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Abstract. Nested Rollout Policy Adaptation (NRPA) is a Monte
Carlo search algorithm that learns a playout policy in order to solve a
single player game. In this paper we apply NRPA to the vehicle rout-
ing problem. This problem is important for large companies that have
to manage a fleet of vehicles on a daily basis. Real problems are often
too large to be solved exactly. The algorithm is applied to standard
problem of the literature and to the specific problems of EDF (Elec-
tricité De France, the main french electric utility company). These
specific problems have peculiar constraints. NRPA gives better re-
sult than the algorithm previously used by EDF.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to
many games and problems [8].

Nested Monte Carlo Search (NMCS) [9] is an algorithm that
works well for puzzles. It biases its playouts using lower level play-
outs. At level zero NMCS adopts a uniform random playout pol-
icy. Online learning of playout strategies combined with NMCS has
given good results on optimization problems [38]. Other applica-
tions of NMCS include Single Player General Game Playing [32],
Cooperative Pathfinding [6], Software testing [36], heuristic Model-
Checking [37], the Pancake problem [7], Games [11], Cryptography
[19] and the RNA inverse folding problem [33].

Online learning of a playout policy in the context of nested
searches has been further developed for puzzles and optimization
with Nested Rollout Policy Adaptation (NRPA) [40]. NRPA has
found new world records in Morpion Solitaire and crosswords puz-
zles. Stefan Edelkamp and co-workers have applied the NRPA al-
gorithm to multiple problems. They have optimized the algorithm
for the Traveling Salesman with Time Windows (TSPTW) problem
[12, 21]. Other applications deal with 3D Packing with Object Ori-
entation [23], the physical traveling salesman problem [24], the Mul-
tiple Sequence Alignment problem [25] or Logistics [22]. The prin-
ciple of NRPA is to adapt the playout policy so as to learn the best
sequence of moves found so far at each level.

Electricité De France (EDF) is the main french electric utility
company. Each year, eleven millions of services have to be carried
out by EDF technicians at customers places (problem fixing, meter
replacement, energetic diagnosis, business prospects). Thus, all to-
gether, EDF techicians drive by car more than 220 000 kilometers
per year. Each service is accomplished by a technician having the
required skills within a time window determined during the appoint-
ment booking. As a result, numerous Vehicle Routing Problems with
Time Windows (VRPTW) have to be solved on a daily basis (one
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problem per catchment area). Any of these VRPTW involves quite a
big search space, since EDF technicians of a single catchment area
have to achieve every day hundreds of visits at customers places. The
objective of the work described in this paper was to adapt the NRPA
algorithm to the specifics of EDF problem.

Related approaches that apply Artificial Intelligence techniques
to transportation include agent based approaches [5], Monte Carlo
Search approaches [42, 30, 22, 1] and learning of simulations of ur-
ban traffic [16]. Our work is close to the Monte-Carlo Search ap-
proach applied to the Capacitated Vehicle Routing Problem with
Time Windows (CVRPTW).

We now give the outline of the paper. The next section briefly de-
scribes the state of the art of Vehicle Routing. The third section de-
tails the NRPA algorithm and its proposed improvements. The fourth
section describe the problems of EDF and the current solver. The fifth
section gives experimental results for various instances of Vehicle
Routing, both from literature (Solomon instances) and from real-life
problems. The last section concludes.

2 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one of the most studied op-
timization problem. It was first stated in 1959 in [18]. Basically, it
consists of finding an optimal route for a number of vehicles that are
used to deliver goods or services to a set of customers, taking into
account a set of constraints. In the simpler variant of the problem, all
vehicles start from a single depot and end their tour in this depot. The
objective function to be minimized may combine up to three criteria
(namely the number of customers that are not serviced, the number
of vehicles used, the total distance travelled by the vehicles), each
criterion having an associated weight. The VRP can be formalized
as a graph problem : let G = (V, A) be a directed graph where V
is the set of vertices, and A is the set of arcs. Each arc is labelled
with a non-negative number. One of the vertices represent the depot,
the others represent the customers locations. The arcs symbolize the
roads between two customers, and the label of the arcs give the dis-
tance (or the travel time, or the travel cost) between two points. Lets
us remind that the G is a directed graph, and thus its associated dis-
tance matrix is not necessarily symmetric.Now the problem consists
of finding the minimum number of tours so that each vertex except
the depot belongs to one and only one tour, and the depot belongs
to all of them. The VRP is of the non deterministic polynomial time
hard type (NP-Hard), which implies that so far we don’t know of
a general method which is able to optimally solve any instance of
the problem in polynomial time. As a result, the VRP is considered
very difficult. Nowadays exact methods can solve to optimality quite
challenging instances of the problem (for instance up to one hundred
visits or so with Branch and Price methods).



