level of Mohex 2.0. Athénan without
reinforcement heuristic does not reach the level of Mohex 2.0 but it
still manages to beat it in certain positions. On the contrary, none
of the learned Polygames networks (combined with the Polygames
search algorithm) has succeeded in winning any match against
Mohex 2.0, whatever the evaluation moment during their learning
process. In other words, the Polygames winning curve is constant
and is 0%, with a confidence interval of [0%;0%].

Therefore, in this experiment, learning with Athénan is also
widely better than with Polygames.

3.5 Comparison versus Tournaments
Polygames Networks

In this section, we evaluate Athénan networks against high level
Polygames networks, at Breakthrough, at Othello 8 and 10.

The Polygames networks are those having won at Breakthrough
and Othello 10 and finished second at Othello 8 in the TCGA 2020
tournament. They have been trained during 7 days with 100 GPU
each. The used Athénan networks was trained with only one GPU
during 5 days. These trainings was later extended to 30 days.

The results of the confrontation of the 5-day Athénan networks
against Polygames networks are described in Figure 5. Although
learning with Athénan required 100 times less GPU (1 GPU vs.
100 GPU) and lasted slightly less time (5 days vs. a week), the
performance of Athénan is much better for each of the three games.

The results of the confrontation of the 30-day Athénan networks
against the same Polygames networks are described in Figure 6.
This 30 days experience shows that the Athénan networks continue
to improve.

4 FINAL DISCUSSION

In [10], Athénan has been compared to other reinforcement learning
algorithms without knowledge that do not use learned policy. In
particular, using tree learning gives better results than root learning
or terminal learning (the AlphaZero / Polygames learning technique
for state values). As a reminder, tree learning learns the entire partial
search tree of the analyzed state while root learning and terminal
learning only learns the target value for the analyzed state. More
precisely, in the experiments of [10], the use of tree learning is
always better than the use of terminal learning and for almost all
9 tested games, tree learning improves the final win rate by at
least 40%. In this new article, we have seen that tree learning can
generate about 296 times more learning data than terminal learning
(used by AlphaZero / Polygames). This is one of the reasons that
allows Athénan to obtain better results and in particular to learn
much faster, especially at the start of the learning process. Note
that tree learning could not be applied naturally to AlphaZero /
Polygames (see Section 3.2). Moreover, the use of tree learning
can lower performance with some search algorithms (for various
reasons ; see [10] for details). This is not the case with Descent
Minimax, in particular thanks to its exploration which is both very
deep and in best first.

The superior performance of Athénan is not only due to the use
of tree learning. In [10], Descent Minimax, the central algorithm
of Athénan, gives better results than Unbounded Minimax, which
is, itself, better than «ff and Monte Carlo Tree Search (the search
algorithm of AlphaZero / Polygames). More precisely, using Descent
Minimax with tree learning rather than MCTS with tree learning
increases the win rate by at least 40% for all 9 tested games.

This previous study lacked a comparison with the state of the
art, which uses a policy (contrary to the studied techniques in [10]).
The question then was: do the results against MCTS without policy
generalize to the state of the art (i.e. to MCTS with a learned policy)?
This article thus fills this gap and allows one to conclude that with
a reasonable hardware and an accessible time, Athénan gives much
better results than Polygames (see Section 3). In addition, at least in

Difference of win and loss percentages on different games

99.1 100 98.5 48.1 100 49.8 98
100 4 47.290.3 51 o
16.2 21.1 o
751

‘a—g‘ 50 1
£
8 251
o
8
g o
=
]
a
g -25 1
=
S _so0 -23.7

=75 52.6 BN Polygames

42.8 62.9 B Athénan without R.H.
- E B Athénan with R.H.
100 -97.9 -99.7 -97.4-100 -50.2
T T T T T T T T
Othello 8 Hex 13 0-0-Gomoku Havannah 8 Connect6é Havannah 10 Breakthrough Surakarta

Figure 2: Average win percentages minus loss percentages of Athénan (resp. Polygames) against MCTS with UCT at the end
of the 15 days of training for the 8 games. Athénan results are detailed in function of the use of a reinforcement heuristic
(abbreviated R.H.). Their bootstrap confidence intervals are indicated by the black lines.

