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Abstract. Since DeepMind’s AlphaZero, Zero learning quickly became the state-of-the-art method for many board games.
It can be improved using a fully convolutional structure (no fully connected layer). Using such an architecture plus global
pooling, we can create bots independent of the board size. The training can be made more robust by keeping track of the best
checkpoints during the training and by training against them. Using these features, we release Polygames, our framework
for Zero learning, with its library of games and its checkpoints. We won against strong humans at the game of Hex in
19x19 , including the human player with the best ELO rank on LittleGolem; we incidentally also won against another Zero
implementation, which was weaker than humans: in a discussion on LittleGolem, Hex19 was said to be intractable for zero
learning. We also won in Havannah with size 8: win against the strongest player, namely Eobllor, with excellent opening
moves. We also won several first places at the TAAI 2019 competitions and had positive results against strong bots in various
games.

Keywords: Zero learning, Board games

1. INTRODUCTION

In spite of AlphaGo (Silver et al., 2016), some games still resist to computers and for many games
the computational requirement is still huge. We present Polygames, our open-source zero learning
framework available at https://github.com/facebookincubator/polygames. It is based on Zero learning,
combining Monte Carlo Tree Search and Deep Learning. It features a new architecture for accelerating
the training and for making it size-invariant (Section 2.1). It allows neuroplasticity i.e. adding neutral
layers, adding channels, increasing kernel size (Section 2.2) and warm start. Polygames also features
a new tournament mode in order to make training more robust (Section 2.3). The framework provides
a single-file API, that is generic enough for implementing many games, and comes with a library
of games and many checkpoints. Basically, for adding a game, one must implement the transition
function next (gameplay and reward), the mapping s 7→ tensor(s) representing a state as a 3D-tensor,
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and a mapping for identifying an action to a 3-dimensional location in the 3D output tensor. One can
for example duplicate the code in connectfour.h and modify it. Polygames made the first ever win
against top level humans at the game of Hex 19x19 (Section 3.1) and Havannah 8x8 (Section 3.3).

1.1. Zero learning

AlphaGo and AlphaZero (Silver et al., 2016, 2017) proposed a combination between Monte Carlo
Tree Search (Coulom, 2007) and Deep Learning. The version in (Silver et al., 2017) is a simplified
and elegant version, learnt end-to-end.

1.1.1. Monte Carlo Tree Search

Monte Carlo consists in approximating values (i.e. expected rewards) by averaging random simu-
lations. MCTS (Monte Carlo Tree Search) consists in biasing these random simulations: using the
statistics from previous simulations, we increase the frequency of moves which look good. The most
well known variant of MCTS is Upper Confidence Trees (UCT) (Kocsis and Szepesvári, 2006), which
uses, for biasing the simulations, a formula inspired from the bandit literature: a move is chosen if it
maximises a score as follows:

scoreuct(s, a) = avg reward(next(s, a)) + k

√
log(num sims(s))

num sims(next(s, a))
(1)

where s stands for a state, a for an action, num sims(s) for the number of simulations in s, and
next represents the dynamics of the game. An MCTS rollout consists in doing a simulation from the
current board s0 and playing using the above formula until a final state is reached. We keep from
Monte Carlo a random component in MCTS rollouts: in states without any statistics, the selection is
simply random move selection. When M MCTS rollouts have been performed starting in the current
state s0, we choose an action a maximizing e.g. num sims(next(s0, a)).

1.1.2. Neural policies

Let us assume that we have a function tensor which maps a state to a tensor tensor(state) (to be used
in Eq. 2 below). A neural network (NN) can then be applied. We consider a NN with two outputs:

πNN(state) is a tensor,

VNN(state) is a real number.

