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Introduction. Many telecommunication networks rely heavily on shortest path computation
for packets transportation, such as Open Shortest Path First (OSPF) or Intermediate System
to Intermediate System (IS-IS). In such routing protocols, every packet is routed from its origin
to its destination along the shortest paths induced by so-called administrative weights. In this
work, we are interested in the corresponding optimization problem of finding a set of weights
such that the demands routed along the induced shortest paths generate a minimum congestion
i.e., the maximum ratio value of the total traffic going through an edge over the edge’s capacity
is minimized. We briefly describe the problem formulation here. Given a bidirected graph
G = (V, A), every vertex v ∈ V corresponds to a router while an arc uv corresponds to a link
between routers u and v. Every arc uv is associated a capacity denoted by cuv. Let K denote
a set of demands to be routed in G. Each demand k ∈ K is defined by a pair of vertices sk

and tk representing the source and the target of k, a traffic volume Dk to be routed from sk to
tk. Given a metric w ∈ Z

|A|
+ , each demand k ∈ K is routed along the shortest paths between

sk and tk. If there are more than one shortest paths joining the extremities of k, the traffic
volume Dk is splitted evenly among those paths according to the so-called ECMP (Equal-Cost
Multi-Path) rule. We then define the load of an arc uv induced by w as the amount load(uv, w)
of traffic traversing the arc uv over its capacity. The congestion cong(w) of a given metric w is
defined by maxuv∈A load(uv, w), that is the maximum load over all arcs.

The considered optimization problem is called Minimum Congestion Shortest Path
Routing(Min-Con-SPR) which aims at finding a metric w ∈ Z

|A|
+ and the routing paths

induced by these weights such that the network congestion cong(w) is minimum.

Monte Carlo Search on Routing Problem. Monte Carlo Search is a general optimization
technique. In our research, we employed NRPA [3] (Nested Rollout Policy Adaptation), which
learns a policy by recursively calling to the lower level at each nesting level, searching to
improve its current best score. When it succeeds, the best score of the corresponding state
score(state) is updated, and the current action sequence is recorded as the best sequence.

To model the Min-Con-SPR problem using NRPA, we assume that a solution to the Min-
Con-SPR problem is represented by a point (i.e. the metric w = ⟨w1, w2, ..., w|A|⟩) in the
discrete space [1, 65535]|A|. To reduce the search space, we set the metric’s value space as
a subspace W of the original space [1, 65535]. The metric of the graph is assigned and the
objective function cong(w) is evaluated during each playout. An action a is therefore a choice
of metric values for an arc. We also propose the technique force_exploration which greatly
improved the performance of NRPA.



name |V| |A| |K| Unit InvCap Local NRPA LPLBOSPF OSPF Search
abilene 12 30 132 187.55 89.48 60.42 60.412 60.411
atlanta 15 44 210 3.26 3.37 2.22 2.22 2.18
france 25 90 300 4.12 4.12 2.53 2.56 2.41

nobel-us 14 42 91 37.15 37.15 24.4 24.7 24.2
nobel-eu 28 82 378 13.31 13.31 10.68 10.67∗ 10.67

brain 161 332 14311 1.415 1.415 0.962 0.903∗ 0.903
rand50a 50 132 2450 7.9 7.9 5.55 5.77 5.55
rand50b 50 278 2450 2.88∗ 2.88∗ 2.88∗ 2.88∗ 2.88
rand100a 100 278 9900 15.71 15.71 10.42 9.59 9.35
rand100b 100 534 9900 4.15 4.15 4.38 3.85 3.76
wax50a 50 142 2450 6.46 6.46 4.63 4.66 4.59
wax50b 50 298 2450 2.279∗ 2.279∗ 2.284 2.279∗ 2.279
wax100a 100 284 9900 17.46 17.46 15.049 15.048 15.048
wax100b 100 492 9900 5.51 5.51 4.14 4.04 3.44

TAB. 1 – Maximum congestion value of state-of-the-art heuristics and our NRPA. The value is
in bold if it is the best one among those returned by the other heuristics. In addition, a value
is followed by ∗ if equal to the lower bound LPLB (which is reported in the last column). Each
graph is tested in a fixed time and each value is averaged on 5 independent executions.

Experimental results. The algorithms are implemented in C++ and the experiments are
done on a server (64-core Intel(R) Xeon(R) Gold 5218 CPU), with 125 GB of memory. The
experiments are performed on several graphs from SNDlib [1] of different sizes. In addition to
these instances, several random graphs and waxman graphs are also generated using the same
setup as in [2], demands are also generated similarly to [2]. The capacity of all arcs is set to
1000. Every generated graph is verified to be connected.

The results in Table 1 demonstrate that NRPA performs very well on all sizes of graphs and
is very close to the lower bound. In the vast majority of cases, our approach outperforms local
search [2] and only utilizes a small amount of processing time and resources. At the same time
different runs can be computed in parallel, which significantly reduces the execution time of
NRPA. Further testing shows that on larger graphs, local search does not produce acceptable
results in less than 30 minutes. On the contrary, NRPA produces satisfactory results in a
relatively short time even on graphs with thousands of nodes.

Conclusion In this work, we applied the Monte Carlo Search approach for solving the Min-
Con-SPR problem for the first time. Experiments show that our approach is comparable with
the existing ones for instances from the literature. Nonetheless, for larger graphs, our method
outperforms local search heuristics and produces results that are near to the lower bound. At
the same time, because this approach is not sensitive to the size of the graph or the size of the
search space, particularly the size of the search space, it may be simply extended for situations
with additional constraints.
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