
Optimizing αµ

Tristan Cazenave
LAMSADE

Université Paris-Dauphine, PSL, CNRS
Paris, France

Tristan.Cazenave@dauphine.psl.eu

Swann Legras
Nukkai

Paris, France
slegras@nukk.ai

Véronique Ventos
Nukkai

Paris, France
vventos@nukk.ai

Abstract—αµ is a search algorithm which repairs two defaults
of Perfect Information Monte Carlo search: strategy fusion and
non locality. In this paper we optimize αµ for the game of Bridge,
avoiding useless computations. The proposed optimizations are
general and apply to other imperfect information turn-based
games. We define multiple optimizations involving Pareto fronts,
and show that these optimizations speed up the search. Some
of these optimizations are cuts that stop the search at a node,
while others keep track of which possible worlds have become
redundant, avoiding unnecessary, costly evaluations. We also
measure the benefits of parallelizing the double dummy searches
at the leaves of the αµ search tree.

Index Terms—Computer Bridge, Monte Carlo Search, Com-
puter Games

I. INTRODUCTION

The state of the art for imperfect information card games
is Perfect Information Monte Carlo sampling (PIMC). It was
first proposed by Levy [1] for Bridge, and used in the popular
program GIB [2]. PIMC can be used in other trick-taking
card games such as Skat [3], [4] and Spades and Hearts [5].
Long analyzed the reasons why PIMC is successful in these
games [6]. The principle of PIMC is to use determinization to
generate possible worlds. For each possible move, PIMC plays
the move, samples from a set of possible worlds, and then
solves each world exactly as if it was a perfect information
game. It then computes the average of the results among the
possible worlds to evaluate each move.

Other approaches to imperfect information games are Infor-
mation Set Monte Carlo Tree Search [7], counterfactual regret
minimization that solved Poker [8], [9], and Exploitability
Descent [10]. There are also various Reinforcement Learning
algorithms for incomplete information games are available in
the OpenSpiel framework [11].

Recursive Monte Carlo Search [12] is the adaptation of
Nested Monte Carlo Search [13] to multi-player and incom-
plete information games. The basic principle is the same: it
uses Monte Carlo Search to improve Monte Carlo Search made
at a higher level of recursion. Recursive Monte Carlo Search
improves on PIMC for Skat and Bridge [14], however, it takes
much more time to complete than PIMC.

PIMC plays sub-optimally due to two main problems: strat-
egy fusion and non-locality [15]. αµ [16] is an anytime heuris-

tic search algorithm for incomplete information games that
assumes perfect information for the opponents. αµ addresses
the strategy fusion and non-locality problems encountered
by PIMC. Other programs also address the strategy fusion
problem in endgame play, for example, GIB [2] in Bridge
(using a single dummy solver) and the Skat endgame solver
of Stefan Edelkamp [17].

In this paper we propose improvements to speedup the αµ
algorithm without affecting it’s output.

The paper starts with a section on previous work in Bridge
and on the αµ algorithm. The next section describes the
optimizations and the modified algorithm. The last section
gives experimental results.

II. PREREQUISITES AND PREVIOUS WORK

In this section, we introduce some definitions used in the
paper, we then briefly explain the game of Bridge, Computer
Bridge, previous work on dealing with strategy fusion, non-
locality, the early cut and the root cut that were defined
previously in the αµ paper [16].

A. Definitions

We define general naming conventions used throughout the
article.

1) Vectors: Given n different possible worlds, a boolean
vector of size n keeps the status of the game for each possible
world: A zero at index w means that the game is lost for world
number w. A one means the game is won. Associated to the
vector there is another vector of booleans indicating whether
the world is possible in the current state. At the root of the
search all worlds are possible but when an opponent makes a
move, the move is usually only valid in some of the worlds
and the set of valid worlds is reduced.

2) Pareto Fronts: A set of vectors that are not currently
dominated by other sets of vectors.