The NN typically uses convolutional layers, and then two heads for those two outputs; in the original
Alpha-Zero, it contains fully connected layers in both heads. If we assume that each possible action
has an index in the output tensor, then πNN(s) can be converted into probabilities of actions by (i)
multiplying by some temperature T and applying the exp function to each entry in it (ii) setting to
zero illegal actions in state s (iii) dividing by the sum:

logit(a) = πNN(s)

ProbaNN(s, a) =
exp(Tlogit(a))∑
a′ exp(Tlogit(a′))

Let us note ProbaNN(s, a) the probability of action a in state s for the neural network NN.

connectfour.h
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1.1.3. Zero model of play: how the MCTS is modified by adding the NN

The zero-model is then as follows. First, the UCT formula (Eq. 1) is adapted as PUCT (Silver et al.,
2017), as follows:

scorepuct(s, a) = Q̄(s, a) + k × PNN(tensor(s))(a)×
√

n(s)
n(next(s, a))

(2)

In Eq. 2, n(s) stands for num sims(s), Q̄(s, a) = avg reward(next(s, a)), tensor(s) is a tensor repre-
sentation of the state, PNN(tensor(s)), output of the action head of the neural network, is also a tensor
shaped as the output space - e.g. in Go or Hex the output tensor shape is the board size1. Each action
a is identified to a location in the output tensor of the action head, so that ProbaNN(tensor(s))(a) is a
real number, namely the logit of the probability of choosing action a according to the neural network
in state s. Please note that the log has been removed. The parameter k has been multiplied by the
probabilities provided by NN.

Second, when a simulation reached a state in which no statistics are available (because no simulation
has been performed here), instead of returning the reward of a random rollout until the end of the
game, we return the reward estimated by VNN . The NN has therefore the double impact of (i) biasing
the tree search (ii) replacing the random part of the rollouts by neural estimates of value.

1.1.4. Zero training: how the NN is modified by the MCTS

Let us generate games with a zero-model as above, using e.g. M = 600 simulations per move. Each
time a game is over, we have a family of 3-tuples (s, p, r), one per visited state in this game:

• r is the final reward of the game.
• p is the tensor of frequencies in the MCTS simulations at s. More precisely, with a an action

identified to a location in the output tensor as above, p(a) = nmcts,s,a/M where nmcts,s,a is the number
of the simulations which have chosen action a, among the M simulations starting at s.

These 3-tuples are then used for training the network so that πNN imitates p and VNN approximates
the reward. We also use a weight decay as a regularization, so that the overall loss is

Loss(NN) =
∑
(s,r,p)

CrossEntropy(p, ProbaNN(s, .)) + ||r − VNN(s)||2 + cL2||θ||2

1.1.5. Overall architecture

There is a server (typically for us 8 GPUs) and many clients (tested up to 500 GPUs and 5 000 cores
in our experiments):

• The server receives 3-tuples (s, p, r) from the clients. It stores them in a replay buffer (with default
size 1 000 000 in our implementation), in a cyclic manner. It trains the NN as in Section 1.1.4, also
cycling over the replay buffer.

• The clients send data (3-tuples) to the server.

1The output of the neural network is actually corrupted by a Dirichlet noise: rather than o = ProbaNN(tensor(s)), we
use .75o+ .25DirichletNoise(1/numMoves), where numMoves is the number of legal moves in s. This is close to what was
already done in (Silver et al., 2017).
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The number of clients should be tuned so that the cycles performed by the trainer are just a bit faster
than the speed at which data are provided; Section 2.4 provides a robust solution for ensuring this, in
particular for low computational power.

1.2. Other open-source frameworks

Many teams have replicated and sometimes improved the Alpha Zero approach for different games.

Elf/OpenGo (Tian et al., 2019) is an open-source implementation of AlphaGo Zero for the game of
Go. After two weeks of training on 2 000 GPUs it reached superhuman level and beat professional Go
players. Compared to Elf/OpenGo, Polygames features a wide library of games, boardsize-invariance,
and growing architectures.

Leela Zero (Pascutto, 2017) is an open-source program that uses a community of contributors who
donate GPU time to replicate the Alpha Zero approach. It has been applied with success to Go and
Chess. Compared to Polygames, its library of games is smaller, it is not boardsize-invariant and does
not support growing architectures.

