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Abstract. The emergence of deep learning brought solutions to many difficult
problems and has recently motivated new studies that try to solve hard combi-
natorial optimization problems with machine learning approaches. We propose
a framework based on Expert Iteration, an imitation learning method that we
apply to solve combinatorial optimization problems on graphs, in particular the
Maximum Independent Set problem. Our method relies on training GNNs to rec-
ognize how to complete a solution, given a partial solution of the problem as an
input. This paper emphasizes some interesting findings such as the introduction
of learned nodes features helping the neural network to give relevant solutions.
Moreover, we represent the space of good solutions and discuss the ability of
GNN’s to solve the problem on a graph without training on it.

1 Introduction

Given a graph, finding a set of pairwise non-adjacent nodes of maximum size is prob-
ably one of the most classical hard algorithmic graph problem [20,25] denoted MAXI-
MUM INDEPENDENT SET. Such a problem finds natural applications to non overlapping
problems, including automatic label placement for instance [2].

MAXIMUM INDEPENDENT SET can also be seen as a 1-player game where the
player chooses iteratively a new node to select in order to form the largest possible inde-
pendent set. Considering such an optimization problem as a game opens the possibility
of applying machine learning methods such as neural networks and deep reinforcement
learning. Neural networks came back to the light when it made it possible to solve
difficult and large scale classification tasks in computer vision. Nowadays, the develop-
ment of graph convolution layers paves the way to the application of neural networks to
graph problems. If the Operational Research community studied the resolution of such
graph problems for 50 years, learning how to solve combinatorial optimization prob-
lems has been a recent interest in the machine learning community with the emergence
of scalable methods like Graph Neural Networks (GNN) [13,15,28,36].

Deep Reinforcement Learning gave state of the art results on complex two-player
complete information games such as Go, Chess and Shogi [30]. In those approaches,
the underlying reinforcement learning paradigm is Expert Iteration [5]. It is a general
algorithm that uses Monte Carlo Tree Search to leverage the learning of a policy and a
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value. Inspired by its successes on difficult games, we borrow similar ideas to apply it
to combinatorial optimization problems on graphs. In this work, we focus on learning a
policy for the MAXIMUM INDEPENDENT SET problem. To do so, we use Monte Carlo
Search to generate diversified and well-explored states of this problem for each instance
and use a Graph Neural Network to learn the resulting policy.

In this paper, we investigate several ingredients giving the ability to GNN to learn
how to solve combinatorial optimization problems. Our main contributions are three-
fold, first, we show that learning additional node features boosts the performance of
GNNs. Secondly, we show how such a neural network can be used to generate a diver-
sified pool of good solutions, giving useful informations about the distribution of the
best solutions and potentially indicating how hard it is to find the optimal solution. Fi-
nally, we show how to transfer knowledge between graphs, training a GNN on a small
graph and applying it successfully on a larger graph. Although we primarly focus on
MAXIMUM INDEPENDENT SET problem, it is merely a case study and our framework
is versatile enough to be adapted to other cases.

First, we introduce the relevant literature about solving combinatorial optimization
problems with neural networks in Section 2. Then, in Section 3, we present the basic
concepts and notations used throughout this paper. In Section 4, we provide the details
about our method and how the results were obtained. The results of our numerical ex-
periments are discussed in Section 5. Finally, we end the paper with concluding remarks
and a roadmap for future works.

2 Related Work

Combinatorial optimization problems in graphs like MAXIMUM INDEPENDENT SET
are widely studied in many fields and can be viewed from many different perspectives.

Our paper focuses on MAXIMUM INDEPENDENT SET which is a hard problem to
solve. In terms of theoretical complexity, the problem is known to be NP-hard [20],
i.e. it is not believed that there exists any polynomial algorithm for efficiently find-
ing its optimal solution. Even from the approximation point of view, the problem is
hard to approximate [25]. However it is possible to solve MAXIMUM INDEPENDENT
SET by exact exponential approaches like divide-and-conquer methods [32] or branch-
and-bounds methods [8,26]. Some efficient heuristics, although coming without any
guarantee on the quality of the solution, have been devised [14,22].

Recently, several approaches tried to solve combinatorial optimization problems
by using machine learning techniques [7,21,24]. It gained momentum with the emer-
gence of Graph Neural Networks and their expressive power [13,36] and it motivated
researchers to investigate how to apply GNN to graph combinatorial optimization prob-
lems [18,15].