2.1 VRP variations
The VRP is a real challenge for delivery companies operating a
fleet of vehicles. It has given rise to a number of variations. The
CVRP (Capacitated VRP) is defined as a VRP with a demand as-
sociated to each customers (e.g. the number of parcels they have pur-
chased) and each vehicle has a limited capacity. The VRP with time
windows (VRPTW) implies to serve each customer within a given
time window (possibly different for each customer). The capacitated
VRP with time windows (CVRPTW) combines the characteristics
of the two previous variants. Although the previous variations are
the most widely studied because of their great practical importance,
many other extensions of the basic VRP have also been proposed.
Among them, let us just mention two of them. First, the dynamic
VRP (DVRP) where vehicles may be dynamically re-routed during
their tour in order to fulfill new customers orders. Second, the VRP
with Pickup and Delivery (VRPPD) where a fleet of vehicles must
satisfy transportation requests (e.g. picking parcels up at some places
and delivering them at given locations).

2.2 Principal methods used for solving VRP
A wide range of methods have been used to solve the VRP. These
methods may be broken down into three sub-groups, namely exact
methods, heuristic methods and metaheuristic methods. These meth-
ods are presented hereafter.

Exact methods These methods tend to find an optimal solution for
the VRP. As mentioned above, they are thus used to solve instances
of the VRP of consequent size. Among the most studied exact meth-
ods for the VRP and variations we may mention the Branch-and-Cut
and the Branch-and-Price algorithms [28], the column-generation al-
gorithm [4] and the set-partitioning method [2].

These methods can also provide a bound of optimum, especially
in relaxing some of the most complicated constraints. For example,
in suppressing the classical subtour elimination constraint.

Heuristic methods Not in a comprehensive manner, let us men-
tion two interesting approaches. First the cluster-first, route-second
heuristic [26]. Second, the savings heuristic [14] [3]. For the lo-
cal search approaches we see in [44] a heuristic projection pool
with powerful insertion and guided local search strategies. The lo-
cal search described in [39] gives reference solutions on several
instances of the benchmark VRP Solomon instances tested in this
work.

Metaheuristic methods The most commonly used metaheuristics
for solving VRP and variations are the particle swarm optimization
[31], simulated annealing [13], genetic algorithm [34] [43] and tabu
search [15] [35]. Among the best algorithms for solving the VRP
Solomon instances tested in this work, we can cite genetic algorithm
described in [29], evolutionnary algorithm detailed in [17] or tabu
Search proposed in [20].

3 Nested Rollout Policy Adaptation for Vehicle
Routing

In this section we start with explaining the NRPA algorithm. Then
we give our modelling of the CVRPTW problem for NRPA. We fin-
ish the section describing how weight are heuristically initialized in
order to speed-up convergence of the algorithm.

3.1 Description of NRPA

An effective combination of nested levels of search [9] and of policy
learning has been proposed with the NRPA algorithm [40]. NRPA
holds world records for Morpion Solitaire and crosswords puzzles.

NRPA is given in algorithm 3. The principle is to learn weights
for the possible actions so as to bias the playouts. The playout algo-
rithm is given in algorithm 1. It performs Gibbs sampling, choosing
the actions with a probability proportional to the exponential of their
weights.

The adaptive rollout policy is a policy parameterized by weights
on each action. During the playout phase, action is sampled accord-
ing to this weights. The playout algorithm is given in algorithm 1. It
uses Gibbs sampling, each move is associated to a weight. A move
is coded as an integer that gives the index of its weight in the policy
array of floats. The algorithm starts with initializing the sequence of
moves that it will play (line 2). Then it performs a loop until it reaches
a terminal states (lines 3-6). At each step of the playout it calculates
the sum of all the exponentials of the weights of the possible moves
(lines 7-10) and chooses a move proportional to its probability given
by the softmax function (line 11). Then it plays the chosen move and
adds it to the sequence of moves (lines 12-13).