Crazy Zero by Rémi Coulom is a zero learning framework that has been applied to the game of Go
as well as Chess, Shogi, Gomoku, Renju, Othello and Ataxx. With limited hardware it was able to
reach superhuman level at Go using large batches in self-play and improvements of the targets to
learn such as learning territory in Go. While the predicted final territory information (attribution of
each location on the board) is not used by the Zero player, learning territory, as a side information
in Go, increases considerably the speed of learning. Polygames does not have this clever use of side
information. This is under progress. Polygames, on the other hand, features a large library of games,
boardsize invariance, and growing architectures.

KataGo (Wu, 2019) is an open-source implementation of AlphaGo Zero that improves learning
in many ways. It converges to superhuman level much faster than alternative approaches such as
Elf/OpenGo or Leela Zero. It makes use of different optimizations such as using a low number of
playouts for most of the moves in a game so as to have more data about the value in a shorter time.
It also uses, as a side information for training the neural network, additional training targets so as
to regularize the networks. Compared to KataGo, Polygames has a wide library of games, boardsize
invariance, diversity of opponents for the training, and growing architectures.

Galvanise Zero (Emslie, 2019) is an open-source program that is linked to General Game Playing
(GGP) (Pitrat, 1968). It uses rules of different games represented in the Game Description Language
(GDL) (Love et al., 2006), which makes it a truly general zero learning program able to be applied
as is to many different games. The current games supported by Galvanise Zero are Chess, Connect6,
Hex11, Hex13, Hex19, Reversi8, Reversi10, Amazons, Breakthrough, International Draughts. Con-
trarily to Galvanise Zero, Polygames is based on compiled C++ game descriptions, and uses growing
architectures and boardsize-invariant neural networks.

To the best of our knowledge, besides differences pointed out above, Polygames is the only framework
featuring a population of models (the past checkpoints), ranked by an ELO scale and used for sampling
sparring partners for the training. It is also the framework in which growing architectures are most
systematized.



T. Cazenave et al. / Polygames: Improved Zero Learning 5

Fig. 1. Traditional deep convolutional network. The convolutional layers preserve the spatial coordinates of the shape -
possibly not the depth, i.e. the number of feature maps. The number of parameters of those layers, therefore does not

depend on the board size, and a same neural network can work in 9x9 Go and 19x19 Go (or Hex, etc). On the other hand,
each neuron in the fully connected layers has one weight per location in its input tensor (plus the bias weight), so that a

neural network with fully connected layers is not boardsize-independent. This can be solved in two different manners: (1)
using only convolutional layers, which is possible when the output tensor has the same spatial shape as the input tensor -

which is the case, for many games, in the case of the action head of the neural network in zero-learning (2) applying global
pooling, before the fully connected layers, for reducing the spatial dimensions to (1x1). In Polygames, we apply (1) for the

actor head of the neural network and (2) for the critic head, so that our neural networks are boardsize invariant (Section
2.1.2). The resulting architecture is presented in Fig. 2.

Fig. 2. Structure of a boardsize invariant neural network in Polygames. H × W is the board size (spatial coordinates). Fi is
the number of input channels. F1 and F2 are the number of channels in the first and second convolutional layers (in real
experiments there are way more layers). The input (more precisely, the tensor representation of the input state) is on the

left. The output has two heads: the policy (also known as actor, at the top) and the critic, which approximates the value. The
only fully connected layer is for predicting the value: importantly, it is based on the output of a global pooling layer, so that

it does not depend on the boardsize. Using global pooling before the fully connected layer and convolutional layers
everywhere else, we get a boardsize invariant neural network. F1, F2, F3, F4 are fixed parameters, independent of the

board size.

2. INNOVATIONS

Some innovations in Polygames consist in using ideas from computer vision inside Zero learning
(Section 2.1): global pooling, fully convolutional neural networks. We also use a diverse set of op-
ponents for filling the replay buffer (i.e. the current model plays against previous models sampled
according to their ELO rank as described in Section 2.3), and growing architectures (Section 2.2).
These elements are detailed in the present section.

