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Abstract. Nested Rollout Policy Adaptation (NRPA) is a Monte Carlo search algorithm that learns a playout policy in order to
solve a single player game. In this paper we apply NRPA to the vehicle routing problem. This problem is important for large
companies that have to manage a fleet of vehicles on a daily basis. Real problems are often too large to be solved exactly. The
algorithm is applied to standard problem of the literature and to the specific problems of EDF (Electricité De France, the main
French electric utility company). These specific problems have peculiar constraints. NRPA gives better result than the algorithm

previously used by EDF.
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1. Introduction

Monte Carlo Tree Search (MCTS) has been success-
fully applied to many games and problems [1]. Nested
Monte Carlo Search (NMCS) [2] is an algorithm that
works well for puzzles. It biases its playouts using
lower level playouts. At level zero NMCS adopts a uni-
form random playout policy. Online learning of play-
out strategies combined with NMCS has given good re-
sults on optimization problems [3]. Other applications
of NMCS include Single Player General Game Play-
ing [4], Cooperative Pathfinding [5], Software testing
[6], heuristic Model-Checking [7], the Pancake prob-
lem [8], Games [9], Cryptography [10] and the RNA
inverse folding problem [11].

Online learning of a playout policy in the con-
text of nested searches has been further developed for
puzzles and optimization with Nested Rollout Policy
Adaptation (NRPA) [12]. NRPA has found new world
records in Morpion Solitaire and crosswords puzzles.
Edelkamp, Cazenave and co-workers have applied the
NRPA algorithm to multiple problems. They have op-
timized the algorithm for the Traveling Salesman with
Time Windows (TSPTW) problem [13, 14]. Other ap-
plications deal with 3D Packing with Object Orien-
tation [15], the physical traveling salesman problem
[16], the Multiple Sequence Alignment problem [17],
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Logistics [18, 19], Graph Coloring [20] and Inverse
Folding [21]. The principle of NRPA is to adapt the
playout policy so as to learn the best sequence of
moves found so far at each level.

Electricité De France (EDF) is the main French elec-
tric utility company. Each year, eleven millions of ser-
vices have to be carried out by EDF technicians at
customers places (problem fixing, meter replacement,
energetic diagnosis, business prospects). A technician
drive by car more than 22,000 kilometers per year.
There are about 10,000 EDF technicians servicing cus-
tomers, thus the total distance travelled by these tech-
nicians on a yearly basis is around 220,000,000 kilo-
meters. Each service is accomplished by a technician
having the required skills within a time window de-
termined during the appointment booking. As a result,
numerous Vehicle Routing Problems with Time Win-
dows (VRPTW) have to be solved on a daily basis (one
problem per catchment area). Any of these VRPTW in-
volves quite a big search space, since EDF technicians
of a single catchment area have to achieve every day
hundreds of visits at customers places. The objective
of the work described in this paper was to adapt the
NRPA algorithm to the specifics of EDF problem.

Related approaches that apply Artificial Intelligence
techniques to transportation include agent based ap-
proaches [22], Monte Carlo Search approaches [18,
23-25] and learning of simulations of urban traffic
[26]. Our work is close to the Monte-Carlo Search
approach applied to the Capacitated Vehicle Routing
Problem with Time Windows (CVRPTW).
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We now give the outline of the paper. The next sec-
tion briefly describes the state of the art of Vehicle
Routing. The third section describe the problems of
EDF and the current solver. The fourth section details
nrpaDQ, the NRPA algorithm that we implemented,
focusing on the proposed improvements from standard
NRPA. The fifth section gives experimental results. In
subsection 5.1 we provide numerical results obtained
with nrpaDQ for various instances of Vehicle Rout-
ing, both from literature (Solomon instances) and from
real-life problems. In subsections 5.2 to 5.5 we present
the results we obtained for some variations of nrpaDQ
that we tested on the same set of instances. Finally, the
last section concludes.

2. The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one of the
most studied optimization problems. It was first stated
in 1959 in [27]. Basically, it consists of finding an op-
timal route for a number of vehicles that are used to
deliver goods or services to a set of customers, taking
into account a set of constraints. In the simpler variant
of the problem, all vehicles start from a single depot
and end their route in this depot. The objective func-
tion to be minimized may combine up to three crite-
ria (namely the number of customers that are not ser-
viced, the number of vehicles used, the total distance
travelled by the vehicles), each criterion having an as-
sociated weight. The VRP can be formalized as a graph
problem: let G = (V, A) be a directed graph where V is
the set of vertices, and A is the set of arcs. Each arc is
labelled with a non-negative number. One vertex rep-
resents the depot, the others vertices represent the cus-
tomers locations. The arcs connect vertices, thus they
represent the roads between two locations, and the la-
bel of the arcs give the associated distance (or the travel
duration, or the travel cost). Lets us remind that G is a
directed graph, and thus its associated distance matrix
is not necessarily symmetric. Now the problem con-
sists of finding the minimum number of routes so that
each vertex except the depot belongs to one and only
one route, and the depot belongs once to each of them.
Figure 1 shows the example of a VRP problem with 3
customers and a depot. In order to simplify the graphic
illustration, there is only one arc between two nodes,
indicating the travel duration.

The VRP is of the non deterministic polynomial
time hard type (NP-Hard), which implies that so far we
do not know of a general method which is able to op-
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Fig. 1. Example of VRP graph

timally solve any instance of the problem in polyno-
mial time. As a result, the VRP is considered very dif-
ficult. Nowadays exact methods can solve to optimal-
ity quite challenging instances of the problem (for in-
stance more than one hundred visits with Branch and
Price methods).

2.1. VRP variations

The VRP is a real challenge for delivery compa-
nies operating a fleet of vehicles. It has given rise to
a number of variations. The CVRP (Capacitated VRP)
is defined as a VRP with a demand associated to each
customers (e.g., the number of parcels they have pur-
chased) and each vehicle has a limited capacity. The
VRP with time windows (VRPTW) implies to serve
each customer within a given time window (possi-
bly different for each customer). The capacitated VRP
with time windows (CVRPTW) combines the charac-
teristics of the two previous variants. Figure 2 gives an
illustration of CVRPTW graph with 4 vertices: one de-
pot and 3 customers. Each customer both consumes a
quantity q and has a specific duration of service, which
must be scheduled in a given time-window.

In this example we assume the that the capacity of a
vehicle is 100.

e Figure 3 gives an example of feasible route.

e Figure 4 gives an example of unfeasible route
with the same visited customers but with a differ-
ent order: vehicle arrives at node 1 after a 50 du-
ration including travel and first appointment dura-
tion (204+20+10, in bold characters in the figure)
which is too late to schedule a duration of 30 for
the second service within the [0,50] time window
of the customer (in bold characters in the figure).
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Fig. 2. Example of CVRPTW graph
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Fig. 3. Example of feasible route in a CVRPTW problem

e Figure 5 gives an example of unfeasible route
because of capacity reason. With the hypothesis
of 100 capacity vehicle, the sum of the quantity
needed for the visited customers (60+60, in bold
characters in the figure) outsizes the 100 capacity
of the vehicle.

e Figure 6 gives an example of unfeasible route be-
cause of the time window of the depot. The du-
ration of the route is the sum of service dura-
tion and travel duration (110=10+30+20+40+10,
in bold characters in the figure) can not be sched-
uled within the [0,100] time window of the depot
(in bold characters in the figure).