We say a Pareto front f1 dominate f2 iff:

∀x2 ∈ f2,∃x1 ∈ f1, x1 dominates x2 or x1 = x2.

We say a vector x1 ∈ {0, 1}n dominates x2 iff:

∀i ∈ [1, n]: x1[i] ≥ x2[i] and
978-1-6654-3886-5/21/$31.00 ©2021 European Union

∃i ∈ [1, n] such that x1[i] > x2[i].

The score of a vector is the average among all possible
worlds of the values contained in the vector.

3) Impossible worlds: When the search reaches a node
where some worlds have disappeared because the moves that
have been played are not possible in these worlds. These
worlds are represented as ”x” in figures in this article. New
impossible worlds appear at min nodes when we consider a
move from the defender possible in only a subset of all worlds.

4) Useless worlds: Worlds for which we know for sure that
nothing is lost by labelling them 0. These worlds are noted
”-” on figures.

5) Comparison of Pareto Fronts: When comparing two
Pareto fronts from different depths in the tree or at min node
between two actions that contain different impossible worlds,
to test for the dominance of one over the other, one must
carefully handle impossible worlds as they can be a win higher
in the tree. Such impossible worlds must be evaluated as 1
unless proven useless higher in the tree when checking for
dominance relation. As such, [1 x 0] is not dominated by
[1 0 0] but is dominated by [1 1 0] or even by [1 x -].

B. Bridge in short

The interested reader can refer for instance to [18] for a
more complete presentation of the game of Bridge.
Bridge is a trick-taking card game with four players (denoted
by West, North, East and South or W,N,E,S) divided in two
partnerships (East-West and North-South). A standard 52 card
deck is shuffled and each player receives a hand of 13 cards
that is only visible to them. A Bridge deal (or board) is divided
into two major phases: the bidding (out of the scope of the
paper) and the card play.

The goal of the bidding is to reach a contract which
determines the minimum number of tricks the pair commits to
win during the card play, either with no trump (NT) or with
a determined suit as trump.

In the following, we assume that the North-South pair
reached the contract of 3NT (resp. 7NT) and that South is
the agent who plays the board (i.e the declarer).

During the card play, the goal is to fulfill (for the declarer)
or to defeat (for the defenders) the contract reached during
the bidding phase. For the contract of 3NT (resp. 7NT), the
minimum number of tricks required to win the board is 9 (resp.
13).

The player on the left of the declarer exposes the first card
of the game. The declarer’s partner (called the Dummy) then
lays their cards face up on the table.

When playing in a NT contract, there is only one simple
rule : each player is required to follow suit if possible and can
play any card of the suit.

When the four players have played a card, the
player who played the highest-ranked card in the suit
(2<3<...<10,J,Q,K,A) wins the trick and they will be on lead
at the following trick.

The board is over when all the cards have been played.

C. Computer Bridge

Since 1996, the best bridge programs can annually partici-
pate in the World Computer-Bridge Championship (WCBC).
The selected bridge AI used in our experiments was developed
by Yves Costel for the bridge program Wbridge51. The
boosted version of Wbridge5 [19] won the WCBC in 2016,
2017 and 2018.

The best Bridge bots use PIMC, with a double-dummy
solver (DDS) to evaluate each simulated world. A DDS search
for a possible world is a complete Alpha-Beta search that
returns the evaluation of the world according to perfect play
by all the players. They also use some additional heuristics,
for example to prefer the less-revealing of equivalent actions.

DDS gives the number of tricks won by each side for Spade,
Heart, Diamond, Club or No Trump contracts when all four
players know the placement of the 52 cards, and each player
plays optimally.

A tree-search can then be used in this simplified game,
as well as standard alpha-beta pruning methods. Values of
the leaves are computed using the double-dummy solver. The
growing number of tricks won during the play is used as upper
and lower bounds in the alpha-beta process.

A very efficient DDS has been written (and made public)
by Bo Haglund [20].

