
Monte Carlo Game Solver

Tristan Cazenave

LAMSADE, Université Paris-Dauphine, PSL, CNRS, Paris, France

Tristan.Cazenave@dauphine.psl.eu

Abstract. We present a general algorithm to order moves so as to speedup exact

game solvers. It uses online learning of playout policies and Monte Carlo Tree

Search. The learned policy and the information in the Monte Carlo tree are used to

order moves in game solvers. They improve greatly the solving time for multiple

games.

1 Introduction

Monte Carlo Tree Search (MCTS) associated to Deep Reinforcement learning has su-

perhuman results in the most difficult perfect information games (Go, Chess and Shogi)

[26]. However little has been done to use this kind of algorithms to exactly solve games.

We propose to use MCTS associated to reinforcement learning of policies so as to

speedup the resolution of various games.

The paper is organized as follows: the second section deals with related work on

games. The third section details the move ordering algorithms for various games. The

fourth section gives experimental results for these games.

2 Previous Work

In this section we review the different algorithms that have been used to solve games.

We then focus on the αβ solver. As we improve αβ with MCTS we show the difference

to MCTS Solver. We also expose Depth First Proof Number Search as it has solved

multiple games. We finish with a description of online policy learning as the resulting

policy is used for our move ordering.

2.1 Solving Games

Iterative Deepening Alpha-Beta associated to a heuristic evaluation function and a

transposition table is the standard algorithm for playing games such as Chess and

Checkers. Iterative Deepening Alpha-Beta has also been used to solve games such as

small board Go [30], Renju [29], Amazons endgames [15]. Other researchers have in-

stead used a Depth-first Alpha-Beta without Iterative Deepening and with domain spe-

cific algorithms to solve Domineering [28] and Atarigo [3]. The advantage of Iterative

Deepening associated to a transposition table for solving games is that it finds the short-

est win and that it reuses the information of previous iterations for ordering the moves,

thus maximizing the cuts. The heuristics usually used to order moves in combination



2 T. Cazenave

with Iterative Deepening are: trying first the transposition table move, then trying killer

moves and then sorting the remaining moves according to the History Heuristic [23].

The advantage of not using Iterative Deepening is that the iterations before the last one

are not performed, saving memory and time, however if bad choices on move ordering

happen, the search can waste time in useless parts of the search tree and can also find

move sequences longer than necessary.

There are various competing algorithms for solving games [12]. The most simple

are Alpha-Beta and Iterative Deepening Alpha-Beta. Other algorithms memorize the

search tree in memory and expand it with a best first strategy: Proof Number Search

[2], PN2 [4], Depth-first Proof Number Search (Df-pn) [17], Monte Carlo Tree Search

Solver [32,8] and Product Propagation [20].

Games solved with a best first search algorithm include Go-Moku with Proof Num-

ber search and Threat Space Search [1], Checkers using various algorithms [24], Fanorona

with PN2 [22], 6× 6 Lines of Action with PN2 [31], 6× 5 Breakthrough with parallel

PN2 [21], and 9× 9 Hex with parallel Df-pn [18].

Other games such as Awari were solved using retrograde analysis [19]. Note that

retrograde analysis was combined with search to solve Checkers and Fanorona.

2.2 αβ Solver

Iterative Deepening αβ has long been the best algorithm for multiple games. Most of

the Chess engines still use it even if the current best algorithm is MCTS [26].

Depth first αβ is more simple but it can be better than Iterative Deepening αβ for

solving games since it does not have to explore a large tree before searching the next

depth. More over in the case of games with only two outcomes the results are always

either Won or Lost and enable immediate cuts when Iterative Deepening αβ has to deal

with unknown values when it reaches depth zero and the state is not terminal.

One interesting property of αβ is that selection sort becomes an interesting sorting

algorithm. It is often useful to only try the best move or a few good moves before

reaching a cut. Therefore it is not necessary to sort all the moves at first. Selecting

move by move as in selection sorting can be more effective.

2.3 MCTS Solver

MCTS has already been used as a game solver [32]. The principle is to mark as solved

the subtrees that have an exact result. As the method uses playouts it has to go through

the tree at each playout and it revisits many times the same states doing costly calcu-

lations to choose the move to try according to the bandit. Moreover in order to solve a

game a large game tree has to be kept in memory.