Although the previous variations are the most widely
studied because of their great practical importance,
many other extensions of the basic VRP have also been
proposed. Among them, let us just mention two of
them. First, the dynamic VRP (DVRP) where vehicles
may be dynamically re-routed during their route in or-
der to fulfill new customers orders. Second, the VRP
with Pickup and Delivery (VRPPD) where a fleet of ve-
hicles must satisfy transportation requests (e.g., pick-

node 1 : =20, TW=[0,50],d=30
10

node 2 : q=60,TW=[50,100],d=20

10 10

depot TW=[0,100] node 3 : qg=60,TW=[0,100],d=40

Fig. 4. Example of unfeasible route for customer time window reason

node 1 : q=20,TW=[0,50],d=30 node 2 : q=60,TW=[50,100],d=20
[ ]

10

10 10

20

depot TW=[0,100] node 3 : q=60,TW=[0,100],d=40

Fig. 5. Example of unfeasible route for capacity reason (capacity of
vehicle=100)
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Fig. 6. Example of unfeasible route for depot time window reason

ing parcels up at some places and delivering them at
given locations).

2.2. Principal methods used for solving VRP

A wide range of methods have been used to solve the
VRP. These methods may be broken down into three
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sub-groups, namely exact methods, heuristic methods
and metaheuristic methods. These methods are pre-
sented hereafter.

Exact methods. These methods tend to find an opti-
mal solution for the VRP. As mentioned above, they
are thus used to solve instances of the VRP of con-
sequent size. Among the most studied exact meth-
ods for the VRP and variations we may mention the
Branch-and-Cut and the Branch-and-Price algorithms
[28], the column-generation algorithm [29] and the set-
partitioning method [30].

These methods can also provide a bound of opti-
mum, especially in relaxing some of the most compli-
cated constraints. For example, in suppressing the con-
ventional subtour elimination constraint.

Heuristic methods. Not in a comprehensive manner,
let us mention two interesting approaches. First the
cluster-first, route-second heuristic [31]. Second, the
savings heuristic [32] [33]. For the local search ap-
proaches we see in [34] a heuristic projection pool with
powerful insertion and guided local search strategies.
The local search described in [35] gives reference so-
lutions on several instances of the benchmark VRP
Solomon instances tested in this work.

Metaheuristic methods. The most commonly used
metaheuristics for solving VRP and variations are the
particle swarm optimization [36], simulated annealing
[37], genetic algorithm [38] [39] and Tabu search [40]
[41]. Among the best algorithms for solving the VRP
Solomon instances tested in this work, we can cite ge-
netic algorithm described in [42], evolutionary algo-
rithm detailed in [43] or Tabu search proposed in [44].

3. The EDF Capacitated Vehicle Routing Problem
with Time Windows

In this section we first explain the optimization prob-
lem encountered at EDF and then describe the current
EDF approach to the problem.

3.1. Description of the EDF problems

The Vehicle Routing Problem modeled here in-
cludes time windows, which is a classical feature of
VRP problems. It means that:

e Each technician has an availability time window.
Each route starts at the beginning of this time win-
dow and must end before the end of this time win-
dow.

e Each appointment has a time window and a dura-
tion. A route visiting the appointment must start
after the beginning of the time window and end
(including the appointment duration) before the
end of the time window

e If a route arrives at an appointment location be-
fore the beginning of its time windows, it is possi-
ble to add waiting time before starting the service.

The problem also includes capacities, another clas-
sical feature of VRP problems:

e Each vehicle has several stock capacities (6 per
vehicle for the EDF problem). Vehicle stocks are
initialized with initial capacity at the beginning of
each route.

e For any stock, each operation will consume a
stock quantity.

e For each route, for each capacity, the sum of the
quantity used by the operation of the route must
not be greater than the capacity of the stock.

Several peculiar features are taken into account in
EDF modelization.

e Taking into account an off-duty time window for
lunch break. No place is imposed for it. It can in-
terrupt a trip but not a service to a customer.

e Taking into account specific skills for visits. For
each visit, only a subset of technicians is skilled
to carry out the technical operations.

e Journey distance and journey duration are not pro-
portional, because vehicle mean speed depends on
the journey itself. Consequently, 2 different dis-
tance matrices are provided.

e Distance matrices are not symmetric: the distance
between two points depends on the direction of
the route.

Another difference with academic data is that on real
problems, there is not always enough people to carry
out the whole set of visits. Consequently, we must first
maximize the number of visits that will be done. Some
of the appointments have a high priority, and because
of customers satisfaction, it is not possible to cancel
it. Other appointments have less priority, because they
consist for example in a technical operation that can be
postponed, with no corresponding customer appoint-
ment. Moreover, network preventive maintenance vis-
its have less priority than troubleshooting activities. In
order to evaluate a solution, a lexicographic objective
function is taken into account:

e Maximization of the number of achieved visits of
high priority.



T. Cazenave et al. / Policy Adaptation for Vehicle Routing 5

e Maximization of the number of achieved visits of
low priority.

e Minimization of the economic function, taking
into account number of technicians used (ponder-
ated with a proportional daily wage) and number
of kms (ponderated with a proportional km cost).

Thus, when comparing two solutions, we first compare
the number of visits of high priority that are achieved
in each solution.if these numbers are not equal then we
know which solution is best. If they are equal, then we
compare the number of visits of low priority, if again
these numbers are equal, then we compare the third cri-
terion of the two solutions, that is the economic func-
tion. The problem is solved each day for determining
the technicians routes of the next day, with a comput-
ing time which must not last more than an few hours.

3.2. Description of current EDF approach

Current approach for the problem is based on
stochastic greedy algorithm and variable neighborhood
search. The stochastic greedy algorithm is based on
[45] algorithm. First phase consist in creating routes
and insert in each route the visits that increases the less
the travelled distance, until there is no room for new
visits. For each insertion, the place in the route is cho-
sen to minimize the increase of kilometers. If no inser-
tion is possible, a new route is created. Then the pro-
cess is repeated, until no visit and technician is left.

The local search consist of 2 kinds of movements:

e Small movements consist in choosing randomly
an appointment, and finding the best place to
move the appointment, i.e., the best place in all
the existing routes to reinsert the appointment.

e Large movements consist in choosing randomly
a route, then entirely destroying it and trying to
reinsert all its appointments in the other routes.
If no improvement is possible, the movement is
canceled.

Advantages of such a method is that it computes
rapidly good solutions, very often acceptable by oper-
ators because greedy algorithm choices, based on dis-
tance, are humanly intuitive.

4. Nested Rollout Policy Adaptation for Vehicle
Routing

In this section we start with explaining the NRPA al-
gorithm. Then we give our modelling of the CVRPTW

problem for NRPA. We finish the section describing
how weight are heuristically initialized in order to
speed-up convergence of the algorithm.