‘ ‘ Connect6 ‘ Havannah 10 ‘ Havannah 8 ‘ Outer-Open-Gomoku ‘ Hex 13 ‘ Surakarta ‘ Othello ‘ Breakthrough ‘

Learned states 55 64 111 115 359 442 529 693
Neural evaluation 0,02 0,03 0,05 0,04 0,10 0,11 0,12 0,16
States evaluation 0,37 0,30 0,37 0,49 0,65 0,40 0,10 0,49

Table 4: Ratio of Athénan data over Polygames data for the same learning time and for different games (average over 5 runs for
Polygames and 8 runs for Athénan ; data of a run varies by a maximum of +60% for Polygames and +20% for Athénan). For
example, in Connect6, Athénan learns 55 times more states, makes 50 times less neural evaluations, and makes 3 times less

state evaluations.

some context, Athénan with one GPU is even more efficient than
Polygames with 100 GPUs (see Section 3.5).

5 CONCLUSION

In [10], a new framework for reinforcement learning without knowl-
edge, called Athénan, has been proposed. In particular, in [10], Athé-
nan has been compared to different standard search algorithms and
learning techniques from the literature (which does not use a policy),
and it has been shown that Athénan obtains much better perfor-
mance. However, Athénan has not been compared against the state
of the art of reinforcement learning without knowledge, i.e. MCTS
combined with a learned policy, the standard entire architecture
being called AlphaZero. This lack of comparison is all the more
critical as the use of policy in the AlphaZero framework increases
the level of play considerably. A comparison with the state of the
art AlphaZero is thus essential to know if Athénan is better or if it
is only a useful algorithm when a policy cannot be used.

Therefore, in this paper, we have made the first comparison be-
tween Athénan and Polygames, a re-implementation of AlphaZero.
In particular, we have shown that Athénan has much better perfor-
mances than Polygames.

Recall that Athénan is a Minimax approach different in many
points from AlphaZero. Their basic differences are as follows. Athé-
nan does not use a policy. It is based on Unbounded Minimax
variants instead of MCTS. It learns as learning target the (partial)
minimax value of states instead of the endgame value. Finally, Athé-
nan learns the values of all the states of the search tree built during
the match, while AlphaZero only learns the values of the states of
the match (i.e. AlphaZero only learns the data of the states sequence
of the match, which is a small subset of states of the game search
tree).

In our experiments, we have compared and revealed the cost
of generating the learning data. Athénan generates for the same
duration 296 times more learned states than Polygames. This re-
sult is all the more striking since Athénan performs less than half
as many state evaluations than Polygames (because contrary to
Polygames, Athénan is programmed in Python and Athénan does
not performed matches in parallel).

In addition, we have compared the win rates of the two zero
learning algorithms by evaluating them against MCTS with UCT
on a large number of games. Athénan obtains much better results
than Polygames. In particular, Athénan is about 7 times faster than
Polygames without reinforcement heuristic and much more than
30 times faster with reinforcement heuristic. Moreover, we have

All games

—— Athénan without R.H.
—— Athénan with RH.
—— Polygames.

=0.25
~0.50 ////‘\—'
—0.75 4

Figure 3: Evolution of average win rates minus average loss
rates of Athénan with reinforcement heuristic (with R.H.), of
Athénan without reinforcement heuristic, and of Polygames
against MCTS with UCT along the 15 days of training and
their stratified bootstrap confidence intervals over the 8
games.

—— Athénan with RH.
Athénan without R.H.

0.8

06

win rate
°
Y

02

00

0 20 40 60 80 100
days

Figure 4: Evolution of average win rates of Athénan with and
without reinforcement heuristic (R.H.) against Mohex 2.0,
during 113 days of training (there is approximately one eval-
uation every 4 days ; each evaluation consists of 50 matches
in first player and 50 other matches in second player). Shad-
ing is the 95% confidence interval.

performed another win rates comparison at Hex 13, in the context
of a longer training that lasted 113 days, by evaluating them against
Mohex 2.0, the best freely available Hex program. Athénan has
obtained again much better results than Polygames.