The work on MCTS Solver has later been extended to games with multiple out-

comes [8].

2.4 Depth First Proof Number Search

Proof Number Search is a best first algorithm that keeps the search tree in memory

so as to expand the most informative leaf [2]. In order to solve the memory problem



Monte Carlo Game Solver 3

Algorithm 1 The αβ algorithm for solving games.

1: Function αβ (s,depth,α,β)

2: if isTerminal (s) or depth = 0 then

3: return Evaluation (s)

4: end if

5: if s has an entry t in the transposition table then

6: if the result of t is exact then

7: return t.res

8: end if

9: put t.move as the first legal move

10: end if

11: for move in legal moves for s do

12: s1 = play (s, move)

13: eval = -αβ(s1,depth− 1,-β,-α)

14: if eval > α then

15: α = eval

16: end if

17: if α ≥ β then

18: update the transposition table

19: return β

20: end if

21: end for

22: update the transposition table

23: return α

of Proof Number Search, the PN2 algorithm has been used [4]. PN2 uses a secondary

Proof Number Search at each leaf of the main Proof Number Search tree, thus en-

abling the square of the total number of nodes of the main search tree to be explored.

More recent developments of Proof Number Search focus on Depth-First Proof Num-

ber search (DFPN) [17]. The principle is to use a transposition table and recursive depth

first search to efficiently search the game tree and solve the memory problems of Proof

Number Search. DFPN can be parallelized to improve the solving time [13]. It has been

improved for the game of Hex using a trained neural network [10]. It can be applied to

many problems, including recently Chemical Synthesis Planning [14].

2.5 Online Policy Learning

Playout Policy Adaptation with Move Features (PPAF) has been applied to many games

[7].

An important detail of the playout algorithm is the code function. In PPAF the same

move can have different codes that depend on the presence of features associated to

the move. For example in Breakthrough the code also takes into account whether the

arriving square is empty or contains an opponent pawn.

The principle of the learning algorithm is to add 1.0 to the weight of the moves

played by the winner of the playout. It also decreases the weights of the moves not

played by the winner of the playout by a value proportional to the exponential of the

weight. This algorithm is given in algorithm 2.



4 T. Cazenave

Algorithm 2 The PPAF adapt algorithm

1: Function adapt (winner, board, player, playout, policy)

2: polp← policy

3: for move in playout do

4: if winner = player then

5: polp [code(move)]← polp [code(move)] + α

6: z← 0.0

7: for m in possible moves on board do

8: z← z + exp (policy [code(m)])

9: end for

10: for m in possible moves on board do

11: polp [code(m)]← polp [code(m)] - α ∗
exp(policy[code(m)])

z

12: end for

13: end if

14: play (board, move)

15: player← opponent (player)

16: end for

17: policy← polp

2.6 GRAVE

The principle of the All Moves As First heuristic (AMAF) is to compute statistics where

all the moves of the playout are taken into account for the average of the moves. The

principle of RAVE is to start from AMAF statistics when there are only a few play-

outs because the AMAF statistics are then more precise than the UCT statistics and to

progressively switch to UCT statistics when more playouts are available. The formula

found using a mathematical analysis [11] is:

βm ←
pAMAFm

pAMAFm+pm+bias×pAMAFm×pm

argmaxm((1.0− βm)×meanm + βm ×AMAFm)

Where pAMAFm is the number of playouts that contain move m, pm is the number

of playouts that start with move m, bias is a parameter to be tuned, meanm is the

average of the playouts that start with move m and AMAFm is the average of the

playouts that contain move m.

GRAVE is a simple but effective improvement of RAVE. GRAVE takes into ac-

count the AMAF statistics of the last state in the tree that has been visited more than

a fixed number of times instead of always taking into account the AMAF statistics of

the current state. In this way the states with few playouts use more meaningful AMAF

statistics. GRAVE has very good results in General Game Playing [5,27].



Monte Carlo Game Solver 5

3 Move Ordering for Different Games

We describe the general tools used for move ordering then their adaptation to different

games.