4.1. Description of NRPA

An effective combination of nested levels of search
[2] and of policy learning has been proposed with the
NRPA algorithm [12]. NRPA holds world records for
Morpion Solitaire and crosswords puzzles.

NRPA is given in algorithm 3. The principle is to
learn weights for the possible actions so as to bias the
playouts. The playout algorithm is given in algorithm
1. It performs Gibbs sampling, choosing the actions
with a probability proportional to the exponential of
their weights.

The adaptive rollout policy is a policy parameterized
by weights on each action. During the playout phase,
action is sampled according to this weights. The play-
out algorithm is given in algorithm 1. It uses Gibbs
sampling, each move is associated to a weight. A move
is coded as an integer that gives the index of its weight
in the policy array of floats. The algorithm starts with
initializing the sequence of moves that it will play (line
2). Then it performs a loop until it reaches a terminal
states (lines 3-6). At each step of the playout it calcu-
lates and stores in the z variable the sum of all the ex-
ponentials of the weights of the possible moves (lines
7-10) and chooses a move proportional to its proba-
bility given by the softmax function (line 11). Then it
plays the chosen move and adds it to the sequence of
moves (lines 12-13). Then, the policy is adapted on the
best current sequence found, by increasing the weight
of the best actions.

The Adapt algorithm is given in algorithm 2. Ba-
sically, a policy is an array of floats which associates
each move (coded by an integer) to its weight (coded
by a float). The Adapt algorithm starts with saving in
the local variable polp the current policy before mod-
ifying it. The policy saved in polp will be modified
by the Adapt function while the current policy will be
used to calculate the probabilities of the moves. The
global array code stores the integers that are the cod-
ing associated to each move. After the modifications
the policy in polp is copied back to the current policy.
The weights of the actions are updated at each step of
the algorithm so as to favor moves of the best sequence
found so far at each level. The principle of the adapta-
tion is to add «a to the action of the best sequence for
each state encountered in the best sequence (lines 3-5)
and to decrease the weights of the other possible ac-
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tions by an amount proportional to their probabilities
of being played (lines 6-12).

In NRPA, each nested level takes as input a policy,
and returns a sequence. Inside the level, the algorithm
makes many recursive calls to lower levels, providing
weights, getting sequences and adapting the weights on
those sequences. In the end, the algorithm returns the
best sequence found in that level. At the lowest level,
the algorithm simply makes a rollout.

The NRPA algorithm is given in algorithm 3. At
level zero it simply performs a playout (lines 2-3). At
greater levels it performs N iterations and for each it-
eration it calls itself recursively to get a score and a se-
quence (lines 4-7). If it finds a new best sequence for
the level it keeps it as the best sequence (lines 8-11).
Then it adapts the policy using the best sequence found
so far at the current level (line 12).

NRPA balances exploitation by adapting the prob-
abilities of playing moves toward the best sequence
of the level, and exploration by using Gibbs sampling
at the lowest level. It is a general algorithm that has
proven to work well for many optimization problems.

Playout policy adaptation has also been used for
games such as Go [46] or various other games with
success [47].

Algorithm 1 The playout algorithm
1: playout (state, policy)

2 sequence < []

3 while true do

4 if state is terminal then

5 return (score (state), sequence)

6: end if

7

8

9

2+ 00
for m in possible moves for state do
: 7 < z+ exp (policy [code(m)])
10: end for

11: choose a move  with
exp(policy[code(move)])

probability

12: state <— ﬁlay (state, move)
13: sequence <— sequence + move
14:  end while

4.2. Modeling the problem

There are several design choices when implement-
ing NRPA. The first choice is to decide how to code
the possible moves. For the vehicle routing problem
we choose to code a move as a starting node, an ar-
rival node and a vehicle. More precisely, a solution to

Algorithm 2 The Adapt algorithm
1: Adapt (policy, sequence)
2: polp < policy
3 state < root
4:  for move in sequence do
5 polp [code(move)] <— polp [code(move)] + a

6 72+ 0.0

7: for m in possible moves for state do

8 7 < 7+ exp (policy [code(m)])

9: end for
10: for m in possible moves for state do
11: polp [code(m)] < polp [code(m)] - a *

exp(policy[code(m)])

12: end for
13: state < play (state, move)

14:  end for
15:  policy < polp

Algorithm 3 The NRPA algorithm.
1: NRPA (level, policy)

2. iflevel == 0 then

3 return playout (root, policy)

4 else

5 bestS core < —0

6: for N iterations do

7 (result,new) <— NRPA(level — 1, policy)
8 if result > bestScore then

9 bestScore + result

10: seq < new

11: end if

12: policy < Adapt (policy, seq)
13: end for

14 return (bestScore, seq)

15:  endif

the problem is an ordered sequence of visits, including
special visits (SV) that represent the fact that the cor-
responding technician is at the depot. So a sequence
solution always starts and ends with a SV. If there is a
SV between two visits within the sequence, that means
the end of a route for a technician, and the beginning
of a route for another technician (with no chronologi-
cal ordering of these two routes that will be carried out
simultaneously).

Another design choice is to define the score of a
playout. Score includes number of non visited cus-
tomers multiplied by a great penalization number,
number of used vehicles multiplied by an rather great
weight, and number of kilometers. We reject move-
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ments that do not respect the time windows in the
playout algorithm: all solutions respect both customers
time windows and vehicle time windows.

If there were more objectives, a lexicographic order-
ing of the objectives would be the best way to represent
the scores of a playout. Playouts could then be com-
pared simply and easily.

4.3. Initialization of the Weights

In NRPA weights are uniformly initialized to 0.0.
We propose to heuristically initialize the weights of
NRPA in order to speedup convergence. The greater
the distance from the current city to another city, the
less likely the other city is a good choice. Standard
NRPA starts with an uniform policy with all weights
set to 0.0 and does not distinguishes between close and
far cities. The heuristic initialization of the weights ini-
tializes each weight with a value proportional to the
inverse of the distance. This initialization is only used
for the first iteration of NRPA.

4.4. The Quantile Heuristic

The objective of the Quantile Heuristic is to penal-
ize movements from bad solutions. Solution scores for
all playouts need to be stored. When a new playout is
computed, if its score is worse than a defined quan-
tile, then its movements weights are decreased. Effi-
cient implementation is needed to limit the increase
of computation time needed to sort the solution scores
and compute the quantile. Sequence of algorithm is de-
scribed in 4. The adapt function is the same as for good
solutions, with negative coefficient a, as described in
5. The coefficient « used for bad solutions can be dif-
ferent from the one used to adapt policy to good solu-
tions. In the rest of the paper we call nrpaDQ our im-
plementation of NRPA with both the Distance heuristic
and the Quantile heuristic.