For example, Abe et al. applied Alpha Zero for several combinatorial optimiza-
tion problems, including MAXIMUM INDEPENDENT SET [1]. Other works combined
branch-and-bound methods with GNNs [16]. In [19], the authors introduced an unsu-
pervised learning framework inspired by Erdős probabilistic method. Reinforcement
learning has also been investigated [12]. In [21], the authors proposed a framework
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combining reinforcement learning and graph embeddings in order to incrementally con-
struct the solution.

In our work, we build a framework that solves combinatorial optimization problem
based on Expert Iteration [5], a promising reinforcement algorithm based on imitation
learning. Our approach is innovative as it introduces learned features that help to im-
prove the performance of the GNNs.

On the other hand, it has to be noted that GNNs are not always working perfectly.
More precisely, it has been shown that stacking too many layers was detrimental as it
lead to over-smoothing, i.e. the features of the nodes are propagating too far in the net-
work and all information on each node vanishes [10]. In addition, when solving a com-
binatorial optimization problem in a supervised manner, some difficulties have been
highlighted for generating unbiased representative labels for large scale instances [35].
In that way, we investigate transferring knowledge from small instances to larger in-
stances and give encouraging results for future work.

3 Preliminaries

The Maximum Independent Set combinatorial optimization problem. In the re-
mainder of this paper, we denote by G = (V,E) an undirected graph in which V (resp.
E) is the set of nodes (resp. edges). The distance between two nodes is the number of
edges in the shortest path connecting them.

Given a graph G = (V,E), an independent set is a set S ⊂ V of nodes such that
∀i, j ∈ S, i 6= j ⇒ {i, j} /∈ E. The problem MAX INDEPENDENT SET consists in
finding an independent set of maximum size.
Seeing Max Independent Set as a game. It is possible to interpret MAX INDEPEN-
DENT SET as a game in which the goal is to find a set of vertices of maximum cardinality
by iteratively selecting a node under the constraints that the current set of selected nodes
always forms an independent set. The game ends when there is no more node that can
be selected and the score is the number of selected nodes.

In order to make the reading clear, we introduce some notations. All following def-
initions are always considering a given undirected simple (without any multiple edges
nor any self-loops) graph G = (V,E).

A state is a partial solution for MAX INDEPENDENT SET in G, i.e. a set of nodes
S ⊂ V that forms an independent set, not necessarily of maximal size. We call initial
state the state in which no node has been selected, and final state a state of maximal size,
i.e. a state in which no more nodes can be added to the solution without compromising
the constraint of being an independent set. Sometimes, final states are naturally called
solutions.

Given a state, a legal move is a node that does not belong to the state and can be
added to it such that the whole set still forms an independent set.

Given a state, a sequence is a set of nodes not belonging to the state that can be
added to it and form a final state. We call labeled state a couple {state, sequence}.

Given a state, a policy for the legal moves is a distribution of their probability to be
selected.
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Given a state and a method to obtain a policy for any state, a rollout is a sequence
obtained by choosing nodes iteratively according to probability provided by the method.
Graph Neural Networks. A Graph Neural Network (GNN) is a neural network that
contains graph convolutional layers that leverages the structure of a graph [36]. A graph
convolutional layer takes the features of a node as an input and usually aggregates
transformed features from the node and its neighbors into a set of output features. One
of the major advantages of GNNs compared to other standard neural networks is that a
GNN layer can be applied to any graph of any size.

In our neural networks, we used convolutional layers from Graph Isomorphic Net-
work (GIN) [34] that have been shown to have good empirical performances. Note that
we also tested Graph Attention Networks (GAT) [31] layers with a substantial drop in
performance.
Expert Iteration. In imitation learning, an expert (usually represented by a tree search)
creates a dataset of states with target moves drawn by him. Then, a learner (usually
represented by a neural network) tries to imitate the behavior of the expert by predicting
the policy among the moves. Expert Iteration [5] is a reinforcement learning algorithm
based on imitation learning that repeats the process and improves the tree search at each
iteration by using the learner policy to guide search during the dataset creation and the
tree search, increasing the performance of the expert.

4 Method

4.1 Using Expert Iteration to solve Max Independent Set

Labeling phase. The first step of our algorithm consists in produces a set of labeled
solutions that we attempt to predict in the learning phase.

First, the expert generates 500 random states that are not final with a uniform policy
(i.e. probability distribution among the current legal moves). Then, for each randomly
generated state, we designed the expert to make 50 random rollouts and keep the one
with the best score as the sequence in the labeled state. Those settings allow the expert to
provide a training set in short time and still give meaningful results for our observations,
and turns out to be enough to reach the state-of-art in terms of quality of the solution
for the studied datasets.