Then, the policy is adapted on the best current sequence found,
by increasing the weight of the best actions. The Adapt algorithm is
given in algorithm 2. The weights of the actions are updated at each
step of the algorithm so as to favor moves of the best sequence found
so far at each level. The principle of the adaptation is to add α to
the action of the best sequence for each state encountered in the best
sequence (lines 3-5) and to decrease the weight of the other possi-
ble actions by an amount proportional to their probabilities of being
played (lines 6-12). The adaptation algorithm is given in algorithm
2.

In NRPA, each nested level takes as input a policy, and returns a
sequence. Inside the level, the algorithm makes many recursive calls
to lower levels, providing weights, getting sequences and adapting
the weights on those sequences. In the end, the algorithm returns the
best sequence found in that level. At the lowest level, the algorithm
simply makes a rollout.

The NRPA algorithm is given in algorithm 3. At level zero it sim-
ply performs a playout (lines 2-3). At greater levels it performs N it-
erations and for each iteration it calls itself recursively to get a score
and a sequence (lines 4-7). If it finds a new best sequence for the
level it keeps it as the best sequence (lines 8-11). Then it adapts the
policy using the best sequence found so far at the current level (line
12).

NRPA balances exploitation by adapting the probabilities of play-
ing moves toward the best sequence of the level, and exploration by
using Gibbs sampling at the lowest level. It is a general algorithm
that has proven to work well for many optimization problems.

Playout policy adaptation has also been used for games such as Go
[27] or various other games with success [10].

3.2 Modelling of the problem

There are several design choices when implementing NRPA. The first
choice is to decide how to code the possible moves. For the vehicle
routing problem we choose to code a move as a starting node, and
arrival node and a vehicle.More precisely, a solution to the problem
is an ordered sequence of visits, including special visits (SV) that
represent the fact that the corresponding technician is at the depot.
So a sequence solution always starts and ends with a SV. If there



Algorithm 1 The playout algorithm
1: playout (state, policy)
2: sequence← []
3: while true do
4: if state is terminal then
5: return (score (state), sequence)
6: end if
7: z← 0.0
8: for m in possible moves for state do
9: z← z + exp (policy [code(m)])

10: end for
11: choose a move with probability exp(policy[code(move)])

z

12: state← play (state, move)
13: sequence← sequence + move
14: end while

Algorithm 2 The Adapt algorithm
1: Adapt (policy, sequence)
2: polp← policy
3: state← root
4: for move in sequence do
5: polp [code(move)]← polp [code(move)] + α
6: z← 0.0
7: for m in possible moves for state do
8: z← z + exp (policy [code(m)])
9: end for

10: for m in possible moves for state do
11: polp [code(m)] ← polp [code(m)] - α ∗

exp(policy[code(m)])
z

12: end for
13: state← play (state, move)
14: end for
15: policy← polp

Algorithm 3 The NRPA algorithm.
1: NRPA (level, policy)
2: if level == 0 then
3: return playout (root, policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (result,new)← NRPA(level − 1, policy)
8: if result ≥ bestScore then
9: bestScore← result

10: seq← new
11: end if
12: policy← Adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if

is a SV between two visits within the sequence, that means the end
of a tour for a technician, and the beginning of a tour for another
technician (with no chronological ordering of these two tours that
will be carried out simultaneously).

Another design choice is to define the score of a playout. Score
includes number of non visited customers multiplied by a great pe-
nalization number, number of used vehicles multiplied by an rather
great weight, and number of kilometers. We filter movements that do
not respect the time windows in the playout algorithm : all solutions
respect customers time windows and vehicle time windows.

If there were more objectives, a lexicographic ordering of the ob-
jectives would be the best way to represent the scores of a playout.
Playouts could then be compared simply and easily.

3.3 Initialization of the Weights
In NRPA weights are uniformly initialized to 0.0. We propose to ini-
tialize the weight of NRPA heuristically in order to speedup conver-
gence. The greater the distance from the current city to another city
the less likely the other city is a good choice. Standard NRPA starts
with an uniform policy with all weights set to 0.0 and does not dis-
tinguishes between close and far cities. The heuristic initialization
of the weights initializes the weight with a value proportional to the
inverse of the distance. This initialization is only used for the first
iteration of NRPA.