Algorithm 4 The NRPA algorithm with quantiles.
1: NRPA_with_quantile (level, policy)
2:  allScores < []
3:  quantile <~ —o0
4 if level == 0 then
5 (result,new) < playout(root,policy)
6: allScores < allScores + result
7
8
9

quantile <—updateQuantile(allScores)
return (result,new)

. else
10 bestS core < —0
11: for N iterations do
12: (result,new) <— NRPA(level — 1, policy)
13: if result > bestScore then
14: bestScore < result
15: seq < new
16: else
17: if result < quantile then
18: policy <+ Adapt_Bad(policy, new)
19: end if
20: end if
21: policy <— Adapt(policy, seq)
22: end for
23: return (bestScore, seq)
24:  end if

Algorithm 5 The adapt algorithm to bad solutions

1: Adapt_Bad (policy, sequence)
2:  polp < policy

3 state <— root

4:  for move in sequence do

5 polp [code(move)] < polp [code(move)] - a
6: 2400

7 for m in possible moves for state do

8 Z < 7+ exp (policy [code(m)])

9

: end for
10: for m in possible moves for state do
11: polp [code(m)] < polp [code(m)] + a *
exp(policy[code(m)])
12: end for
13: state < play (state, move)
14:  end for

15:  policy < polp

5. Experimental Results

The operational process of EDF consists in provid-
ing a solution to the CVRPTW within around two
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hours. Each problem is solved during the night so as
to provide solutions for the next day. In this section,
the parameters used when testing the 3 variations of
NRPA are 3 levels, @ = 1 and 100 iterations per level
(N=100). The standard algorithm is called NRPA in
our tables. The nrpaD (NRPA with distance heuristic)
is tested and the initialization of the weights is only ap-
plied at the first iteration. In the nrpaDQ (NRPA with
Distance and Quantile heuristic), the Quantile heuristic
is applied on 80% of the worst cases and uses a spe-
cific @ = 0.5. These values have been set thanks to a
whole set of simulations done previously. The 3 varia-
tions of NRPA have benefited of a root parallelization.
Each instance was run 11 times with 11 different ran-
dom seeds, each time retaining the best of the 11 re-
sults.

The current solver of EDF, Opturn first perform a
greedy algorithm, then goes on with a local search.
These procedures are both parallelized on 6 threads.
At the first stage, each thread involves 3,000 itera-
tions of greedy search. The best among the 6 solutions
is used as a starting point for the 6 simultaneous lo-
cal searches, each performing 3,000 iterations. These
values were chosen during the tuning of Opturn after
many experiments that showed that no improvements
are obtained with bigger values. As a result, the run-
ning time of Opturn is smaller than the running time of
the NRPA.

The running time for NRPA and nrpaD is approxi-
mately 7,000 seconds and up to 8,000 seconds when
using the Quantile heuristic. The running time of
Opturn is approximately 5,000 seconds. Importantly,
these run times are compatible with the operational
process as they last approximately two hours.

5.1. Main Results

Table 1 gives results on the literature instances. It
compares 4 algorithms:

e NRPA: Standard NRPA (3 levels) without heuris-
tics

e nrpaD: NRPA (3 levels) with Distance initializa-
tion heuristic

e nrpaDQ: NRPA (3 levels) with Distance initial-
ization heuristic and Quantile heuristic

e Opturn: current EDF solver, based on Solomon
and LNS heuristic.

To compare the results of the 4 variants, the lexico-
graphical approach takes into account first the number
of vehicles used and then the kilometers.

e V: number of needed vehicles
e Km: sum of the Kms of the routes

Table 2 gives a summary of runs on the standard
problems. The Km and the Vehicles (V) columns
give the average of objective function values on the
Solomon instances. The ¢ value is the number of prob-
lems that are solved better than with standard NRPA
minus the number of problems that are solved worse.
Comparison is lexicographic, based on number of ve-
hicles, and if equals, on the number of Kms. Logically,
the 6 value is O for the reference (that is, the NRPA
variant).

We observe that nrpaDQ scores 55 while Opturn
scores -50. This is a great improvement over the cur-
rent solver. However, it should be stressed that the
current solver was optimized on the EDF problems.
The Distance heuristic improves a lot over standard
NRPA. The Distance + Quantile heuristic only im-
proves slightly over the Distance heuristic alone.

Table 3 and Table 4 give the results of the 4 algo-
rithms on the EDF instances. For each algorithm, the 3
components of objective function are displayed:

e Missed: number of missed appointments
e V: number of needed vehicles
e Km: sum of the Kms of the routes

Table 3 compares the results of runs of the different
algorithms on the EDF problems. For each instance we
compare the number of realized technical operations
because on real EDF instances there are not necessar-
ily enough vehicles to achieve all the operations. We
also measure the number of vehicles and the number of
kilometers, as in classical VRP problem instances. To
compare the results of the 4 variants, the lexicograph-
ical approach takes into account first the achieved op-
erations, then the number of vehicles used and finally
the kilometers.

Table 4 gives the average values for the whole set of
EDF instances.

The average number of missed visits is smaller with
NRPA than with Opturn. It is the same for all NRPA
variants. The number of vehicles used for the opera-
tions is also slightly smaller and this is the same for
all NRPA variants. The average number of kilometers
is greater with standard NRPA than with Opturn, how-
ever it is smaller with nrpaD and nrpaDQ than with Op-
turn. With respect to the lexicographic objective func-
tion described in subsection 4.1, we can conclude that
nrpaD and nrpaDQ improves on the current solver for
the real-life EDF instances.
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Table 1
The different algorithms tested on the 56 standard instances.
NRPA nrpaD nrpaDQ Opturn