Currently, the average level of the best current Bridge AIs
are still far from the level of professional players, and closer
to the level of good amateurs. This is partly due to the
aforementioned problems of PIMC: namely strategy fusion
and non-locality.

The strategy fusion problem of PIMC comes from the fact
that DDS plays different Max moves in the different worlds of
an information set. In the real game, Max has to play the same
move in all the worlds of an information set. αµ addresses
this problem by evaluating every Max move jointly for all the
possible worlds in the information set during its search.

The second problem of PIMC is non-locality. It happens
that a move which is optimal at a node is not the best move
to backup from a global perspective. In some cases it is better
to keep a locally suboptimal move that gives a better result at
the root of the search tree than the locally optimal one. αµ
addresses this problem by backing up Pareto fronts instead of
vectors.

D. Previous Work: the αµ Algorithm

The αµ algorithm repairs the strategy fusion and non-
locality problems of PIMC by searching multiple moves ahead
and by manipulating Pareto fronts at Max and Min nodes. The
αµ algorithm assumes that the defense has perfect information
whereas the declarer has incomplete information.

At Max nodes, each possible move returns a Pareto front.
The final Pareto front for a node is the union of all the
Pareto fronts returned by the search beginning with each
of the different possible moves. The idea is to keep all the
possible options for Max, i.e. Max has the choice between all

1http://www.wbridge5.com

a

b {[1 1 0], [0 1 1]} c [1 1 0]→ cut

Fig. 1. Example of an early cut at node c.

the vectors of the overall Pareto front. In order to optimize
computations and memory, vectors that are dominated by
another vector in the same Pareto front are removed.

The Min players can choose different moves in different
possible worlds, so they take the minimum outcome over all
possible moves for a possible world. When they can choose
between two vectors they take for each index the minimum
between the two values at this index of the two vectors.

The αµ algorithm is related to GIB single dummy solver [2].
However the single dummy solver of Ginsberg is limited to the
endgame and its complexity explodes rapidly for earlier states
that αµ handles easily at the price of incompleteness. Given
enough time and using all possible worlds, αµ converges to
the single dummy solver results.

E. Generation of Possible Worlds

The possible worlds are generated using random generation
followed by verification of the constraints. We currently use
three types of constraints: the constraints coming from the
bidding phase, the constraints on the West hand due to
following rules for the opening lead, the constraints due to
sluff.

F. Early Cut

If a Pareto front at a Min node is dominated by the Pareto
front of the upper Max node it can safely be cut since the
evaluation is optimistic for the Max player. A deeper search
will always return a worse (or the same) result for the Max
player due to strategy fusion.

Figure II-F gives an example of an early cut at a Min node.
The root node a is a Max node, the first move played at a
returned {[1 1 0], [0 1 1]}. The second move is then tried
leading to node c and the initial Pareto front calculated with
double dummy searches at node c is [1 1 0]. It is dominated
by the Pareto front of node a so node c can be cut.

G. Root Cut

If a move at the root of αµ for M Max moves gives the
same probability of winning than the best move of the previous
iteration of iterative deepening for M − 1 Max moves, the
search can be safely stopped since it is not possible to find a
better move.

...

a {[1 0 0]}

b {[1 0 0]}

[1 0 0]

c [x − −]→ [0 0 0]

cut

Fig. 2. Example of a world cut with no useful worlds at node c.

III. OPTIMIZATIONS

In this section we present different improvements of the αµ
algorithm that make it faster but do not change the result of
a search.

A. Maintaining Useful Worlds

As we descend the tree it is possible to remove the worlds
that are useless to evaluate, allowing us to run fewer DDS
evaluations at the leaves, and enabling cuts.

A transposition table perfectly recalls the results of the
previous search at nodes. For example if the DDS result stored
in the transposition table for a world at a Min node is zero, it
will also be zero in the whole subtree. It is therefore useless
to calculate it again and the world can be marked as useless.