Algorithm 4 The NRPA algorithm with quantiles.
1: NRPA with quantile (level, policy)
2: allScores← []
3: quantile←−∞
4: if level == 0 then
5: (result,new)← playout(root,policy)
6: allScores← allScores + result
7: quantile←updateQuantile(allScores)
8: return (result,new)
9: else

10: bestScore←−∞
11: for N iterations do
12: (result,new)← NRPA(level − 1, policy)
13: if result ≥ bestScore then
14: bestScore← result
15: seq← new
16: else
17: if result ≤ quantile then
18: policy← Adapt Bad(policy, new)
19: end if
20: end if
21: policy← Adapt(policy, seq)
22: end for
23: return (bestScore, seq)
24: end if

3.4 The Quantile Heuristic
The objective of the Quantile Heuristic is to penalize movements
from bad solutions. Solution scores for all playouts need to be stored.
When a new playout is computed, if its score is worse than a defined
quantile, then its movements weights are decreased in the weight. Ef-
ficient implementation is needed to limit the increase of computation
time needed to sort the solution scores and compute the quantile. Se-
quence of algorithm is described in 4. The adapt function is the same



as for good solutions, with negative coefficient α, as described in 5.
The coefficient α used for bad solutions can be different from the one
used to adapt policy to good solutions.

Algorithm 5 The adapt algorithm to bad solutions
1: Adapt Bad (policy, sequence)
2: polp← policy
3: state← root
4: for move in sequence do
5: polp [code(move)]← polp [code(move)] - α
6: z← 0.0
7: for m in possible moves for state do
8: z← z + exp (policy [code(m)])
9: end for

10: for m in possible moves for state do
11: polp [code(m)] ← polp [code(m)] + α ∗

exp(policy[code(m)])
z

12: end for
13: state← play (state, move)
14: end for
15: policy← polp

4 The EDF Capacitated Vehicle Routing Problem
with Time Windows

In this section we first explain the optimization problem encountered
at EDF and then describe the current EDF approach to the problem.

4.1 Description of the EDF problems
The Vehicle Routing Problem modeled here includes time windows,
which is a classical feature of VRP problems. That means that :

• Each technician has an availability time window. Each tour starts
at the beginning of this time window and must end before the end
of this time window.

• Each appointment has a time window and a duration. A tour vis-
iting the appointment must start after the beginning of the time
window and end (including the appointment duration) before the
end of the time window

• If a tour arrives at an appointment location before the beginning of
its time windows, it is possible to add waiting time before starting
the appointment.

Time windows and technicians are input data of the problem. Du-
ration of appointments and duration of all possible trajects between
appointments or depot and appointments are also input data of the
problem.

The problem also includes capacities, another classical feature of
VRP problems : Each vehicle has several stock capacities (in EDF
problem 6 per vehicle).

• Each vehicle has several stock capacities (in EDF problem 6 per
vehicle). Vehicle stocks are initialized with initial capacity at the
begining of each tour.

• For any stock, each operation will consume a stock quantity.
• For each tour, for each capacity, the sum of the quantity used by

the operation of the tour must not be greater than the capacity of
the stock.

Several peculiar features are taken into account in EDF modeliza-
tion.

• Taking into account an off-duty time window for lunch break. No
place is imposed for it. It can interrupt a trip but not a service to a
customer.

• Taking into account specific skills for visits. For each visit, only
a subset of technicians is skilled to carry out the technical opera-
tions.

• Traject distance and traject duration are not proportionnal, be-
cause vehicle mean speed depends on the traject. Consequently,
2 different traject matrixs are provided.

• Traject matrix and are not symetric : traject between two points
depends on the sense of the traject.

Another difference with academic data is that on real problems,
there is not always enough people to carry out the whole set of vis-
its. Consequently, we must first maximize the number of visits that
will be done. Some of the appointments have a high priority, and be-
cause of customers satisfaction, it is not possible to cancel it. Other
appointments have less priority, because they consist for example in
a technical operation that can be postponed, with no corresponding
customer appointment. Moreover, network preventive maintenance
visits have less priority than troubleshooting activities. In order to
evaluate a solution, a lexicographic objective function is taken into
account :

• Maximization of the number of achieved visits of high priority.
• Maximization of the number of achieved visits of low priority.
• Minimization of the economic function, taking into account num-

ber of technicians used (ponderated with a proportional daily
wage) and number of kms (ponderated with a proportional km
cost).