This naïve Monte Carlo search approach has the convenience to be very quick to
execute and still to allow to highlight the quality improvement of the learning.
Learning phase. The set of labeled states constitutes the training set of the GNN. Our
learner is a graph neural network that we train on the training set, allowing to compute
outputs for any state. Given a state, the learner tries to predict the nodes to select to
complete the partial solution by mimicking the expert plays. Therefore, each input of
the GNN represents a state of the game. To enrich the input, each node can be described
by the following four possible groups of features :

– a 0− 1 feature state indicating if the node belongs to the current state or not.
– a 0−1 feature legal_moves indicating if the node is a legal future move considering

the current state.
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– two random features footprints belonging to [0, 1] that characterizes uniquely each
node. This relates to the use of random features that have been proved to be helpful
for GNN learning for solving other combinatorial problems like MINIMUM DOM-
INATING SET [29] by singularizing the nodes and breaks symmetries.

– two features distances indicating the number of nodes at distance 1 (resp. 2) from
it.

Each group of feature is normalized according to the `2-norm.
In our architecture, we added the possibility to concatenate two additional features

to the input for each nodes before the first layer that are learned during the training
(i.e. those features are considered as weights of the neural network). We call them node
embeddings. Thus, when we put all features for each node, each input tensor has a shape
(|V |, 8).

Our neural network has the following architecture. One block consists of one Conv1D
layer (linear transformation that expands each node features separately), one GIN layer
(containing ReLu layers and batchnorm layers), one dropout layer, and one Conv1D
layer. The network consists of k blocks, adding the initial residual (copy of the initial
input) to the result between each block, and finally apply a final sigmoid. In our ex-
periments, GAT layers instead of GIN ones did not really give better performance and
two blocks were usually enough. Adding the initial residual has been motivated in [11].
The target is a one-hot-vector of the nodes of the sequence given by the labeling phase.
We then naturally evaluate the loss between the target and the output using the Binary
Cross-Entropy loss.

Note that at the beginning of each learning phase, we reset the parameters of the
neural network. It makes sense since the expert plays are better each iteration. Once the
GNN is trained, it can be used as a policy generator by applying a softmax function
to the output for any given state, defined as: softmax(z, t)i := e

zi
t /

∑
k∈{1...n} e

zk
t ,

with z = (zk)k∈{1...n} the output of the model, t the temperature (which is a parameter).
Notice that the greater t is, the closest to uniform policy the softmax function is. When
t is close to 0, the softmax function tends to give the maximum value of the output.

Our approach consists in repeating the labeling phase and the learning phase, using
the learner to perform rollouts instead of using a uniform policy for the labeling phase.
Except for dimacs-frb30-15-1, our results were obtained within actually only one
iteration (one labeling phase and one learning phase).

4.2 Evaluation of the neural network

In order to control how relevant is our neural network, we introduce two methods to
evaluate it.

– Argmax sequence method. Starting with the initial state, compute the output of the
neural network on the current state and choose the node with the highest activation
among the legal moves. Iterate until the state is final. We call such a sequence the
argmax sequence.

– Stochastic exploration method. To produce one solution, start with the initial
state (i.e. the state in which no node has been chosen yet in the solution.), compute
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the output of the neural network on the current state and apply the softmax function
with a low temperature that we call the exploration temperature (in our experi-
ments, we used a temperature of 0.106). Then, the next node is chosen according to
the distribution of probabilities given by the softmax function among legal moves.
Iterate until the state is final. Repeat the previous procedure k times to obtain a pool
of k solutions as the result of the evaluation.

The latter gives richer information about the neural network performance, but is
more than k times slower then the former. We sometimes use the first method as a
simple and quick way to observe the quality of the neural network at each moment of
the learning phase.

We tuned the hyper-parameters with Optuna [3]. The optimized algorithm to do so
consisted in one labeling phase, one learning phase and one stochastic exploration for
evaluation. The simplest objective function we could use is the score of the best found
solution during the stochastic exploration, but we wanted to refine it by adding a notion
of diversity in the pool of best solutions. In order to do so, we optimized the quality q of
the set of the solution with the best found score, according to the following definition:
q = (b+ 1)− 1/(

√
|S| · trace(covariance(ST ))), with b the best score found during

the stochastic exploration and S the set of found solutions with score b. In this way,
the best found score is always highlighted by the objective function, but some bonus is
given if the set of solutions with such score is large and diverse.

Our hyper-parameters suggested by Optuna comprise a very low exploration tem-
perature (0.106), a dropout value of 0.2, and 145 epochs.