instance v Km v Km v Km v Km
cl01 10 828.94 10 828.94 10 828.94 10 852.95
cl102 10 986.77 10 858.18 10 843.57 11 1,458.24
cl03 10 1,117.30 10 872.45 10 857.14 11 1,674.76
cl04 10 1,120.67 10 894.83 10 901.79 11 1,640.93
cl05 11 900.69 10 828.94 10 828.94 11 1,102.17
cl106 11 940.90 10 828.94 10 828.94 11 1,465.60
cl07 10 1,071.41 10 828.94 10 828.94 10 994.84
cl108 10 1,104.49 10 830.16 10 831.04 11 1674.53
cl09 10 1,061.88 10 842.43 10 849.09 11 1,688.91
c201 4 723.69 3 591.56 3 591.56 4 974.46
c202 4 870.43 3 611.08 3 609.23 4 952.33
c203 4 1,108.55 3 617.06 3 628.40 4 1,058.52
c204 4 1,043.12 3 773 3 629.67 4 1,265.41
c205 4 720.12 3 591.17 3 588.88 4 1,007.44
c206 4 753.90 3 590.79 3 600.88 4 1,252.91
c207 4 733.45 3 597.53 3 597.53 4 1,032.26
c208 4 717.03 3 601.05 3 604.36 4 1,189.83
r101 19 1,665.61 19 1,656.54 19  1,655.36 22 2,187.97
r102 18 1,520.63 17 1,546.12 17 1,523.75 19 1,967.61
r103 14 1,331.52 14 1,287.66 13 1,379.44 17 1,887.31
r104 11 1,113.42 11 1,074.57 10 1,112.86 13 1,524.18
r105 15 1,467.54 14 1,439.11 14 1,456.76 17 1,931.07
r106 13 1,346.79 12 1,313.12 13 1,301.35 15 1,687.18
r107 12 1,222.77 11 1,163.35 11 1,158.45 14 1,621.52
r108 11 1,142.77 10 1,008.88 10 1,004.15 12 1,414.54
r109 13 1,290.98 12 1,218.86 12 1,220.98 16 1,866.01
r110 12 1,236.98 11 1,159.06 11 1,158.85 13 1,625.52
rlll 12 1,181.52 11 1,125.77 11 1,189.42 14 1,659.14
rl12 11 1,105.92 10 1,018.92 10 1,023.14 12 1,513.96
1201 4 1,528.10 4 1,419.93 4 1,445.68 5 1,889.49
1202 4 1,369.36 4 1,264.17 4 1,305.25 6 1,871.68
1203 4 1,276.17 3 1,198.43 3 1,137.19 4 1,632.11
1204 3 1,086.88 3 879.22 3 890.48 4 1,127.19
1205 4 1,226.37 3 1,182.85 3 1,174.74 4 1,475.82
1206 3 1,230.22 3 1,114.39 3 1,098.25 4 1,357.13
1207 3 1,243.13 3 1,017.76 3 975.49 3 1,327.14
1208 3 1,048.79 2 860.49 2 859.89 3 1,076.75
1209 4 1,191.46 3 1,136.35 3 1,055.18 4 1,495.34
1210 4 1,238.99 3 1,117.78 3 1,151.20 4 1,588.28
1211 3 1,059.63 3 919.90 3 895.23 3 1,239.46
rcl01 16 1,701.31 15 1,625.45 15 1,640.51 19 248355
rc102 14 1,560.96 13 1,549.49 14 1,511.67 16 2,261.19
rc103 12 1,426.39 11 1,321.51 11 1,356.68 14 1,952
rcl04 11 1,264.83 10 1,202.19 10 1,165.98 13 1,686.93
rc105 15 1,610.40 14 1,652.48 14 1,634.49 19 2,343.03
rc106 12 1,451.27 13 1,417.10 12 1,428.08 14 1,952.11
rcl107 12 1,404.08 11 1,312.12 11 1,289.70 14 1,755.26
rcl108 11 1,380.20 11 1,197.96 11 1,188.93 14 1,888.36
rc201 5 1,695.44 4 1,675.35 4 1,644.26 5 2,537.02
rc202 5 1,439.66 4 1,423.27 4 1,378.31 4 2,037.64
rc203 4 1,384.52 3 1,265.06 3 1,295.67 4 1,571.54
rc204 3 1,185.91 3 960.21 3 962.46 4 1,447.34
rc205 5 1,601.08 4 1,497.85 4 1,508.59 5 2,313.72
rc206 4 1,447.54 3 1,341.10 3 1,348.50 4 1,856.01
rc207 4 1,374.81 3 1,299.20 3 1,29441 4 1,773.09
rc208 3 1,279.30 3 1,007.62 3 1,016.23 3 1,494.40
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Table 2
Summary of the different algorithms tested on the 56 standard instances.
NRPA nrpaD nrpaDQ Opturn
V (mean) Km(mean) ¢ | V(mean) Km (mean) 6 | V(mean) Km (mean) 6 | V(mean) Km (mean) o
8.21 1,216.72 0 7.59 1,097.47 53 7.57 1,094.40 55 9.16 1,600.10  -50
Table 3
Results for the different algorithms tested on the EDF instances.
NRPA nrpaD nrpaDQ opturn

instance | Missed A% Km | Missed \Y% Km Missed \% Km | Missed A% Km

EDF1 8 6 649.17 8 6 464.50 8 6 43397 9 6 61341

EDF2 0 6  454.90 0 6 448.92 0 6  456.63 1 6 575.99

EDF4 1 5 17290 1 5 160.99 1 5  164.98 1 5 22215

EDF5 0 2 224.06 0 2 224.06 0 2 224.06 0 2 27124

EDF6 0 1 85.27 0 1 85.27 0 1 85.27 0 1 88.71

EDF7 0 4 302.72 0 4 302.7 0 4 302.8 2 4 370.73

EDF8 2 3 156.12 2 3 158.23 2 3 15240 2 3 115.63

EDF9 4 11 861.30 4 11 767.63 4 11 77135 4 12 498.19
Table 4

Summary for the different algorithms tested on the EDF instances.
NRPA nrpaD nrpaDQ opturn
Missed \Y% Km | Missed A% Km Missed \Y% Km | Missed A% Km
Summary (mean) 1.88 475 363.30 1.88 475 326.54 1.88 475 324.68 2.13  4.88 34451

The nrpaDQ with Distance and Quantile heuristics
provides solutions with the same values for the 3 com-
ponents of the objective function. These two heuris-
tics perform better in average than the standard NRPA
variant as for the number of traveled kilometers: 324
vs 363, that is a 10 percents improvement. If we com-
pare with Opturn results, the improvement account for
around 5 percents. This is still significant from a prac-
tical point of view because of the huge amount of kilo-
meters travelled by the technicians on a yearly basis:
about 220 millions of kilometers.

5.2. nrpaDQ with different numbers of levels

As described at the beginning of section 5, the
operational process implies finding a solution to the
CVRPTW within about two hours. This is why the ex-
periments described above used number of levels L=3
and number of playouts at each level N=100. Beside
meeting this time constraint, it would be of interest
to determine whether modifying the number of levels
could significantly improve the quality of the provided
solutions. This is what we detail in this section. In the
experiments we tried various numbers of levels L for
nrpaDQ, while varying the number N of playouts at

levels greater or equal to one, so that the total amount
of playouts at level 0 would remain approximately the
same, around 1,000,000. Thus we set N=1,000,000 for
L=1, N=1,000 for L=2, N=100 for L=3, N=32 for L=4,
N=16 for L=5, N=10 for L=6, and finally L=7 for N=7.

In this section as well as in the 3 next sections, we
are looking for an overall improvement of the algo-
rithm behavior on all the tested instances. Therefore,
from now on, for Solomon instances, we will focus
on the average value of the objective functions of the
whole set of instances. In contrast, for EDF instances
we will give results for each instance along with a sum-
marized view through the mean values of the objec-
tive functions. The lexicographic objective function is
summed up with a one million weight for missed ap-
pointments, a one thousand weight for the number of
used vehicles, and a unitary weight for kilometers. Fig-
ures 7, 8 and table 5 give the results of the 7 different
runs with the parameter settings described above (L=1
up to L=7).

The choice of nrpaDQ with 4 levels appears to be
the best setting, although the 3-level variation performs
also very well as compared to the others. For L=5 and
upper, there is no significant difference between the
mean values of objective functions. This suggests that
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Fig. 7. Mean value of objective functions on Solomon instances for different numbers of levels.
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Table 5
Value of objective functions on EDF instances for different numbers of levels.