Thus, when comparing two solutions, we first compare the number
of visits of high priority that are achieved in each solution.if these
numbers are not equal then we know which solution is best. If they
are equal, then we compare the number of visits of low priority, if
again these numbers are equal, then we compare the third criterion
of the two solutions, that is the economic function. The problem is
solved each day for determining the technicians tours of the next day,
with a computing time which must not last more than an few hours.

4.2 Description of current EDF approach
Current approach for the problem is based on stochastic greedy algo-
rithm and variable neighborhood search. The stochastic greedy algo-
rithm is based on [41] algorithm. First phase consist in creating tours
and insert in each tour the visits that increases the less the travelled
distance, until there is no room for new visits. For each insertion,
the place in the tour is chosen to minimize the increase of kms. If
no insertion is possible, a new round is created. Then the process is
repeated, until no visits nor technicians are left.

The local search consist of 2 kinds of movements :

• Small movements consist in choosing randomly an appointment,
and finding the best place to move the appointment, i.e. the best
place in all the existing tours to reinsert the appointment.

• Large movements consist in choosing randomly a tour, then en-
tirely destroying it and trying to reinsert all its appointments in
the other tours. If no improvement is possible, the movement is
canceled.

Advantages of such a method is that it computes rapidly good solu-
tions, very often acceptable by operators because greedy algorithm
choices, based on distance, are humanly intuitive.



Table 1: The different algorithms tested on the 56 standard instances.

nrpa nrpaD nrpaDQ opturn
instance V Km V Km V Km V Km

c101 10 828.94 10 828.94 10 828.94 10 852.95
c102 10 986.77 10 858.18 10 843.57 11 1458.24
c103 10 1117.30 10 872.45 10 857.14 11 1674.76
c104 10 1120.67 10 894.83 10 901.79 11 1640.93
c105 11 900.69 10 828.94 10 828.94 11 1102.17
c106 11 940.90 10 828.94 10 828.94 11 1465.60
c107 10 1071.41 10 828.94 10 828.94 10 994.84
c108 10 1104.49 10 830.16 10 831.04 11 1674.53
c109 10 1061.88 10 842.43 10 849.09 11 1688.91
c201 4 723.69 3 591.56 3 591.56 4 974.46
c202 4 870.43 3 611.08 3 609.23 4 952.33
c203 4 1108.55 3 617.06 3 628.40 4 1058.52
c204 4 1043.12 3 773 3 629.67 4 1265.41
c205 4 720.12 3 591.17 3 588.88 4 1007.44
c206 4 753.90 3 590.79 3 600.88 4 1252.91
c207 4 733.45 3 597.53 3 597.53 4 1032.26
c208 4 717.03 3 601.05 3 604.36 4 1189.83
r101 19 1665.61 19 1656.54 19 1655.36 22 2187.97
r102 18 1520.63 17 1546.12 17 1523.75 19 1967.61
r103 14 1331.52 14 1287.66 13 1379.44 17 1887.31
r104 11 1113.42 11 1074.57 10 1112.86 13 1524.18
r105 15 1467.54 14 1439.11 14 1456.76 17 1931.07
r106 13 1346.79 12 1313.12 13 1301.35 15 1687.18
r107 12 1222.77 11 1163.35 11 1158.45 14 1621.52
r108 11 1142.77 10 1008.88 10 1004.15 12 1414.54
r109 13 1290.98 12 1218.86 12 1220.98 16 1866.01
r110 12 1236.98 11 1159.06 11 1158.85 13 1625.52
r111 12 1181.52 11 1125.77 11 1189.42 14 1659.14
r112 11 1105.92 10 1018.92 10 1023.14 12 1513.96
r201 4 1528.10 4 1419.93 4 1445.68 5 1889.49
r202 4 1369.36 4 1264.17 4 1305.25 6 1871.68
r203 4 1276.17 3 1198.43 3 1137.19 4 1632.11
r204 3 1086.88 3 879.22 3 890.48 4 1127.19
r205 4 1226.37 3 1182.85 3 1174.74 4 1475.82
r206 3 1230.22 3 1114.39 3 1098.25 4 1357.13
r207 3 1243.13 3 1017.76 3 975.49 3 1327.14
r208 3 1048.79 2 860.49 2 859.89 3 1076.75
r209 4 1191.46 3 1136.35 3 1055.18 4 1495.34
r210 4 1238.99 3 1117.78 3 1151.20 4 1588.28
r211 3 1059.63 3 919.90 3 895.23 3 1239.46