5 Experimental Results

In this section, we present interesting observations about learning how to solve MAX
INDEPENDENT SET with GNNs. We highlight our experimental results among the fol-
lowing instances of graphs :

instance |V | |E| best known score
ba200_5 200 975 82
er200_10 200 1957 41
dimacs-frb30-15-1 450 17827 30
bio-SC-LC 2004 20452 968

er200_10 is a standard generated Erdős-Renyi graph that have edge probability p =
0.10 and ba200_5 is a Barabási-Albert generated graph in which 5 edges has been
added per node [6].
dimacs-frb30-15-11 is a difficult instance from the Benchmarks with Hidden Op-
timum Solutions for Graph Problems [33] provided in [1] bio-SC-LC is a real-world
instance from [27]. These four instances are a subset of instances used in [1].

1 we kept the same name used in [1] but it is actually an instance of BHOSLIB [33]
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5.1 Boosting the learning phase with good features.

In this subsection we emphasize two major points. First, GNNs can be trained on a set
of quickly labeled states and perform well to solve MAX INDEPENDENT SET. Second,
adding embeddings to node features boosts the learning phase and helps the GNN to
learn more efficiently.

Fig. 1: The score of the argmax playout each epoch of the learning on each instance.
Learning curves with embeddings are highlighted by a plain curve.

In Figure 1, our GNN learns the label of a set of 500 labeled states given by the
labeling phase for 100 epochs on each instance of our dataset (results for other instances
can be found in appendix). At each epoch, we evaluate the GNN by calculating the
score of the argmax sequence. We represent some curves with different ways to select
footprints and embeddings among the features we introduced in last section. In order
to make the graphic more readable, the curves have been smoothed by representing the
average score of the 5 last scores for each epoch.

Since adding randomized features to the nodes has been observed quite efficient to
singularize the nodes and to break symmetries [29], we included those new features as
footprints, and also suggested to use the same idea allowing such footprint to be learned
by the neural network (calling them embeddings). It appears clearly that all curves de-
scribing the performance of a network involving embeddings give better performance
than ones without, and perform more efficiently than standard randomized features (see
Fig. 1). On dimacs-frb30-15-1, our GNN showed more difficulty to learn but
eventually succeeded on this difficult instance.

Those observations are based on a quick evaluation but can be made more precisely
by using the second way to evaluate the GNN. In Figure 2, we represented all the scores
found in the exploring phase (in gray), the ones found by making playouts from the
initial state with a GNN that trained on inputs with the state as a unique feature in
light blue (resp. all features in dark blue). Resultas for other instances can be found in
the appendix. The three sets contain 500 solutions each. Our observation show that the
GNN does not succeed in beating the scores of the expert on dimacs-frb30-15-1.
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We give some interpretation in next subsections based on the cluster of best found
solutions. Overall, using all features clearly appears to be a good setting and outperform
the expert plays and the stochastic exploration with no extra features.

Fig. 2: Distribution of scores of 500 solutions from the training set and an exploration
of 500 rollouts with the GNN for instance bio-SC-LC, first with only the state, and
then with all the features.

Once a neural network has learned on a small graph, it performs a little better on
other bigger instances it never encountered, removing the footprint features and the
embedding features during the learning phase since they had sense only in a particu-
lar instance. However, the quality of the learning is quite less effective than with all
features. A discussion about this observation can be found in the appendix.

6 Conclusion

In this paper, we combined GNN with expert iterations to learn how to solve MAX IN-
DEPENDENT SET problems and improved the overall network architecture with learned
node features. We brought empirical evidences of the soundness of our approach and
gave some qualitative results about the space of solutions explored by our approach.

On standard instances, GNNs seem to learn correctly how to solve MAX INDEPEN-
DENT SET and are able to give good solutions with some easy generated training set.
Our method seems to performs well on real-world instances but shows some difficulties
on artificially created hard instances. Besides, we emphasized some interesting observa-
tions about the improvement made by adding embedding features to nodes. This could
be investigated further in future work. In particular, we do not know yet what those
embeddings are exactly learning, how meaningful they are, and how much they can be
exported for other tasks.