If at a Min node the maximum value of a world for the
current Pareto front is zero, the world can be marked as useless
as it will always have a zero value in the Pareto front returned
by the node.

At the leaves only useful worlds are solved by DDS.
At Min nodes it is useless to unify the set of possible moves

with the possible moves of the useless worlds. We thus only
take the union of the possible moves in useful worlds.

B. World Cuts

Cuts due to having only zero or one useful world are called
world cuts.

If the search is at a node without useful worlds it can be
safely cut.

If there are no useful worlds left, search can be cut as the
Pareto front is known to be the vector with only zeros.

Search can also be cut if there is only one useful world
left. The reason for this is that all of the useless worlds will
eventually evaluate to zero at the root, and so we only need to
compute the DDS result associated to the single useful world
and we can return a single vector containing the result for the
useful world.

Figure III-B gives an example of a world cut with no useful
worlds and figure III-B gives an example of a world cut with
one useful world.

...

a {[1 0 1], [0 1 1]}

b {[1 0 1], [0 1 1]}

[1 0 1] [0 1 1]

c [x x ?]→ [x x DDS]

cut

Fig. 3. Example of a world cut with one useful world at node c.

C. Calculating Vectors at Interior Nodes

It happens that some moves are not explored due to root cut
for example. However when the evaluation of the best move
at the root gets worse with more search, these moves are then
explored to a depth greater than one. In order to verify if an
early cut is possible at a depth smaller than the search depth for
these moves, the algorithm has to calculate the Pareto fronts
at smaller depths. If it can cut with the resulting front it has
gained much search efficiency.

We call this optimization the Empty Entry optimization.

D. Cut on Win

If at a Max node a move is found for which all worlds are
won for the current search depth, the search can be cut, as
more search cannot improve on this result.

E. α Cut

Figure III-E gives an example of an α cut at a Min node.
The root node a is a Max node, the first move played at a
returned {[1 1 0], [0 1 1]}. The second move is then tried
leading to node c and the initial Pareto front calculated with
double dummy searches at node c is [1 1 1]. The first Min
move at c returns the [x 1 0] Pareto front. The x means that
the Min move is not possible in the first world and thus there
is no evaluation associated to this world for the first Min
move. The current Pareto front at node c is updated by taking
the minimum in all the possible and evaluated worlds of the
outcomes, leading to a [1 1 0] Pareto front. This Pareto front
is dominated by the Pareto front of the left move at node a
and therefore the search can be cut.

Figure III-E gives an example of a deep α cut at a Min
node. For each max node earlier in the path, if there exists
one node whose Pareto front dominates currently evaluated
front, further search can be avoided.

Algorithm 1 shows how to go up in the tree from a candidate
node to check if the candidate node can be cut. The principle
of the algorithm is to check all upper Max nodes to see if
one of them dominates the current candidate node. We first
save the current node to be evaluated against upper node (line
2), we then crawl the tree upward until reaching a max node
(line 4 to 7). If we do not find any Max node it means that we

a {[1 1 0], [0 1 1]}

b {[1 1 0], [0 1 1]}

{[1 1 0], [0 1 1]} [1 1 1]

c [1 1 0]

[x 1 0] cut

Fig. 4. Example of an α cut at node c.

a {[1 1 0], [0 0 1]}

[1 1 0] ...

b [0 0 1]

c

[0 0 1]

d

[1 0 0] cut

Fig. 5. Example of a deep α cut at node d.

reached the tree root and can return false, otherwise we test
for Pareto dominance (line 11). If the upper max node does
not dominate the candidate node, we search for the next Max
node in the tree (line 3).