rc101 16 1701.31 15 1625.45 15 1640.51 19 2483.55
rc102 14 1560.96 13 1549.49 14 1511.67 16 2261.19
rc103 12 1426.39 11 1321.51 11 1356.68 14 1952
rc104 11 1264.83 10 1202.19 10 1165.98 13 1686.93
rc105 15 1610.40 14 1652.48 14 1634.49 19 2343.03
rc106 12 1451.27 13 1417.10 12 1428.08 14 1952.11
rc107 12 1404.08 11 1312.12 11 1289.70 14 1755.26
rc108 11 1380.20 11 1197.96 11 1188.93 14 1888.36
rc201 5 1695.44 4 1675.35 4 1644.26 5 2537.02
rc202 5 1439.66 4 1423.27 4 1378.31 4 2037.64
rc203 4 1384.52 3 1265.06 3 1295.67 4 1571.54
rc204 3 1185.91 3 960.21 3 962.46 4 1447.34
rc205 5 1601.08 4 1497.85 4 1508.59 5 2313.72
rc206 4 1447.54 3 1341.10 3 1348.50 4 1856.01
rc207 4 1374.81 3 1299.20 3 1294.41 4 1773.09
rc208 3 1279.30 3 1007.62 3 1016.23 3 1494.43



Table 2: Summary of the different algorithms tested on the 56 standard instances.

nrpa nrpaD nrpaDQ opturn
V (mean) Km (mean) δ V (mean) Km (mean) δ V (mean) Km (mean) δ V (mean) Km (mean) δ

0 8.21 1216.72 7.59 1097.47 53 7.57 1094.40 55 9.16 1600.10 -50

Table 3: Results for the different algorithms tested on the EDF instances.

nrpa nrpaD nrpaDQ opturn
instance Missed V Km Missed V Km Missed V Km Missed V Km

EDF1 8 6 649.17 8 6 464.50 8 6 433.97 9 6 613.41
EDF2 0 6 454.90 0 6 448.92 0 6 456.63 1 6 575.99
EDF4 1 5 172.90 1 5 160.99 1 5 164.98 1 5 222.15
EDF5 0 2 224.06 0 2 224.06 0 2 224.06 0 2 271.24
EDF6 0 1 85.27 0 1 85.27 0 1 85.27 0 1 88.71
EDF7 0 4 302.72 0 4 302.7 0 4 302.8 2 4 370.73
EDF8 2 3 156.12 2 3 158.23 2 3 152.40 2 3 115.63
EDF9 4 11 861.30 4 11 767.63 4 11 777.35 4 12 498.19

Table 4: Summary for the different algorithms tested on the EDF instances.

nrpa nrpaD nrpaDQ opturn

Missed V Km Missed V Km Missed V Km Missed V Km

Summary (mean) 1.88 4.75 363.30 1.88 4.75 326.54 1.88 4.75 324.68 2.13 4.88 344.51

5 Experimental Results
The operational process of EDF consists in providing a solution to
the CVRPTW in less than two hours. Each problem is solved during
the night so as to provide solutions for the next day. The parameters
used in our experiments for NRPA are to use level 3, α = 1 and 100
iterations per level. This algorithm is called nrpa in our tables. The
results are given out of 11 independent runs. The distance heuris-
tic is tested and the initialization of the weights is only applied at
the first iteration. The corresponding name of the algorithm is nrpaD
in the tables. The Quantile heuristic is applied in 80% of the worst
cases. It uses all the simulations performed to date and uses a specific
α = 0.5. The algorithm that uses both the Distance and the Quantile
heuristics is named nrpaDQ int the tables.

The current solver of EDF, Opturn is launched only once with
3 000 iterations of greedy search and 3 000 iterations of local search.
These values were chosen during the tuning of Opturn after many ex-
periments that showed that no improvements are obtained with big-
ger values. As a result, the running time of Opturn is smaller than the
running time of the NRPA.