3.1 Outline

In order to collect useful information to order moves we use a combination of the

GRAVE algorithm [6] and of the PPAF algorithm. Once the Monte Carlo search with

GRAVE and PPAF is finished we use the transposition table of the Monte Carlo search

to order the moves, putting first the most simulated ones. When outside the transposi-

tion table we use the weights learned by PPAF to order the moves. The algorithm used

to score the moves so as to order them is given in algorithm 3.

Algorithm 3 The Monte Carlo Move Ordering function

1: Function orderMC (board, code)

2: score← policy[code]
3: if board has an entry t in the MCTS TT then

4: if t.nbP layouts > 100 then

5: for move in legal moves for board do

6: if t.nbP layouts[move] > 0 then

7: if code(move) = code then

8: score← t.nbP layouts[move]
9: end if

10: end if

11: end for

12: end if

13: end if

14: return 1000000000− 1000× score

3.2 Atarigo

Atarigo is a simplification of the game of Go. The first player to capture has won. It is

a game often used to teach Go to beginners. Still it is an interesting games and tactics

can be hard to master.

The algorithm for move ordering is given in algorithm 4. It always puts first a cap-

ture move since it wins the game. If no such move exist it always plays a move that

saves a one liberty string since it is a forced move to avoid losing. Then it favors moves

on liberties of opponent strings that have few liberties provided the move has itself suf-

ficient liberties. If none of these are available it returns the evaluation by the Monte

Carlo ordering function.

The code associated to a move is calculated using the colors of the four intersections

next to the move.



6 T. Cazenave

Algorithm 4 The function to order moves at Atarigo

1: Function order (board, move)

2: minOrder ← 361
3: for i in adjacents to move do

4: if i is an opponent stone then

5: n← number of liberties of i

6: if n = 1 then

7: return 0

8: end if

9: nb← n− 4× nbEmptyAdjacent(move)
10: if nb < minOrder then

11: minOrder ← nb

12: end if

13: end if

14: end for

15: if move escapes an atari then

16: return 1

17: end if

18: if minOrder = 361 then

19: if MonteCarloMoveOrdering then

20: return orderMC(board, code(move))
21: end if

22: return 20− nbEmptyAdjacent(move)
23: end if

24: return minOrder



Monte Carlo Game Solver 7

3.3 Nogo

Nogo is the misere version of Atarigo [9]. It was introduced at the 2011 Combinatorial

Game Theory Workshop in Banff. The first player to capture has lost. It is usually played

on small boards. In Banff there was a tournament for programs and Bob Hearn won the

tournament using Monte-Carlo Tree Search.

We did not find simple heuristics to order moves at Nogo. So the standard algorithm

uses no heuristic and the MC algorithms sort moves according to algorithm 3.

3.4 Go

Go was solved for rectangular boards up to size 7 × 4 by the MIGOS program [30].

The algorithm used was an iterative deepening αβ with transposition table. We use no

heuristic to sort moves at Go and completely rely on algorithm 3 to order moves.

3.5 Breakthrough and Knightthrough

Breakthrough is an abstract strategy board game invented by Dan Troyka in 2000. It

won the 2001 8x8 Game Design Competition and it is played on Little Golem. The

game starts with two rows of pawns on each side of the board. Pawns can capture

diagonally and go forward either vertically or diagonally. The first player to reach the

opposite row has won. Breakthrough has been solved up to size 6 × 5 using Job Level

Proof Number Search [21]. The code for a move at Breakthrough contains the starting

square, the arrival square and whether it is empty or contains an enemy pawn. The

ordering gives priority to winning moves, then to moves to prevent a loss, then Monte

Carlo Move Ordering.

Misere Breakthrough is the misere version of Breakthrough, the games is lost if a

pawn reaches the opposite side. It is also a difficult game and its is more difficult for

MCTS algorithms [7]. The code for a move is the same as for Breakthrough and the

ordering is Monte Carlo Move Ordering.

Knightthrough emerged as a game invented for the General Game Playing compe-

titions. Pawns are replaced with knights. Misere Knightthrough is the misere version of

the game where the goal is to lose. Codes for moves and move ordering are similar to

Breakthrough.