2.1. Structured zero learning

2.1.1. Fully convolutional models: taking into account the natural mapping between inputs and
outputs

Many zero-learning methods are based on traditional convolutions, followed by fully connected lay-
ers. However, policy learning in board games is often closer to image segmentation (i.e. several out-
put values per input pixel) than to classical image classification (fixed output size, independent of the
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number of pixels) as actions are naturally mapped on boards (a vector of logits for each location on
the board). More precisely, for many games:

• The input has various channels, and two dimensions matching the board size (spatial dimensions;
see Fig. 1).

• Similarly, the output of the network has various channels, corresponding to various possible moves,
and two dimensions matching the board size as well.

Therefore, we can apply fully convolutional models - not a single fully connected layer is necessary in
the policy part. This contributes to scale invariance (Section 2.1.2) but also takes into account the par-
tial translation invariance of policy learning. Polygames features fully convolutional networks (Shel-
hamer et al., 2017), residual fully convolutional networks (He et al., 2015), including with global
pooling (Wu, 2019) as detailed below for scale invariance, and U-networks (Ronneberger et al., 2015).

2.1.2. Scale invariant models

The widely cited (Marcus, 2018) pointed out that zero-learning frameworks are not boardsize invari-
ant. In the present section, we point out that Polygames learns in a boardsize invariant manner. As
usually in zero learning, our neural network has two heads: one for the policy and one for the value.
The one for the policy is fully convolutional (Section 2.1.1), and therefore it works independently of
the input size, i.e. independently of the board size. The value part, however, does not have this property
if it is fully connected. We therefore use global pooling as in (Wu, 2019). Global pooling replaces each
channel c, of shape possibly boardsize×boardsize×1, by several channels, such as the maximum and
the average of c. This maximum and this average are computed over the boardsize × boardsize en-
tries. We therefore get a boardsize-independent representation, of shape 1× 1× number o f channels.
Our Hex19 model was trained in 13× 13 and was immediately strong in 19× 19 – though we needed
a bit of fine tuning for the success story presented in Section 3.1.

2.2. Neuroplasticity

Several modifications are almost neutral when initialized close to zero:

• addition of residual blocks (i.e. switching from 12 blocks of 3 convolutional layers to 13 or 14
blocks of 3 convolutional layers);

• addition of new channels;
• extension of the kernel size (from 3× 3 to 5× 5 or 5× 5 to 7× 7, etc).

Polygames provides a script “convert” that makes such a growth of the neural network easy. Training
can be resumed after such extensions of the neural architectures; we can train, then grow (while
preserving the quality of the model as it remains almost equal to the previous model as new weights
are close to 0), then resume the training with more degrees of freedom.

2.3. Tournament mode

In order to fight catastrophic forgetting (McCloskey and Cohen, 1989) or the red queen effect (oscil-
lations of performance (Johansson, 2011)), we add a tournament mode, as follows. Each completed
game is used for evaluating the ELO rank of players. Each client, when it must start a new simu-
lated game, randomly draws a checkpoint in the archive. With dev the most recent checkpoint and
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ELOdev its ELO rank, the probability that a model with ELO rank ELO is drawn is proportional to
exp(−ELOdev−ELO

400 ). Then the client simulates games between the MCTS using PUCT (Eq. 2) using
“dev” and a MCTS using PUCT with that model. We experimentally notice that sometimes old models
come back in the race.

2.4. Other features

2.4.1. Checkpoints

We provide checkpoints2 for many games: Einstein Würfelt Nicht, Breakthrough, Havannah8, Havan-
nah10, MiniShogi, Othello8, Othello10, Hex, and others.

2.4.2. Against overfitting

Heuristically, we consider that an example, in the replay-buffer, should never be seen more than
8 times. When the clients are not fast enough for filling the replay buffer, for example because of
preemption of clients or slow game, we artificially add delays in the learning when an example is seen
more than 8 times.

2.4.3. Easy addition of games

Adding a new game can be made by writing a new class that inherits from State and overrides a few
methods (see the implementation of Connect Four3 as an example).