Algorithm 1: The deep α cut
1: αcut(node)
2: candidate ← node
3: while node exist do
4: node ← parent(node)
5: while node exist and Min parent(node) do
6: node ← parent(node)
7: end while
8: if node doesn’t exist then
9: return false

10: end if
11: if candidate.front ≤ node.front then
12: return true
13: end if
14: end while
15: return false

F. The αµ Algorithm with Cuts

Algorithm 2 gives the αµ algorithm with cuts. M is the
number of Max moves to search. If this number is equal to
zero or if the state is terminal or if there is at most one useful
world left the search is stopped (lines 2-5).

At a Min node if there is an early cut the search stops (lines
9-11). Otherwise the union of the sets of legal moves of the
useful worlds is calculated (lines 12-16). All moves are tried,
maintaining the possible worlds (line 21), making a recursive
call (line 22), updating the Pareto front (line 23), updating the
useful worlds (line 24) and making a cut if possible (lines
25-27).

At a Max node similar operations are performed, the root
cut is also tested (lines 43-47).

IV. EXPERIMENTAL RESULTS

In the experiments we have αµ play either the 3NT contract
or the 7NT contract against PIMC with 20 simulated worlds
at each decision point, or against WBridge5.

A. Search Times with and without Optimizations

We fix a number of cards for the initial state and we play
a game from this state using αµ, recording the average time
per move. The initial number of cards is either 32 or 52. We
play 100 games, and thus 3200 searches for 32 cards and 5200
searches for 52 cards. We make experiments both for 20 and
40 simulated worlds at each decision point. In all experiments
the early cut and the root cut are enabled.

Table I gives the average times used by the program with
and without optimizations for deals with 52 cards, 20 worlds
and three Max moves. Cards is the number of Cards for the
starting hand of each game. M is the number of Max moves
allowed during the search. Worlds is the number of worlds
used by the search. U is for maintaining useful worlds. E is
the use of the Empty Entry optimization. α is the use of the
α cut. W is the use of the World cuts. Win is the use of Cut
on Win.

Table II gives the times for deals with 32 cards, 20 worlds
and three Max moves.

Table III gives the times for deals with 32 cards, 40 worlds
and three Max moves. We see that the speedup factor carries
through to the case with twice as many simulated worlds.

B. Games Against WBridge 5

In order to compare two algorithms we use duplicate games.
It means that the two algorithms play the same 10 000 deals
against the same algorithm for defense. Table IV shows the
results of duplicate games against different algorithms. The P1
column shows the Max player associated to the winrate. The
P2 column shows the other player to which it is compared.
The D column indicates the algorithm used for playing the
defense. P1 and P2 are playing the declarer for a 7 No Trump
contract. The 6= column gives the number of games where P1
has a different outcome than P2. The Winrate column shows
the percentage of these different games that were won by P1
and lost by P2. The standard deviation is given in column

Algorithm 2: The αµ search algorithm with cuts.
1: Function αµ (state,M,Worlds, α)
2: if stop(state,M,Worlds, result) then
3: update the transposition table
4: return result
5: end if
6: t← entry in the transposition table
7: if Min node then
8: mini← ∅
9: if t.front ≤ α then

10: return mini
11: end if
12: Worlds = updateUsefulWorlds(t.front,Worlds)
13: allMoves← ∅
14: for w ∈Worlds do
15: l← legalMoves (w)
16: allMoves = allMoves ∪ l
17: end for
18: move t.move in front of allMoves
19: for move ∈ allMoves do
20: s← play (move, state)
21: W1 ← {w ∈Worlds : move ∈ w}
22: f ← αµ (s,M,W1, ∅)
23: mini← min(mini, f)
24: Worlds = updateUsefulWorlds(mini,Worlds)
25: if mini ≤ to an upper front then
26: break
27: end if
28: end for
29: update the transposition table
30: return mini
31: else
32: front← ∅
33: for w ∈Worlds do
34: l← legalMoves (w)
35: allMoves = allMoves ∪ l
36: end for
37: move t.move in front of allMoves
38: for move ∈ allMoves do
39: s← play (move, state)
40: W1 ← {w ∈Worlds : move ∈ w}
41: f ← αµ (s,M − 1,W1, front)
42: front← max(front, f)
43: if root node then
44: if µ(front) = µ of previous search then
45: break
46: end if
47: end if
48: end for
49: update the transposition table
50: return front
51: end if

TABLE I
COMPARISON OF THE AVERAGE TIME PER MOVE OF DIFFERENT

CONFIGURATIONS OF αµ WITH THREE MAX MOVES AND 20 WORLDS ON
DEALS WITH 52 CARDS.