3.6 Domineering

Domineering is played on a chess board and two players alternate putting dominoes on

the board. The first player puts the dominoes vertically, the second player puts them

horizontally. The first player who cannot play loses. In Misere Domineering the first

player who cannot play wins. We use no heuristic to sort moves at Domineering and

completely rely on algorithm 3 to order moves.



8 T. Cazenave

Algorithm 5 The function to order moves at Knightthrough

1: Function order (board, move)

2: if move is a winning move then

3: return 0

4: end if

5: if move captures an opponent piece then

6: if capture in the first 3 lines then

7: return 1

8: end if

9: end if

10: if destination in the last 3 lines then

11: if support(destination) > attack(destination) then

12: return 2

13: end if

14: end if

15: if MonteCarloMoveOrdering then

16: return orderMC(board, code(move))
17: end if

18: return 100

4 Experimental results

The iterative deepening αβ with a transposition table (ID αβ TT) is called with a null

window since it saves much time compared to calling it with a full window. Other

algorithms are called with the full window since they only deal with terminal states

values and that the games we solve are either Won or Lost.

A transposition table containing 1 048 575 entries is used for all games. An entry in

the transposition table is always replaced by a new one.

An algorithm name finishing with MC denotes the use of Monte Carlo Move Or-

dering. The times given for MC algorithms include the time for the initial MCTS that

learns a policy. The original Proof Number Search algorithm is not included in the ex-

periments since it fails due to being short of memory for complex games. The PN2

algorithm solves this memory problem and is included in the experiments. The algo-

rithms that do not use MC still do some move ordering but without Monte Carlo. For

example in algorithm 4 for Atarigo the MonteCarloMoveOrdering boolean is set to

False but the function to order moves is still used.

Table 1 gives the results for Atarigo. For Atarigo 5 × 5 αβ TT MC is the best

algorithm and is much better than αβ TT. For Atarigo 6× 5 the best algorithm is again

αβ TT MC which is much better than all other algorithms.

Table 2 gives the results for Nogo. Nogo 7× 3 is solved in 49.72 seconds by αβ TT

MC with 100 000 playouts. This is 88 times faster than αβ TT the best algorithm not

using MC.

Nogo 5 × 4 is solved best by αβ TT MC with 1 000 000 playouts before the αβ

search. It is 21 times faster than ID αβ TT the best algorithm not using MC.



Monte Carlo Game Solver 9

Table 1: Different algorithms for solving Atarigo.

Size 5× 5
Result Won

Move count Time

PN2 14 784 088 742 37 901.56 s.

ID αβ TT > 35 540 000 000 > 86 400.00 s.

αβ TT > 37 660 000 000 > 86 400.00 s.

ID αβ TT MC 62 800 334 126.84 s.

αβ TT MC 3 956 049 12.79 s.

Size 6× 5
Result Won

Move count Time

PN2 > 33 150 000 000 > 86 400.00 s.

ID αβ TT > 37 190 000 000 > 86 400.00 s.

αβ TT > 7 090 000 000 > 44 505.91 s.

ID αβ TT MC 12 713 931 627 27 298.35 s.

αβ TT MC 329 780 434 787.17 s.

Table 2: Different algorithms for solving Nogo.

Size 7× 3
Result Won

Move count Time

PN2 > 80 390 000 000 > 86 400.00 s.

ID αβ TT 10 921 978 839 12 261.64 s.

αβ TT 3 742 927 598 4 412.21 s.

ID αβ TT MC 1 927 635 856 2 648.91 s.

αβ TT MC 35 178 886 49.72 s.

Size 5× 4
Result Won

Move count Time

PN2 > 101 140 000 000 > 86 400.00 s.

ID αβ TT 1 394 182 870 1 573.72 s.

αβ TT 1 446 922 704 1 675.64 s.

ID αβ TT MC 73 387 083 134.26 s.

αβ TT MC 33 850 535 74.77 s.



10 T. Cazenave

αβ TT MC with 10 000 000 playouts solves Nogo 5× 5 in 61 430.88 seconds and

46 092 056 485 moves. Nogo 5×5 was first solved in 2013 [25]. The solution we found

is given in figure 1.