2.4.4. Stochastic games and some partially observable games

Polygames can handle stochastic games (see e.g. our bot “randototoro” on LittleGolem, playing the
game of Einstein Würfelt Nicht), which is not that common in existing frameworks but not concep-
tually hard: we just need random nodes, instead of only minimization and maximization nodes. The
adaptation of MCTS to partial observation is more tricky: we cannot simulate the underlying dynam-
ics from a given state, because players have only a partial observation. Actually, (Buffet et al., 2012)
has presented a class of partially observable games that can be converted to an equivalent stochas-
tic game, and therefore can be handled by MCTS (and, equivalently, by Zero learning as shown by
Polygames): all games in which the visible information is the same for all players. This class includes
a few two-player games: for example Chinese Dark Chess: there is hidden information, but the observ-
able part is the same for both players. It also includes all one-player games, in particular Minesweeper
and Mastermind. In those games, the undecidability results such as (Auger and Teytaud, 2012) do not
apply.

For self-containedness, let us explain the reasoning in (Buffet et al., 2012). We do not know the
state, so instead of a state, s is the history of observations: we must make a decision in a given s.
This concept of history of observations is correctly defined because, by assumption, the history of
observations is the same for all players. Given an history of observations s (including actions) and an
action a, we can solve the transition by simulating next(s, a) by rejection sampling as follows:

(1) Consider r1, . . . , rn all sources of randomness up to “state” s.
(2) Randomly draw r1, . . . , rn and simulate a game with actions as in s and random outcomes as in

r1, . . . , rn.

2http://dl.fbaipublicfiles.com/polygames/checkpoints/list.txt
3https://github.com/facebookincubator/polygames/blob/master/games/connectfour.h

http://dl.fbaipublicfiles.com/polygames/checkpoints/list.txt
https://github.com/facebookincubator/polygames/blob/master/games/connectfour.h
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(3) If results are not consistent with the observation in s, go back to step 2.

This is fully developed in (Buffet et al., 2012) in the case of MCTS and implemented inside Polygames
for Minesweeper and Mastermind. In the case of Minesweeper, we implemented the more sophisti-
cated method from (Buffet et al., 2012), faster than the rejection sampling.

3. SUCCESS STORIES

Results here are obtained using (i) trainings stabilized by the tournament mode (Section 2.3), (ii) ar-
chitectures growing in order to double the number or parameters each time the ELO rank stagnates
(Section 2.2) (iii) boardsize-invariant architectures (Section 2.1), with top performance typically ob-
tained after 9 days with 500 GPUs (usually playing at a very strong level after 3 days).

3.1. Beating humans at Hex19

According to (Bonnet et al., 2016), “Since its independent inventions in 1942 and 1948 by the poet
and mathematician Piet Hein and the economist and mathematician John Nash, the game of Hex has
acquired a special spot in the heart of abstract game aficionados. Its purity and depth has lead Jack van
Rijswijck to conclude his PhD thesis with the following hyperbole (van Rijswijck, 2006): « Hex has a
Platonic existence, independent of human thought. If ever we find an extraterrestrial civilization at all,
they will know Hex, without any doubt.» ” The rules are simple. Black and white fill an empty cell,
in turn (Fig. 3). Black wins if it connects North and South, White wins if it connects West and East.
The game is made more fair by a pie rule: at the second move, the second player can decide to swap
colors. The game is hard because, as a connection game, its reward is based on a global criterion (no
local criterion to sum). Fig. 3 shows the first win against a top level human.

3.2. TAAI competition

At TAAI 2019, Polygames was ranked first in Othello10 (3 programs), Breakthrough (4 programs)
and Connect6 (2 programs)4. For more statistical significance, it was also successfully tested against

• WZebra and Ltbel (Othello8),
• the winner of TAAI 2018 at Connect6, namely Kavalan,

and won all games (4 games against Ltbel, 4 games against WZebra 15 games against Kavalan). We
show in Fig. 5 one of the games won against Kavalan at Connect6.