Cards M Worlds U E α W Win Time (s)

52 3 20 n n n n n 3.020
52 3 20 y n n n n 2.916
52 3 20 n y n n n 3.321
52 3 20 n n y n n 3.342
52 3 20 n n n y n 3.648
52 3 20 n n n n y 2.837
52 3 20 y y y y y 1.032
52 3 20 n y y y y 3.230
52 3 20 y n y y y 1.438
52 3 20 y y n y y 1.469
52 3 20 y y y n y 1.365
52 3 20 y y y y n 3.566

TABLE II
COMPARISON OF THE AVERAGE TIME PER MOVE OF DIFFERENT

CONFIGURATIONS OF αµ WITH THREE MAX MOVES AND 20 WORLDS ON
DEALS WITH 32 CARDS.

Cards M Worlds U E α W Win Time (s)

32 3 20 n n n n n 2.016
32 3 20 y n n n n 1.465
32 3 20 n y n n n 1.739
32 3 20 n n y n n 1.704
32 3 20 n n n y n 1.972
32 3 20 n n n n y 1.259
32 3 20 y y y y y 0.605
32 3 20 n y y y y 0.989
32 3 20 y n y y y 0.648
32 3 20 y y n y y 0.647
32 3 20 y y y n y 0.629
32 3 20 y y y y n 1.207

TABLE III
COMPARISON OF THE AVERAGE TIME PER MOVE OF DIFFERENT

CONFIGURATIONS OF αµ WITH THREE MAX MOVES AND 40 WORLDS ON
DEALS WITH 32 CARDS.

Cards M Worlds U E α W Win Time (s)

32 3 40 n n n n n 4.381
32 3 40 y n n n n 2.891
32 3 40 n y n n n 3.939
32 3 40 n n y n n 3.852
32 3 40 n n n y n 4.338
32 3 40 n n n n y 2.989
32 3 40 y y y y y 1.297
32 3 40 n y y y y 2.420
32 3 40 y n y y y 1.382
32 3 40 y y n y y 1.410
32 3 40 y y y n y 1.329
32 3 40 y y y y n 2.443

TABLE IV
RESULTS OF DUPLICATE GAMES AGAINST WBRIDGE5 AND PIMC ON 10

000 DEALS AT 7 NO TRUMP.

P1 P2 D 6= Winrate σ

αµ WB5 PIMC 812 0.567 0.0174
αµ WB5 WB5 755 0.428 0.0180
αµ WB5 DDS 567 0.697 0.0193
αµ PIMC PIMC 757 0.551 0.0181
αµ PIMC WB5 687 0.569 0.0189
αµ PIMC DDS 467 0.647 0.0221

Fig. 6. The evolution of the winrate with the number of worlds and the depth
of the search.

Fig. 7. The evolution of the thinking time with the number of worlds and
the depth of the search.

σ. The players are αµ, WBridge5 (WB5) the winner of the
2016, 2017 and 2018 World Computer-Bridge Championships,
Perfect Information Monte Carlo (PIMC), and the Double
Dummy Solver (DDS) which has complete information and
plays knowing the hands of all players.

We can see on the first line that αµ outperforms WBridge 5
against PIMC as the defense, but we see on the second line that
WBridge5 performs better against itself playing as the defense.
After discussing with the author of WBridge5, this may be
due to the fact that WBridge5 as a declarer partly models
itself as the defense during its search. The third line shows
that αµ performs much better than WBridge5 against a perfect
complete information defense (DDS). The next three lines deal
with PIMC as the second player of the duplicate games. αµ
performs better than PIMC against the three defenders, and
especially against DDS (as in the duplicate with WBridge5).