L=1,N=1,000,000 L=2,N=1000 L=3,N=100 L=4,N=32 L=5,N=16 L=6,N=10 L=7,N=7
EDF1 17,006,682.5 8,006 521.3  9,006,483.0  8,006,544.4  9,006,479.2  9,006,486.4  9,006,530.5
EDF2 7,006,584.8 1,006,446.0 6,459.7 6,470.0 6,459.7 6,496.2 6,494.6
EDF4 5,005,236.4 1,005,181.9  1,005,168.1 1,005,185.1 1,005211.9  2,005,152.8  2,005,151.7
EDF5 4,002,279.8 2,235.8 1,002,209.9 2,224.1 2,224.1 2,224.1 2,224.5
EDF6 2,001,091.6 1,088.7 1,085.3 1,085.3 1,088.5 1,088.5 1,085.3
EDF7 3,004,395.5 4,321.7 4,304.6 4,303.0 4,304.5 4,304.6 4,302.8
EDF8 2,004,198.1 2,003,103.7  2,003,084.0 2,003,0854  2,003,088.9 2,003,092.1 2,003,092.2
EDF9 4,013,760.2 4,012,468.9  4,011,413.3 4,011,460.1 40114346 4,011,407.5 4,011,434.0

Fig. 8. Mean value of objective functions on EDF instances for different numbers of levels.
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further modifying the trade-off between intensification
and diversification in favor of the latter is unnecessary.

5.3. nrpaDQ with more playouts

Another way of trying to improve the quality of the
solutions lies in increasing N, the number of iterations
at each level. Of course this has a significant impact
on the running time. We ran our experiment with L=3
(nrpaDQ with 3 levels), so the running time increases
as the cube of N (again, in this section we relax the
operational time constraint). We tested 6 values for N,
namely N=75, N=100, N=125, N=150, N=175 and fi-
nally N=200. Beyond this value, running times become
prohibitive (more than 20 hours per instance).

Figure 9, table 6 and figure 10 give the results of the
6 different runs described above (N=75 up to L=200).

Not surprisingly, the quality of results clearly im-
proves when increasing the number of playouts up to
175. However, N=200 does not show significant im-
provements over N=175.

5.4. nrpaDQ with extensive parallelization

In section 5 we ran our experiments taking into ac-
count the common computer resources that can be ac-
cessed at an operational level. However, it is interesting
to check whether being able to use more threads during
the search would improve the quality of the provided
solutions. Thus in this section we use root paralleliza-
tion [48, 49]. The principle of root parallelization is to
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Fig. 9. Mean value of objective functions on Solomon instances for different numbers of playouts at each level (L=3).
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Table 6

Value of objective functions one EDF instances for different numbers of playouts at each level (L=3).
N=75 N=100 N=125 N=150 N=175 N=200

EDF1 | 8,006,491.3  9,006,483.0 8,006,469.2 8,0064743  8,006475.5 8,006,446.5
EDF2 6,454.8 6,459.7 6,458.1 6,459.7 6,462.6 6,470.4
EDF4 | 1,005,180.7 1,005,168.1  1,005,168.7 1,005,155.8 1,005,164.4  1,005,164.3
EDF5 | 1,002,2144  1,002,209.9 2,228.7 2,226.9 2,2254 2,224.1
EDF6 1,085.3 1,085.3 1,085.3 1,085.3 1,085.3 1,085.3
EDF7 4,309.3 4,304.6 43133 4,305.0 4,305.0 4,304.9
EDF8 | 2,003,097.6  2,003,084.0 2,003,090.5 2,003,082.2  2,003,080.9  2,003,080.2
EDF9 | 4,011,434.0 4,011,413.3 4,011,376.5 4,011,3920 4,011,3784  4,011,375.1

Fig. 10. Mean value of objective functions on EDF instances for different numbers of playouts at each level (L=3).
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run several threads independently with different seeds
and to join the corresponding results when the think-
ing time is elapsed. We run nrpaDQ on a number of
threads varying from 1 to 12, while keeping L=3 and
N=100. Each thread is launched using a different seed
for the random function.

In figure 11, table 7, and figure 12 we present the
results with the number of threads T varying from 1 to
12.

Logically, the more threads are used, the better the

results.

5.5. Stabilized nrpaDQ

Stabilized NRPA [50] is a simple improvement of
NRPA. The principle is to play P playouts at level 1
before each call to the adapt function. The number of
calls to the adapt function at level 1 is still N, the num-
ber of iteration of upper levels. So at level 1, P x N
playouts are performed.



T. Cazenave et al. / Policy Adaptation for Vehicle Routing

13

Fig. 11. Mean value of objective functions on Solomon instances for different numbers of threads (L=3, N=100).
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Table 7
Value of objective functions on EDF instances for different numbers of threads (L=3, N=100).

T=1 T=2 T=4 T=6 T=8 T=10 T=12
EDF1 | 8,006,601.7  8,006,601.7  8,006,601.7  8,006,456.8 8,006,456.8 8,006,456.8  8,006,456.8
EDF2 6,501.0 6,501.0 6,459.7 6,459.7 6,459.7 6,459.7 6,457.3
EDF4 | 1,005,174.6  1,005,174.6  1,005,168.1  1,005,165.3 1,005,162.0  1,005,162.0  1,005,162.0
EDF5 2,225.3 2,225.3 2,225.3 2,225.3 2,225.1 2,225.1 2,225.1
EDF6 1,085.3 1,085.3 1,085.3 1,085.3 1,085.3 1,085.3 1,085.3
EDF7 4,304.8 4,304.8 4,304.6 4,303.5 4,303.5 4,303.5 4,303.0
EDF8 | 2,003,084.4 2,003,084.4  2,003,084.0 2,003,084.0 2,003,084.0 2,003,084.0 2,003,084.0
EDF9 | 4,011,392.3 4,011,392.3 4,011,392.3 4,011,392.3 4,011,392.3  4,011,392.3  4,011,392.3

Fig. 12. Mean value of objective functions on EDF instances for different numbers of threads (L=3, N=100).
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In figure 13, table 8, figure 14 we present the re-
sults of a nrpaDQ with 1 thread (1,000,000 playouts),
the results of a stabilized nrpaDQ with a period of
P=4 (4,000,000 playouts) and a nrpaDQ with 4 threads
(that is 4 x 1,000,000 playouts). On EDF instances,
the stabilization improves the results but not as much
as adding more threads: with a same number of play-
outs, root parallelization on 4 threads has better results
than the stabilized approach (actually, a better solution
is only found on instances EDF1 and EDF6, with one
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less missed visit each). On Solomon instances, the sta-
bilized approach outperforms the 4 threads approach.