The running time for NRPA is approximately 7 000 seconds and
up to 8 000 seconds when using the Quantile heuristic. The running
time of Opturn is approximately 5 000 seconds. Importantly, these
run times are compatible with the operational process as they last
approximately two hours.

Table 1 gives the results of runs on the litterature instances. It com-
pares 4 algorithms:

• nrpa : Standard NRPA (3 levels) without heuristics
• nrpaD : NRPA (3 levels) with Distance initialization heuristic
• nrpaDQ : NRPA (3 levels) with Distance initialization heuristic

and Quantile heuristic

• opturn : current EDF solver, based on Solomon and LNS heuristic.

To compare the results of the 4 variants, the lexicographical approach
takes into account first the number of vehicles used and then the kilo-
meters.

• V : number of needed vehicles
• Km : sum of the Kms of the rounds

Table 2 gives the summary for all the runs of the algorithms on the
standard problems. For the Km and the Vehicles (V), the figures are
the average of each algorthm on the Solomon instances. The δ value
is the number of problems that are solved better than with standard
NRPA minus the number of problems that are solved worse. Com-
parison is lexicographic, based on number of vehicles, and if equals,
on the number of Kms. Logically, the δ value is 0 for the reference
(nrpa variant).

We observe that nrpaDQ scores 55 while Opturn scores -50. This
is a great improvement over the current solver. However the current
solver was optimized on the EDF problems. The Distance heuristic
improves a lot over standard NRPA. The Distance + Quantile heuris-
tic only improves slightly over the Distance heuristic alone.

Table 3 and Table 4 give the results of the 4 algorithms on the
EDF instances. For each algorithm, the 3 components of objective
function are displayed:

• Missed : number of missed appointments
• V : number of needed vehicles
• Km : sum of the Kms of the tours

Table 3 compares the results of runs of the algorithms on the EDF
problems. For each instance we compare the number of realized tech-
nical operations because on real EDF instances there are not neces-
sarily enough vehicles to achieve all the operations. We also measure



the number of vehicles and the number of kilometers, as in classical
VRP problem instances. To compare the results of the 4 variants, the
lexicographical approach takes into account first the achieved opera-
tions, then the number of vehicles used and finally the kilometers.

Table 4 gives the average values on the whole set of EDF instances.
The average number of missed visits is smaller with NRPA than

with Opturn. It is the same for all NRPA variants. The number of
vehicles used for the operations is also slightly smaller and this is
the same for all NRPA variants. The average number of kilometers is
greater with standard NRPA than with Opturn, however it is smaller
with nrpaD and nrpaDQ than with Opturn. With respect to the lexico-
graphic objective function described in subsection 4.1, we can con-
clude that nrpaD and nrpaDQ improves on the current solver for the
operational EDF instances.

The Distance and Quantile heuristics provide solutions with the
same values for the 3 components of the objective function. These
two heuristics perform better in average than the standard NRPA
variant as for the number of travelled kilometers : 324 vs 363, that
is a 10 percents improvement. If we compare with Opturn results,
the improvement account for around 5 percents. This is still signif-
icant from a practical point of view because of the huge amount of
kilometers travelled by the technicians on a yearly basis : about 220
millions of kilometers.

6 Conclusion

We have presented the NRPA algorithm and its application to the
CVRPTW problems. This problem is important for EDF, a company
that plans numerous operations every day on the french electrical net-
work. We have given the modelization used to address the CVRPTW
problem and two heuristics to improve on standard NRPA: the Dis-
tance heuristic and the Quantile heuristic. The Distance heuristic im-
proves a lot on standard NRPA and the Quantile heuristic is a slight
improvement. We also compared NRPA with the heuristics to the
current EDF solver Opturn. On standard instances NRPA with the
heuristic is much better. On the operational EDF instances it is still
better even though Opturn was tuned for these instances while NRPA
is a general algorithm that uses a Distance heuristic that works for all
kinds of VRP problems.

As we have seen from the examples of the EDF instances, NRPA
with heuristics performs better than the current solver. The percent-
age of kilometers saved by heuristic NRPA is greater than 5% of the
total number of kilometers. EDF agents drive hundreds of millions of
kilometers each year. The use of heuristic NRPA could save millions
of kilometers each year and reduce the carbon footprint of EDF by
hundreds of tons of CO2.
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