Fig. 1: Solution of Nogo 5× 5.

A

A

B

B

C

C

D

D

E

E

1 1

2 2

3 3

4 4

5 5

12

3

45

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

As it is the first time results about solving Nogo are given we recapitulate in table 3

the winner for various sizes. A one means a first player win and a two a second player

win.

1 2 3 4 5 6 7 8 9 10

1 2 1 1 2 1 1 1 1 1 1

2 1 1 2 2 1 1 1 1 2 2

3 1 2 1 2 1 1 1 1

4 2 2 2 2 1 1

5 1 1 1 1 1

6 1 1 1 1

7 1 1 1

8 1 1 1

9 1 2

10 1 2

Table 3: Winner for Nogo boards of various sizes



Monte Carlo Game Solver 11

Table 4: Different algorithms for solving Go.

Size 3× 3
Result Won

Move count Time

PN2 246 394 3.72 s.

ID αβ TT 840 707 11.34 s.

αβ TT 420 265 11.50 s.

ID αβ TT MC 375 414 5.62 s.

αβ TT MC 6 104 0.16 s.

Size 4× 3
Result Won

Move count Time

PN2 43 202 038 619.98 s.

ID αβ TT 39 590 950 515.71 s.

αβ TT 107 815 563 1 977.86 s.

ID αβ TT MC 22 382 730 348.08 s.

αβ TT MC 4 296 893 96.63 s.

Table 4 gives the results for Go. Playouts and depth first αβ can last a very long time

in Go since stones are captured and if random play occurs the goban can become almost

empty again a number of times before the superko rules forbids states. In order to avoid

very long and useless games an artificial limit on the number of moves allowed in a

game was set to twice the size of the board. This is not entirely satisfactory since one

can imagine weird cases where the limit is not enough. The problem does not appear in

the other games we have solved since they converge to a terminal state before a fixed

number of moves. The trick we use to address the problem is to send back an evaluation

of zero if the search reaches the limit. When searching for a win with a null window this

is equivalent to a loss and when searching for a loss it is equivalent to a win. Therefore

if the search finds a win it does not rely on the problematic states. The 3× 3 board was

solved with a komi of 8.5, the 4× 3 board was solved with a komi of 3.5.

Table 5: Different algorithms for solving Breakthrough.

Size 5× 5
Result Lost

Move count Time

PN2 > 38 780 000 000 > 86 400.00 s.

ID αβ TT 13 083 392 799 33 590.59 s.

αβ TT 19 163 127 770 43 406.79 s.

ID αβ TT MC 3 866 853 361 11 319.39 s.

αβ TT MC 3 499 173 137 9 243.66 s.



12 T. Cazenave

Table 5 gives the results for Breakthrough. Using MC improves much the solving

time. αβ with MC uses seven times less nodes than the previous algorithm that solved

Breakthrough 5 × 5 without patterns (i.e. parallel PN2 with 64 clients [21]). Using

endgame patterns divides by seven the number of required nodes for parallel PN2.

Table 6: Different algorithms for solving Misere Breakthrough.

Size 4× 5
Result Lost

Move count Time

PN2 > 42 630 000 000 > 86 400 s.

ID αβ TT > 43 350 000 000 > 86 400 s.

αβ TT > 42 910 000 000 > 86 400 s.

ID αβ TT MC 1 540 153 635 3 661.50 s.

αβ TT MC 447 879 697 1 055.32 s.

Table 6 gives the results for Misere Breakthrough. αβ TT MC is the best algorithm

and is much better than all non MC algorithms.

Table 7: Different algorithms for solving Knightthrough.

Size 6× 6
Result Won

Move count Time

PN2 > 33 110 000 000 > 86 400 s.

ID αβ TT 1 153 730 169 4 894.69 s.

αβ TT 2 284 038 427 6 541.08 s.

ID αβ TT MC 17 747 503 102.60 s.

αβ TT MC 528 783 129 1 699.01 s.

Size 7× 6
Result Won

Move count Time

PN2 > 30 090 000 000 > 86 400 s.

ID αβ TT > 17 500 000 000 > 86 400 s.

αβ TT > 29 980 000 000 > 86 400 s.