6. Conclusion

We have presented the NRPA algorithm and its ap-
plication to the CVRPTW problems. This problem is
important for EDF, a company that plans numerous op-
erations every day on the French electrical network.
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Fig. 13. Mean value of objective functions on Solomon instances for the stabilized approach (L=3, N=100)
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Table 8
Value of objective functions on EDF instances for the stabilized approach (L=3, N=100).
nrpaDQ 1 thread  stabilized nrpaDQ with P=4  nrpaDQ 4 threads
EDF1 9,006,483.0 9,006,454.9 8,006,601.7
EDF2 6,459.7 6,452.9 6,459.7
EDF4 1,005,168.1 1,005,161.1 1,005,168.1
EDF5 1,002,209.9 2,224.5 2,225.3
EDF6 1,085.3 1,001,086.4 1,085.3
EDF7 4,304.6 4,308.4 4,304.6
EDF8 2,003,084.0 2,003,080.9 2,003,084.0
EDF9 4,011,413.3 4,011,362.1 4,011,392.3

Fig. 14. Mean value of objective functions on EDF instances for the stabilized approach (L=3, N=100)
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We have given the modelization used to address the
CVRPTW problem and two heuristics to improve on
standard NRPA: the Distance heuristic and the Quan-
tile heuristic. The Distance heuristic improves a lot on
standard NRPA. The Quantile heuristic in combination
with Distance heuristic is a slight improvement over
NRPA with only Distance heuristic. We also compared
nrpaDQ, our implementation of NRPA with the heuris-
tics, to the current EDF solver Opturn. On standard
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instances nrpaDQ is much better. On the operational
EDF instances it is still better even though Opturn was
tuned for these instances, while nrpaDQ is a general
algorithm that uses a Distance heuristic that works for
all kinds of VRP problems.

As we have seen from the examples of EDF in-
stances, NRPA with heuristics performs better than the
current solver. The percentage of kilometers saved by
heuristic NRPA is greater than 5% of the total number
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of kilometers. EDF agents drive hundreds of millions
of kilometers each year. The use of nrpaDQ could save
millions of kilometers each year and reduce the carbon
footprint of EDF by hundreds of tons of COx.

Complementary experiments have also been carried
out in order to test alternative parameter settings. The
purpose of these tests was to check whether, regard-
less of operational constraints (computer resources and
running time limitations) the nrpaDQ was capable of
providing us with better solutions. It turns out that the
answer is yes. Though the corresponding variations
could not be operationally implemented yet for prac-
tical reasons, they give promising leads for future im-
provements.

Acknowledgment

This work was supported in part by the French gov-
ernment under management of Agence Nationale de
la Recherche as part of the “Investissements d’avenir”
program, reference ANR19-P3IA-0001 (PRAIRIE 3IA
Institute).

References

[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samoth-
rakis and S. Colton, A Survey of Monte Carlo Tree
Search Methods, [EEE Transactions on Computa-
tional Intelligence and Al in Games 4(1) (2012), 1-43.
doi:10.1109/TCIAIG.2012.2186810.

[2] T. Cazenave, Nested Monte-Carlo Search, in: IJCAI,
C. Boutilier, ed., 2009, pp. 456-461.

[3] A. Rimmel, F. Teytaud and T. Cazenave, Optimization of the
Nested Monte-Carlo Algorithm on the Traveling Salesman
Problem with Time Windows, in: Applications of Evolutionary
Computation, Lecture Notes in Computer Science, Vol. 6625,
Springer, 2011, pp. 501-510.

[4] J. Méhat and T. Cazenave, Combining UCT and Nested Monte
Carlo Search for Single-Player General Game Playing, [EEE
Transactions on Computational Intelligence and Al in Games
2(4) (2010), 271-277.

[5] B. Bouzy, Monte-Carlo Fork Search for Cooperative Path-
Finding, in: Computer Games - Workshop on Computer
Games, CGW 2013, Held in Conjunction with the 23rd In-
ternational Conference on Artificial Intelligence, IJCAI 2013,
Beijing, China, August 3, 2013, Revised Selected Papers, 2013,
pp. 1-15.

[6] S.M. Poulding and R. Feldt, Generating structured test data
with specific properties using nested Monte-Carlo search, in:
Genetic and Evolutionary Computation Conference, GECCO
’14, Vancouver, BC, Canada, July 12-16, 2014, 2014,
pp. 1279-1286.

[7] S.M. Poulding and R. Feldt, Heuristic Model Checking using
a Monte-Carlo Tree Search Algorithm, in: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015, 2015, pp. 1359-1366.
B. Bouzy, Burnt Pancake Problem: New Lower Bounds on the
Diameter and New Experimental Optimality Ratios, in: Pro-
ceedings of the Ninth Annual Symposium on Combinatorial
Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016, 2016,
pp. 119-120.

[9] T. Cazenave, A. Saffidine, M.J. Schofield and M. Thielscher,
Nested Monte Carlo Search for Two-Player Games, in: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intel-
ligence, February 12-17, 2016, Phoenix, Arizona, USA, 2016,
pp. 687-693.

[10] A.D. Dwivedi, P. Morawiecki and S. Wéjtowicz, Finding
differential paths in arx ciphers through nested monte-carlo
search, International Journal of electronics and telecommuni-
cations 64(2) (2018), 147-150.

[11] F. Portela, An unexpectedly effective Monte Carlo technique
for the RNA inverse folding problem, bioRxiv (2018), 345587.

[12] C.D.Rosin, Nested Rollout Policy Adaptation for Monte Carlo
Tree Search, in: IJCAI 2011, pp. 649-654.

[13] T. Cazenave and F. Teytaud, Application of the Nested Roll-
out Policy Adaptation Algorithm to the Traveling Salesman
Problem with Time Windows, in: Learning and Intelligent
Optimization - 6th International Conference, LION 6, Paris,
France, January 16-20, 2012, Revised Selected Papers, 2012,
pp. 42-54.

[14] S. Edelkamp, M. Gath, T. Cazenave and F. Teytaud, Algorithm
and knowledge engineering for the TSPTW problem, in: Com-
putational Intelligence in Scheduling (SCIS), 2013 IEEE Sym-
posium on, IEEE, 2013, pp. 44-51.

[15] S. Edelkamp, M. Gath and M. Rohde, Monte-Carlo Tree
Search for 3D Packing with Object Orientation, in: KI 2014:
Advances in Artificial Intelligence, Springer International Pub-
lishing, 2014, pp. 285-296.

[16] S. Edelkamp and C. Greulich, Solving physical traveling sales-
man problems with policy adaptation, in: Computational Intel-
ligence and Games (CIG), 2014 IEEE Conference on, IEEE,
2014, pp. 1-8.

[17] S. Edelkamp and Z. Tang, Monte-Carlo Tree Search for the
Multiple Sequence Alignment Problem, in: Eighth Annual
Symposium on Combinatorial Search, 2015.

[18] S. Edelkamp, M. Gath, C. Greulich, M. Humann, O. Herzog
and M. Lawo, Monte-Carlo tree search for logistics, in: Com-
mercial Transport, Springer, 2016, pp. 427-440.

[19] T. Cazenave, J. Lucas, H. Kim and T. Triboulet, Monte
Carlo Vehicle Routing, in: Eleventh International Workshop on
Agents in Traffic and Transportation co-located with the 24th
European Conference on Artificial Intelligence (ECAI 2020),
Santiago de Compostela, Spain, September 4, 2020, 1. Dus-
paric, F. Kliigl, M. Lujak and G. Vizzari, eds, CEUR Workshop
Proceedings, Vol. 2701, CEUR-WS.org, 2020, pp. 1-8.