3.3. Havannah

Havannah was invented specifically for being hard for computers (Fig. 6). It follows the game play
of Hex, also with hexagonal cells but now on an hexagonal board, and winning conditions are more
diverse:

• Connecting two of the six corners wins (15 possibilities);

4https://www.tcga.tw/taai2019/en/

https://www.tcga.tw/taai2019/en/
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Fig. 3. Game of Hex 19x19 with Pie rule played by Polygames against Arek Kulczycki, Winner of the last LG tournament,
ranked first for the ELO ranking (ELO 2248) on the LittleGolem server. First: opening. Second: at that stage, the human

(White) seems to win - two solid groups are connected to East and West respectively, and look close to connect each other.
However (third), the situation in the center is quite complicated and later it turns out that Black can win by one of two
possible paths (last: White can not block both H7 and an attack on the left side). Source: LittleGolem. Our bot played

multiple games since this win and never lost one, including games against Galvanise-Zero (Fig. 4). We use a single Quadro
GP100, 5 minutes per move.

Fig. 4. Results of our bot Mootwo since its game in Fig. 3.
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Fig. 5. Game won by Polygames against Kavalan: move 26 (left), which made the situation excellent for Polygames, and
final position (right). Polygames won 15 games out of 15.

• Connecting three of the six sides wins (20 possibilities);
• Realizing a loop (even if it does not contain empty cells) wins.

According to (Lorentz, 2015), “The state of Havannah programming is still in its early stages. Though
the top programs do play at a reasonable level, about the level of somebody who has played the game
for 6 months or a year, they still play with a very unnatural style, and often win their games by virtue
of tactical shots missed by the human opponent. Our feeling is that Havannah programs cannot be
expected to play at an elite level until they learn to play a more natural, human-like game.”

Draws are theoretically possible but very rare. The game is also played with a pie rule. Some decent
players have been defeated by computers, but never the best humans until Polygames. On Littlegolem,
an early version won 3 games out of 4 against Mirko Rahn (Elo rank 2133), and 2 games out of
2 against tony (Elo rank 2167), who belong to the top four players on this website (see Figure 6
middle and right for examples of games). Then, a new version was trained and won two games out of
two against Eobllor (Elo rank 2415): both games were quite short, with excellent opening moves by
Polygames (Fig. 7). This bot, our strongest version, was using a single Quadro GP100, 40 minutes per
move with a shared GPU (used simultaneously 50% for other applications), whereas the human could
use a lot of times as by default on LittleGolem (there were several days per move, using vacation days
and the 10 days main time + 24 hours per move - our bot was slowed down as requested by Eobllor
just for reducing the overall speed but we did not use the additional thinking time).

4. CONCLUSIONS

We propose a state-of-the-art framework, called Polygames, that can play to various games. It is based
on zero learning, with innovations detailed in Section 2, and had success stories detailed in Section
3. Polygames contains new architectures, allows architecture search thanks to neutral components
addition and is stabilized by a tournament mode and an overfitting fighting method. It was widely
tested in the TAAI competition and on LittleGolem (www.littlegolem.net). The source code is publicly
available under an open-source license. Our plan includes ablation studies and experimenting some
of the innovations - e.g. the one-player case, including partial observability as in Section 2.4.4.

www.littlegolem.net
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Fig. 6. Left: The game of Havannah and the three different ways for winning. Middle: a win by Polygames against Tony,
Elo rank 2167. Right: a win against Mirko Rahn, Elo rank 2133, winner of many Havannah tournaments. Sources:

wikipedia (left) and LittleGolem (middle and right).

Polygames plays Black. Last move
(white cross) excellent move ac-
cording to human analysis. http:
//www.trmph.com/diagram/1,havannah,
8,o6m8l4h12n3o7k9j5l7l6m6m5o4,-1

Polygames blocked a bridge at the top, and
has a double threat cycle (close to the cen-
ter, left) + strong fork structure. http://www.
trmph.com/havannah/game/lg-2153398

Fig. 7. The two games won against Eobllor (Elo rank 2415 before starting to play against Polygames), who dominates most
competitions in Havannah. Eobllor won most games against the previous version of Polygames (Fig. 6), so we retrained it

and got the present results. We note that the 3 fastest games lost by Eobllor, who rarely loses a game, are these 2 games and
the game he lost against the previous version.
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