ID αβ TT MC 2 540 383 012 13 716.36 s.

αβ TT MC 6 650 804 159 23 958.04 s.

The results for Knightthrough are in table 7. ID αβ TT MC is the best algorithm

and far better than algorithms not using MC. This is the first time Knightthrough 7× 6
is solved.



Monte Carlo Game Solver 13

Table 8: Different algorithms for solving Misere Knightthrough.

Size 5× 5
Result Lost

Move count Time

PN2 > 45 290 000 000 > 86 400 s.

ID αβ TT > 52 640 000 000 > 86 400 s.

αβ TT > 56 230 000 000 > 86 400 s.

ID αβ TT MC > 41 840 000 000 > 86 400 s.

αβ TT MC 20 375 687 163 42 425.41 s.

Table 8 gives the results for Misere Knightthrough. Misere Knightthrough 5 × 5 is

solved in 20 375 687 163 moves and 42 425.41 seconds by αβ TT MC. This is the first

time Misere Knightthrough 5× 5 is solved. Misere Knightthrough 5× 5 is much more

difficult to solve than Knightthrough 5 × 5 which is solved in seconds by ID αβ TT

MC. This is due to Misere Knightthrough being a waiting game with longer games than

Knightthrough.

Table 9: Different algorithms for solving Domineering.

Size 7× 7
Result Won

Move count Time

PN2 > 41 270 000 000 > 86 400 s.

ID αβ TT 18 958 604 687 35 196.62 s.

αβ TT 197 471 137 376.23 s.

ID αβ TT MC 2 342 641 133 5 282.06 s.

αβ TT MC 29 803 373 123.76 s.

Table 9 gives the results for Domineering. The best algorithm is αβ TT MC which

is 3 times faster than αβ TT without MC.

Table 10 gives the results for Misere Domineering. The best algorithm is αβ TT

MC which is much better than all non MC algorithms.

5 Conclusion

For the games we solved, Misere Games are more difficult to solve than normal games.

In Misere Games the player waits and tries to force the opponent to play a losing move.

This makes the game longer and reduces the number of winning sequences and winning

moves.

Monte Carlo Move Ordering improves much the speed of αβ with transposition

table compare to depth first αβ and Iterative Deepening αβ with transposition table



14 T. Cazenave

Table 10: Different algorithms for solving Misere Domineering.

Size 7× 7
Result Won

Move count Time

PN2 > 44 560 000 000 > 86 400 s.

ID αβ TT > 49 290 000 000 > 86 400 s.

αβ TT > 49 580 000 000 > 86 400 s.

ID αβ TT MC 7 013 298 932 14 936.03 s.

αβ TT MC 72 728 678 212.25 s.

but without Monte Carlo Move Ordering. The experimental results show significant

improvements for nine different games.

In future work we plan to parallelize the algorithms and apply them to other prob-

lems. It would also be interesting to test if improved move ordering due to Monte Carlo

Move Ordering would improve other popular solving algorithms such as DFPN. The

ultimate goal with this kind of algorithms could be to solve exactly the game of Chess

which is possible provided we have a very strong move ordering algorithm [16].

Acknowledgment

This work was supported in part by the French government under management of

Agence Nationale de la Recherche as part of the “Investissements d’avenir” program,

reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).

References

1. Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-Moku solved by new search tech-

niques. Computational Intelligence 12, 7–23 (1996)

2. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial Intel-

ligence 66(1), 91–124 (1994)

3. Boissac, F., Cazenave, T.: De nouvelles heuristiques de recherche appliquées à la résolution

d’Atarigo. In: Intelligence artificielle et jeux. pp. 127–141. Hermes Science (2006)

4. Breuker, D.M.: Memory versus Search in Games. Ph.D. thesis, Universiteit Maastricht

(1998)

5. Browne, C., Stephenson, M., Piette, É., Soemers, D.J.: A practical introduction to the ludii

general game system. In: Advances in Computer Games. Springer (2019)

6. Cazenave, T.: Generalized rapid action value estimation. In: IJCAI 2015. pp. 754–760 (2015)

7. Cazenave, T.: Playout policy adaptation with move features. Theor. Comput. Sci. 644, 43–52

(2016)