[20] T. Cazenave, B. Negrevergne and F. Sikora, Monte Carlo
Graph Coloring, in: Monte Search at IJCAI, 2020.

[21] T. Cazenave and T. Fournier, Monte Carlo Inverse Folding, in:
Monte Search at IJCAI, 2020.

[22] A.L. Bazzan and F. Kliigl, A review on agent-based technol-
ogy for traffic and transportation, The Knowledge Engineering
Review 29(3) (2014), 375-403.

[8

—



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Cazenave et al. / Policy Adaptation for Vehicle Routing

K. Sorensen and M. Sevaux, A practical approach for robust
and flexible vehicle routing using metaheuristics and Monte
Carlo sampling, Journal of Mathematical Modelling and Algo-
rithms 8(4) (2009), 387.

J. Mandziuk and C. Nejman, Uct-based approach to capac-
itated vehicle routing problem, in: International Conference
on Artificial Intelligence and Soft Computing, Springer, 2015,
pp. 679-690.

A. Abdo, S. Edelkamp and M. Lawo, Nested rollout policy
adaptation for optimizing vehicle selection in complex VRPs,
in: 2016 IEEE 41st Conference on Local Computer Networks
Workshops (LCN Workshops), IEEE, 2016, pp. 213-221.

L. Crociani, G. Lammel, G. Vizzari and S. Bandini, Learning
Obervables of a Multi-scale Simulation System of Urban Traf-
fic., in: ATT@ [JCAI 2018, pp. 40-48.

G.B. Dantzig and J.H. Ramser, The Truck Dispatching Prob-
lem, Management Science 6(1) (1959), 80-91.

G. Gutierrez-Jarpa, G. Desaulniers, G. Laporte and M. V., A
Branch-And-Price Algorithm for the Vehicle Routing Problem
with Deliveries, Selective Pickups and Time Windows, Euro-
pean Journal of Operational Research 206(12) (2010), 341-
349.

N. Azi, M. Gendreau and J.-Y. Potvin, An Exact Algorithm for
a Vehicle Routing Problem with Time Windows and Multiple
Use of Vehicles, European Journal of Operational Research
202(3) (2010), 756-763.

Y. Agrawal, K. Mathur and H.M. Salkin, A Set-Partitioning-
Based Algorithm for the Vehicle Routing Problem, Networks
19(7) (1989), 731-749.

M. Fisher and R. Jaikumar, A Generalized Assignment Heuris-
tic for Vehicle Routing, Networks 11(2) (1981), 109-124.

G. Clarke and J. Wright, Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points, Operations Research
12 (1964), 171-183.

S.P. Anbuudayasankar, K. Ganesh, S.C. Lenny Koh and
Y. Ducq, Modified Savings Heuristics and Genetic Algorithm
for Bi-Objective Vehicle Routing Problem with Forced Back-
hauls, Expert Systems and Applications 30 (2012), 2296—
2305.

N. Yuichi and B. Olli, A Powerful Route Minimization Heuris-
tic for the Vehicle Routing Problem with Time Windows, in:
Operations Research Letters, Vol. 37, No. 5, 2009, pp. 333—
338.

Y. Rochat and E.D. Taillard, Probabilistic Diversification and
Intensification in Local Search for Vehicle Routing, in: Journal
of Heuristics 1, 1995, pp. 147-167.

Y. Marinakis, G.-R. Iordanidou and M. Marinaki, Particle
Swarm Optimization for the Vehicle Routing Problem with

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471
[48]

[49]

[50]

Stochastic Demands, Applied Soft Computing 13 (2013),
1693-1704.

W.C. Chiang and R. Russel, Simulated Annealing Metaheuris-
tics for the Vehicle Routing Problem with Time Windows, An-
nals of Operations Research 13(1) (1996), 3-27.

J.-Y. Potvin and S. Bengio, The Vehicule Routing Problem
with Time Windows Part II : Genetic Search, INFORMS Jour-
nal on Computing 8(2) (1996), 165-172.

S.R. Tangiah, K.E. Nygard and J. PL., GIDEON : A Genetic
Algorithm System for Vehicule Routing with Time Window,
in: IEEE CAIA 1991 - Proceedings of the 7th IEEE Conference
on Artificial Intelligence Applications, 24-28 February 1991,
Miami beach, Florida, USA, 1991, pp. 322-328.

J.-F. Cordeau, M. Gendreau and G. Laporte, A Tabu Search
heuristic for the Periodic and Multi-Depot Vehicle Routing
Problems, Networks 30(2) (1997), 105-119.

J.-Y. Potvin, T. Kervahut, B.-L. Garcia and J.-M. Rousseau,
The Vehicule Routing Problem with Time Windows Part I :
Tabu Search, INFORMS Journal on Computing 8(2) (1996),
158-164.

J. Berger, M. Barkaoui and O. Briysy, A Parallel Hybrid Ge-
netic Algorithm for the Vehicle Routing Problem with Time
Windows, in: Working paper, Defense Research Establishment
Valcartier, Canada, 2001.

D. Mester, O. Brdysy and W. Dullaer, A Multi-parametric Evo-
lution Strategies Algorithm for Vehicle Routing Problems, in:
Working Paper, Institute of Evolution, University of Haifa, Is-
rael, 2005.

E. Taillard, P. Badeau, M. Gendreau, F. Geurtin and J.Y. Potvin,
A Tabu Search Heuristic for the Vehicle Routing Problem with
Time Windows, in: Transportation Science 31, 1997, pp. 170-
186.

Solomon, Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints, in: Operations Re-
search, 1985.

T. Graf and M. Platzner, Adaptive playouts for online learning
of policies during Monte Carlo Tree Search, Theor. Comput.
Sci. 644 (2016), 53-62.

T. Cazenave, Playout policy adaptation with move features,
Theor. Comput. Sci. 644 (2016), 43-52.

T. Cazenave and N. Jouandeau, On the parallelization of UCT,
in: Computer Games Workshop, 2007.

G.M.-B. Chaslot, M.H. Winands and H.J. van Den Herik, Par-
allel monte-carlo tree search, in: International Conference on
Computers and Games, Springer, 2008, pp. 60-71.

T. Cazenave, J.-B. Sevestre and M. Toulemont, Stabilized
Nested Rollout Policy Adaptation, in: Monte Search at IJCAI,
2020.



	Introduction
	The Vehicle Routing Problem
	VRP variations
	Principal methods used for solving VRP

	The EDF Capacitated Vehicle Routing Problem with Time Windows
	Description of the EDF problems
	Description of current EDF approach

	Nested Rollout Policy Adaptation for Vehicle Routing
	Description of NRPA
	Modeling the problem
	Initialization of the Weights
	The Quantile Heuristic

	Experimental Results
	Main Results
	nrpaDQ with different numbers of levels
	nrpaDQ with more playouts
	nrpaDQ with extensive parallelization
	Stabilized nrpaDQ

	Conclusion
	Acknowledgment
	References