Finally, we have made a last comparison at Othello 8, Othello 10,
and Breakthrough, against top Polygames networks, having won

Win percentages for several games and time search
81

= polygames
80 5-days Athénan

65
61

. 58

@ 2
36
31 32
I]6 I

Breakthrough with 1.5s Breakthrough with 55 Othello 8 with 1.55 Othello 8 with 55 Othello 10 with 1.5 Othello 10 with 55

Percentages (in %)
g8 & 8

8

Figure 5: Results of 400 matches between Athénan (5 days
of training) and Polygames (using tournaments Polygames
networks) at Breakthrough, Othello 8, and Othello 10.

Win percentages for several games and time search
57

e

% . == rolygames

0 30-days Athénan

o5 [
7

a5

percentages (in %)

1 2 1

Breakthrough with 155 Breakthrough with 55 Othello 8 with 155, Othello 8 with 55 Othello 10 with 1.5 Othello 10 with 55

Figure 6: Results of 400 matches between Athénan (30 days
of training) and Polygames (using tournaments Polygames
networks) at Breakthrough, Othello 8, and Othello 10.

two gold medals and one silver medal at the 2020 TCGA tourna-
ments. These Polygames networks have been trained for a week
with over 100 GPUs. It is again Athénan that get the best results
on each game, although its training only lasted 5 days and only
required the use of half a GPU.

In conclusion, all these experiments show that for many games,
reinforcement learning with Athénan is widely more efficient than
with Polygames, at least for accessible learning times and reasonable
resources use.

Note to conclude that Athénan faced Polygames during the 2020
Computer Olympiad and beat it at Othello 8, Othello 10, and Break-
through. Athénan also beat other re-implementations of AlphaZero
during this competition (at Surakarta and Clobber). In fact, 5 gold
medals were won by Athénan for the following games: Othello 10,
Breakthrough, Surakarta, Amazons, and Clobber. This was the first
time that the same algorithm has won so many gold medals in the
same year.

Athénan has again competed in the 2021 Computer Olympiad.
This time, it won 11 gold medals (Hex 11, Hex 13, Hex 19, Havannah
8, Havannah 10, Othello 8, Surakarta, Amazons, Breakthrough,
Brazilian Draughts, Canadian Draughts; there was no competition
at Othello 10 and Clobber). Athénan notably beat Polygames at
games where they met (Hex 13, Hex 19, Havannah 8, Havannah
10).

Athénan has again competed in the 2022 Computer Olympiad.
This time, it won 5 gold medals (Surakarta, Breakthrough, Cana-
dian Draughts, Santorini, and Ataxx). Thus, Athénan is still the
defending champion at 13 games.

ACKNOWLEDGMENTS

Thanks to Nicholas Sowels for proofreading. This work was granted
access to the HPC resources of IDRIS under the allocation 2020-
ADO011011461, AD011011461R1, AD011011461R2, AD011011461R3,
and 2020-AD011011714 made by GENCI. This work was supported
in part by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir”
program, reference ANR19-P31A-0001 (PRAIRIE 3IA Institute).

REFERENCES

(1]

(2]
(3]

[9

=

[10

[11]

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and
Marc Bellemare. 2021. Deep reinforcement learning at the edge of the statistical
precipice. Advances in Neural Information Processing Systems 34 (2021).

Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2-3 (2002), 235-256.
Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. 2012. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and Al in Games 4, 1 (March 2012),
1-43.

Cameron Browne, Matthew Stephenson, Eric Piette, and Dennis].N.J. Soemers.
2020. A Practical Introduction to the Ludii General Game System. Advances in
Computer Games. Springer (2020).

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. 2002. Deep blue.
Artificial intelligence 134, 1-2 (2002), 57-83.

Tristan Cazenave. 2015. Generalized Rapid Action Value Estimation. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. 754-760.

Tristan Cazenave. 2016. Playout policy adaptation with move features. Theor.
Comput. Sci. 644 (2016), 43-52.

Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-Dong
Chiu, Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil Khalidov, Li
Cheng-Ling, Hsin-I Lin, Yu-Jin Lin, Xavier Martinet, Vegard Mella, Jeremy Rapin,
Baptiste Roziere, Gabriel Synnaeve, Fabien Teytaud, Olivier Teytaud, Shi-Cheng
Ye, Yi-Jun Ye, Shi-Jim Yen, and Sergey Zagoruyko. 2020. Polygames: Improved
Zero Learning. ICGA Journal 42, 4 (December 2020), 244-256.