Figure 6 shows the evolution of the winning percentage
of different versions of αµ against WBridge5. The x-axis is
the number of worlds used by αµ. It starts at 20 worlds and
doubles the number of worlds until 320 worlds. There are
curves for each number of Max moves between 1 and 4. Note

that αµ with 1 max Move is PIMC. We can observe that the
curves are asymptotic and that the asymptote of PIMC is below
the asymptote of αµ with numbers of Max moves greater than
1. Going from 2 Max moves to 3 or 4 does not improve the
results.

Figure 7 gives the average time per move of the different
versions of αµ. We can observe that αµ with two Max moves
is close to PIMC. However for equivalent thinking times for
αµ with two Max moves and for PIMC with 320 worlds, if we
refer to figure 6, αµ with two Max moves has better results
than PIMC for equivalent times.

C. Leaf Parallelization

Previous experiments did not use parallelization. We now
present a simple parallelization of the algorithms with cuts.

In Monte Carlo Tree Search there are three kinds of
parallelization: root, leaf and tree parallelization [21]–[23].
Root parallelization runs independent searches in parallel and
sums the result to choose the most simulated move. Tree
parallelization has multiple threads sharing a common tree.
Leaf parallelization parallelizes the playouts at the leaves of
the tree.

In order to speedup αµ, we are interested in the simplest
form of parallelization, namely leaf parallelization. When
reaching a leaf, αµ does an αβ complete information double
dummy search on each possible world compatible with the
cards played so far. These αβ searches are independent and
can safely be run in parallel. This is what we call the leaf
parallelization of αµ.

In order to optimize Leaf Parallelization each thread is as-
signed the next available world as soon as the thread becomes
available. There is a mutual exclusion on the assignment of a
world to a thread.

Table V gives the comparison of the times spent per move
for αµ with and without parallelization for different numbers
of Max moves and different depth. Leaf parallelization was
done with OpenMP and mutual exclusion to choose the next
available thread. We can see that there is little to gain for
PIMC with 20 worlds, going from 0.019 seconds for 1 thread
to 0.015 seconds for 6 threads. For PIMC with 80 worlds going
from 1 to 6 threads halves the average time per move. Similar
speedups occur for αµ with two Max moves: the speedup
factor is approximately two for 80 worlds. Leaf parallelized
αµ with two Max moves and 40 worlds has approximately the
same thinking time as PIMC with 160 worlds, and we can see
in figure 6 that it has a better winrate.

V. CONCLUSION

We presented five different optimizations that speed up
search for the αµ algorithm, and showed how each opti-
mization contributes to the final speedup when combined. In
our experiments, the algorithm with the optimizations was
shown to be three times faster than without the optimizations.
The optimized algorithm has also been parallelized with leaf
parallelization which gave a speedup factor of 2. The evolution
of the winrate and the thinking time with the number of worlds

TABLE V
COMPARISON OF THE AVERAGE TIME PER MOVE IN SECONDS WITH LEAF

PARALLELIZATION USING 1 THREAD AND 6 THREADS.

Cards M Worlds 1 thread 6 threads

52 1 20 0.019 0.015
52 1 40 0.041 0.024
52 1 80 0.083 0.041
52 1 160 0.160 0.078
52 2 20 0.067 0.042
52 2 40 0.145 0.081
52 2 80 0.333 0.152

has shown an asymptotic behavior both for PIMC and αµ
with different numbers of Max moves. The asymptote of αµ
is higher than the asymptote of PIMC, meaning that for usual
thinking times and number of worlds, optimized αµ performs
better than PIMC. Moreover, optimized αµ outperforms the
former computer Bridge world champion WBridge5 in the
7NT contract when the defense is played by PIMC or DDS.