Furthermore, our framework is general and could fit many problems such as MIN
VERTEX COVER, MAX CLIQUE, or the weighted versions of them (by simply putting
the weight instead of a 0− 1 activation in the state feature).
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A Results on other instances

Fig. 3: The score of the argmax playout each epoch of the learning on each instance.
Learning curves with embeddings are highlighted by a plain curve.
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Fig. 4: Distribution of scores of 500 solutions from the training set and an exploration
of 500 rollouts with the GNN for each instance, first with only the state, and then with
all the features.
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B Stochastic exploration method allows to find various good
solutions

By giving a set of good solutions, the stochastic exploration method gives us some
interesting insights about the distribution of the solutions in a given instance. After
several exploration methods, we saved all good solutions of the three best found scores
in order to observe the clusters they form (i.e. in the sense of hamming distance between
sets). Note that the pool of best solutions for dimacs-frb30-15-1 is the only one
that necessitated 5 iterations of labeling/learning phase and the solutions were found in
the labeling phase, the stochastic exploration method giving poor solutions as discussed
previously.

We sum up the information about the set of solutions we obtained:

– ba200_5: 1400 solutions with score 80, 700 solutions with score 81, 123 solutions
with score 82.

– er200_10: 1400 solutions with score 39, 700 solutions with score 40, 94 solutions
with score 41.

– dimacs-frb30-15-1: 499 solutions with score 26, 77 solutions with score 27,
4 solutions with score 28.

– bio-SC-LC: 21 solutions with score 966, 5 solutions with score 967, 1 solution
with score 968.

In order to observe how the solutions are organized, we first computed all hamming
distances between each pair of solution to see how far they are from each other. In
Figure 5, we represented the distribution of all possible hamming distances for the three
best found scores for each instance. For er200_10 and dimacs-frb30-15-1, we
also represented the graphic in log scale for more readability.
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Fig. 5: The distribution of hamming distances between best found solutions for each
instance of the dataset. Sometimes we also give the same graphic in log scale for more
readability.

For ba200_5, the solutions are well organized along a Gaussian curve. For er200_10,
we observe almost the same phenomenon except that the best solutions (with score 41)
are split into three clusters : one big cluster of close solutions, one sparse cluster of par-
tially close solutions, and a small sparse cluster of solutions. For dimacs-frb30-15-1,
all best found solutions look very sparse and have very few nodes in common. For
bio-SC-LC, the solutions seem to be well organized and not so far from each other.
Note that there is no hamming distance for the score 968 since we only obtained one
solution for this score.
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For each instance, we embedded our pool of solutions into a three dimensional
space with a t-SNE [23] in Figure 6, that allows to observe our previous remarks on the
distribution of hamming distances. We can notice that the scatterplots are always nested
around the best solutions.

Fig. 6: The projection of the set of best found solutions for each instance with the t-SNE
method.

Note that for the instances ba200_5 and er200_10, we had to sample the second
and third best found solutions (in green and orange) in order to highlight the pool of best
solutions (red).

With the instance dimacs-frb30-15-1, we observe that all best found solu-
tions look very sparse in the sense that the solutions have very few nodes in common.
This could explain why GNN cannot converge properly into a good solution. The latter
remark could explain why our neural network has so much difficulty to learn how to
solve the problem on this instance and converge to good solutions.
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Since enumerating maximal or maximum independent sets has also been studied
in the literature [4,9,17], our method provides some interesting tools to obtain good
various solutions with the help of a GNN.

C GNNs can export expertise on Max Independent Set from a
small graph to a larger graph

The last observation we want to highlight is that once a neural network has learned on
a small graph, it performs a little better on other bigger instances it never saw.

In order to do so, we had to remove the footprint features and the embedding fea-
tures during the learning phase since they had sense only in a particular instance. Thus,
the quality of the learning is quite less effective than with all features.

In our experiment, we compare training on ba200_5 and er200_10 and see
how much the GNN performs on the other instances (including two other instances :
ba100_5 and ba1000_5 constructed in the same way than ba200_5).

After a labeling phase, we make a learning phase and compute the score of the
argmax sequence for each other instance using the trained model at each epoch. We
then smoothed the curves by computing the average score of the last 5 scores at each
epoch, and then represented the approximation ratio between the score of the argmax
sequence and the best known result on the instance for each epoch. The resulted curves
are represented in Figure 7.

Fig. 7: Evolution of approximation ratio (compared to the best known score) on the
argmax playout on other graph training on ba200_5 and er200_10.

When training on ba200_5, the quality of the argmax sequence improves quickly
at the beginning and then stagnates. When training on er200_10, the qualitywork
of the argmax sequence increases slower than with ba200_5 but increases all along
the learning. On the other hand, not surprisingly, note that the learning phase did not
make any improvement on dimacs-frb30-15-1. Those observations indicate that
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our GNN was able to transfer some knowledge about MAXIMUM INDEPENDENT SET
on brand new graphs, and is promising for future work.
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