Tristan Cazenave and Abdallah Saffidine. 2009. Utilisation de la recherche ar-
borescente Monte-Carlo au Hex. Revue d’Intelligence Artificielle 23, 2-3 (2009),
183-202.

Quentin Cohen-Solal. 2020. Learning to Play Two-Player Perfect-Information
Games without Knowledge. arXiv preprint arXiv:2008.01188 (2020).

Quentin Cohen-Solal. 2021. Completeness of Unbounded Best-First Game Algo-
rithms. arXiv preprint arXiv:2109.09468 (2021).

(12]

(13]

[14

[15

(16]

[17]

(18

[19

[20

[21]

[25

[26

[27

™
&

[29

Quentin Cohen-Solal and Tristan Cazenave. 2023. Minimax Strikes Back: Techni-
cal Appendix. arXiv preprint (2023).

Rémi Coulom. 2007. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In Computers and Games (Lecture Notes in Computer Science, Vol. 4630).
Springer, 72-83.

Richard Emslie. 2019. Galvanise Zero. https://github.com/richemslie/galvanise_
Zero.

Sylvain Gelly and David Silver. 2011. Monte-Carlo Tree Search and Rapid Action
Value Estimation in computer Go. Artif. Intell. 175, 11 (2011), 1856-1875.

Guy Haworth and Nelson Hernandez. 2021. The 20th Top Chess Engine Champi-
onship, TCEC20. ICGA Journal 43, 1 (2021), 62-73.

Shih-Chieh Huang, Broderick Arneson, Ryan B Hayward, Martin Miiller, and
Jakub Pawlewicz. 2013. MoHex 2.0: a pattern-based MCTS Hex player. In Inter-
national Conference on Computers and Games. Springer, 60-71.

Donald E. Knuth and Ronald W. Moore. 1975. An Analysis of Alpha-Beta Pruning.
Artif. Intell. 6, 4 (1975), 293-326. https://doi.org/10.1016/0004-3702(75)90019-3
Levente Kocsis and Csaba Szepesvari. 2006. Bandit based Monte-Carlo planning.
In 17th European Conference on Machine Learning (ECML’06) (LNCS, Vol. 4212).
Springer, 282-293.

Richard E Korf and David Maxwell Chickering. 1996. Best-first minimax search.
Artificial intelligence 84, 1-2 (1996), 299-337.

Tony A Marsland. 1987. Computer chess methods. Encyclopedia of Artificial
Intelligence 1 (1987), 159-171.

Yu Nasu. 2018. Efficiently updatable neural-network-based evaluation func-
tions for computer shogi. The 28th World Computer Shogi Championship Appeal
Document (2018).

Gian-Carlo Pascutto. 2017. Leela Zero. https://github.com/leela-zero/leela-zero.
David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep

neural networks and tree search. Nature 529, 7587 (2016), 484-489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140-1144.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354-359.

Kei Takada, Hiroyuki lizuka, and Masahito Yamamoto. 2019. Reinforcement
learning to create value and policy functions using minimax tree search in hex.
IEEE Transactions on Games 12, 1 (2019), 63-73.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen,
James Pinkerton, and C Lawrence Zitnick. 2019. EIf OpenGo: An analysis and
open reimplementation of AlphaZero. arXiv preprint arXiv:1902.04522 (2019).
David J Wu. 2019. Accelerating self-play learning in Go. arXiv preprint
arXiv:1902.10565 (2019).

https://github.com/richemslie/galvanise_zero
https://github.com/richemslie/galvanise_zero
https://doi.org/10.1016/0004-3702(75)90019-3
https://github.com/leela-zero/leela-zero

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Deep Reinforcement Learning Algorithms Compared in this Paper
	2.3 More Details about AlphaZero/Polygames
	2.4 More Details about Athénan

	3 Comparison of Zero Reinforcement Learning Algorithms
	3.1 Technical Details
	3.2 Comparison of Generated Learning Data
	3.3 Win comparison with Same Resources
	3.4 Win Comparison with Same Resources during a Long-Term Learning Process
	3.5 Comparison versus Tournaments Polygames Networks

	4 Final Discussion
	5 Conclusion
	Acknowledgments
	References