ACKNOWLEDGMENT

Thanks to Dan Braun for proofreading.

REFERENCES

[1] D. N. Levy, “The million pound bridge program,” Heuristic Program-
ming in Artificial Intelligence The First Computer Olympiad, pp. 95–103,
1989.

[2] M. L. Ginsberg, “GIB: imperfect information in a computationally
challenging game,” J. Artif. Intell. Res., vol. 14, pp. 303–358, 2001.

[3] M. Buro, J. R. Long, T. Furtak, and N. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” in Twenty-
First International Joint Conference on Artificial Intelligence, 2009.

[4] S. Kupferschmid and M. Helmert, “A skat player based on monte-carlo
simulation,” in International Conference on Computers and Games.
Springer, 2006, pp. 135–147.

[5] N. R. Sturtevant and A. M. White, “Feature construction for reinforce-
ment learning in hearts,” in International Conference on Computers and
Games. Springer, 2006, pp. 122–134.

[6] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the success of perfect information monte carlo sampling in game tree
search,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[7] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte
carlo tree search,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 2, pp. 120–143, 2012.

[8] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” in Advances in
neural information processing systems, 2008, pp. 1729–1736.

[9] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, 2019.

[10] E. Lockhart, M. Lanctot, J. Pérolat, J.-B. Lespiau, D. Morrill, F. Timbers,
and K. Tuyls, “Computing approximate equilibria in sequential adversar-
ial games by exploitability descent,” arXiv preprint arXiv:1903.05614,
2019.

[11] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay,
J. Pérolat, S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei et al.,
“Openspiel: A framework for reinforcement learning in games,” arXiv
preprint arXiv:1908.09453, 2019.

[12] T. Furtak and M. Buro, “Recursive monte carlo search for imperfect
information games,” in 2013 IEEE Conference on Computational In-
teligence in Games (CIG), Niagara Falls, ON, Canada, August 11-13,
2013, 2013, pp. 1–8.

[13] T. Cazenave, “Nested monte-carlo search,” in IJCAI, C. Boutilier, Ed.,
2009, pp. 456–461.

[14] B. Bouzy, A. Rimbaud, and V. Ventos, “Recursive monte carlo search
for bridge card play,” in 2020 IEEE Conference on Games (CoG), 2020,
pp. 1–8.

[15] I. Frank and D. Basin, “A theoretical and empirical investigation of
search in imperfect information games,” Theoretical Computer Science,
vol. 252, no. 1-2, pp. 217–256, 2001.

[16] T. Cazenave and V. Ventos, “The αµ search algorithm for the game of
bridge,” in Monte Carlo Search at IJCAI, 2020.

[17] S. Edelkamp, “Representing and reducing uncertainty for enumerating
the belief space to improve endgame play in skat,” in ECAI 2020, 2020.

[18] Z. Mahmood, A. Grant, and O. Sharif, Bridge for Beginners: A Complete
Course. Pavilion Books, 2014.

[19] V. Ventos, Y. Costel, O. Teytaud, and S. Thépaut Ventos, “Boosting a
bridge artificial intelligence,” in Proc. International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2017, pp. 1280–1287.

[20] B. Haglund, “Search algorithms for a bridge double dummy solver,”
2010.

[21] T. Cazenave and N. Jouandeau, “On the parallelization of UCT,” in
proceedings of the Computer Games Workshop, 2007, pp. 93–101.

[22] G. M.-B. Chaslot, M. H. Winands, and H. J. van den Herik, “Parallel
monte-carlo tree search,” in International Conference on Computers and
Games. Springer, 2008, pp. 60–71.

[23] T. Cazenave and N. Jouandeau, “A parallel monte-carlo tree search
algorithm,” in Computers and Games, 6th International Conference, CG
2008, Beijing, China, September 29 - October 1, 2008. Proceedings,
2008, pp. 72–80.