8. Cazenave, T., Saffidine, A.: Score bounded Monte-Carlo tree search. In: Computers and

Games, LNCS, vol. 6515, pp. 93–104. Springer-Verlag (2011)

9. Chou, C.W., Teytaud, O., Yen, S.J.: Revisiting Monte-Carlo tree search on a normal form

game: NoGo. In: Applications of Evolutionary Computation, LNCS, vol. 6624, pp. 73–82

(2011)



Monte Carlo Game Solver 15

10. Gao, C., Müller, M., Hayward, R.: Focused depth-first proof number search using convolu-

tional neural networks for the game of hex. In: (IJCAI 2017). pp. 3668–3674 (2017)

11. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in computer

go. Artif. Intell. 175(11), 1856–1875 (2011)

12. van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: Now and in the

future. Artif. Intell. 134(1-2), 277–311 (2002)

13. Hoki, K., Kaneko, T., Kishimoto, A., Ito, T.: Parallel dovetailing and its application to depth-

first proof-number search. ICGA Journal 36(1), 22–36 (2013)

14. Kishimoto, A., Buesser, B., Chen, B., Botea, A.: Depth-first proof-number search with

heuristic edge cost and application to chemical synthesis planning. In: Advances in Neu-

ral Information Processing Systems. pp. 7224–7234 (2019)

15. Kloetzer, J., Iida, H., Bouzy, B.: A comparative study of solvers in amazons endgames. In:

IEEE Symposium On Computational Intelligence and Games, 2008. CIG’08. pp. 378–384.

IEEE (2008)

16. Lemoine, J., Viennot, S.: Il n’est pas impossible de résoudre le jeu d’échecs. 1024 – Bulletin

de la société informatique de France 6 (Juillet 2015)

17. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and its Applications. Ph.D. thesis,

The University of Tokyo (2002)

18. Pawlewicz, J., Hayward, R.B.: Scalable parallel DFPN search. In: Computers and Games

- 8th International Conference, CG 2013, Yokohama, Japan, August 13-15, 2013, Revised

Selected Papers. pp. 138–150 (2013)

19. Romein, J.W., Bal, H.E.: Solving awari with parallel retrograde analysis. IEEE Computer

36(10), 26–33 (2003)

20. Saffidine, A., Cazenave, T.: Developments on product propagation. In: CG 2013. pp. 100–

109 (2013)

21. Saffidine, A., Jouandeau, N., Cazenave, T.: Solving breakthrough with race patterns and job-

level proof number search. In: ACG 2011. pp. 196–207 (2011)

22. Schadd, M.P.D., Winands, M.H.M., Uiterwijk, J.W.H.M., Herik, H.J.v.d., Bergsma, M.H.J.:

Best play in fanorona leads to draw. New Mathematics and Natural Computation 4(03), 369–

387 (2008)

23. Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice. IEEE

Transactions on Pattern Analysis and Machine Intelligence 11(11), 1203–1212 (1989)

24. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen,

S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

25. She, P.: The Design and Study of NoGo Program. Master’s thesis, National Chiao Tung

University, Taiwan (2013)

26. Silver, D., al.: A general reinforcement learning algorithm that masters chess, shogi, and go

through self-play. Science 362(6419), 1140–1144 (2018)

27. Sironi, C.F.: Monte-Carlo Tree Search for Artificial General Intelligence in Games. Ph.D.

thesis, Maastricht University (2019)

28. Uiterwijk, J.W.: 11× 11 domineering is solved: The first player wins. In: International Con-

ference on Computers and Games. pp. 129–136. Springer (2016)

29. Wágner, J., Virág, I.: Solving renju. ICGA Journal 24(1), 30–35 (2001)

30. van der Werf, E.C., Winands, M.H.: Solving go for rectangular boards. ICGA Journal 32(2),

77–88 (2009)

31. Winands, M.H.: 6× 6 LOA is solved. ICGA Journal 31(4), 234–238 (2008)

32. Winands, M.H., Björnsson, Y., Saito, J.T.: Monte-carlo tree search solver. In: International

Conference on Computers and Games. pp. 25–36. Springer (2008)


	Monte Carlo Game Solver

