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Abstract

Route planning for autonomous vehicles is a challenging
task, especially in dense road networks with multiple de-
livery points. Additional external constraints can quickly
add overhead to this already-difficult problem that often
requires prompt, on-the-fly decisions. This work intro-
duces a hybrid method combining machine learning and
Constraint Programming (CP) to improve search perfor-
mance. A new message passing-based graph neural net-
work tailored to constraint solving and global search is
defined. Once trained, a single neural network inference
is enough to guide CP search while ensuring solution
optimality. Large-scale experiments using real road net-
works from cities worldwide are presented. The hybrid
method is effective in solving complex routing problems,
addressing larger problems than those used for model
training.

Introduction
Many real-world routing situations, such as goods delivery,
industrial logistics or medical transports involve driving on
the same road network repeatedly, day after day. This is
particularly the case for autonomous driving vehicles, where
on-line planning and scheduling is embedded to deal with
frequent missions updates and scarce on-board resources
(batteries, fuel, cargo space. . . ).

The capability to learn from past experiences on the long
term is an interesting human skill. Mastering this capability
can greatly benefit artificial intelligence, including to tackle
automated planning and scheduling problems. Machine learn-
ing is a powerful asset that is increasingly used in this domain.
Not only it makes learning from past routing and planning
experience possible, but it also generalizes learned informa-
tion from previously-experienced situations to similar, yet
unseen, situations. Recently, alongside major successes in
natural language processing and computer vision, deep learn-
ing techniques have been applied to graph-structured data
(Chen et al. 2020). More specifically, Graph Neural Networks
(GNN) and their variants (Cappart et al. 2021) have been in-
vestigated for routing problems. Once trained, these networks
can be hybridized with operational research algorithms such
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as beam search, Monte Carlo Tree Search (Mazyavkina et al.
2021), local search and CP (Osanlou et al. 2019).

However, existing GNN-based methods have the follow-
ing different numbered downsides. (1) Numerous works use
randomly generated TSP datasets for training and validation,
while limited attention is given to actual performance on real-
world graphs. (2) Although GNNs are agnostic to graph size
(i.e.the same GNN can process graphs with any number of
nodes and connections), several works only consider datasets
with fixed-size graph. (3) Generalization to larger problems
is often considered as a side topic. (4) In auto-regressive
approaches, necessary computer resources often make em-
bedding into autonomous vehicles infeasible. (5) Lastly, most
of the search algorithms hybridized with GNNs can neither
guarantee proof of completeness nor optimal solution.

The hybrid architecture with GNN and CP, proposed in
the work, addresses the above issues. The GNN is indepen-
dent of input graph dimensions, connectivity, and problem
instance size. It is trained and validated on several real-world
graphs. The GNN output is used as a non-auto-regressive
probe for incremental variable selection. We also provide
a constraint based formulation of this incremental search
strategy. The resulting model offers a significant increase
in performance, notably on intermediate solutions found for
problem instances larger than those encountered during GNN
training.

Our Approach
Our approach defines a hybrid solving architecture based on
learning and constraint solving. At first, a GNN is introduced
to learn search features as edge scores over the graph, using
several problem instances. Then, the GNN outputs are used
as a non-auto-regressive probe for incremental variable se-
lection with a constraint propagation schema. The CP search
exploit those scores to formally build the exploration strat-
egy. This strategy is expressed using a pure constraint based
formulation. Similar hybridisation schema combining search
and learning is reported in (Peng, Choi, and Xu 2021), that
strongly decouples the search algorithm from the learning
pre-processing. However, incremental problem solving has
not been considered so far.

This hybrid approach can be summarized as:
1. Select a real road network graph from OpenStreetMap

and extract a connected sub-graph.



2. Generate training, testing and validation dataset instances
by randomly selecting mandatory points.

3. Annotate datasets without supervision with exact problem
solving.

4. Train a GNN to score each edge between mandatory
points, with high scores provided to edges belonging in
the optimal order.

5. Use the GNN to infer edge scores in one inference pass
(i.e. non-autoregressive).

6. Use edge scores to guide a CP solver to find the optimal
order faster.

7. Compare performance of unguided and GNN-guided con-
straint model on the validation dataset .

Our work differs from related works mostly because of the
following assumptions :
Hypothesis 1: Optimally solving a set of simple problem
instances in road network graph may be used to learn how to
guide a solver on new bigger instances in the same graph.

Keeping the same graph can be seen a strong limitation in
some applications. However, the scenarios we face involve
slowly evolving graphs and a large set of missions defined
inside each graph. The cost of training a GNN on a given
graph is compensated by numerous mission planning requests
in the same graph; and the overall cost is expected to be lower
than if solving every mission ignoring past experience.
Hypothesis 2: GNNs with Sigmoid activation works better
than GCN with ReLU for route planning.

GCN embeds node-wise normalization by neighbor number,
which is inconsistent with existing handcrafted shortest path
finding algorithms.
Hypothesis 3: Learning in non-complete road graphs is
more efficient than learning in the graph of mandatory points

We refrain from seeing the problem only as a TSP variant.
We assume partial connections between road intersections
embed richer topological information than a fully connected
TSP between mandatory points.
Hypothesis 4: Shortest path cost to start and end nodes can
be used as input vertex features, instead of absolute vertex
position.

This makes our approach invariant by translation and rotation.
However, one drawback is that transfer learning using pre-
trained GNN models is not feasible in this context.
Hypothesis 5: Backpropagation should apply only to
mandatory vertex features during model training.

We are interested in scoring edges among mandatory vertices
only. Backpropagating through non-mandatory vertices will
add unnecessary noise to the training process.
Hypothesis 6: Solution correctness and optimality can be
guaranteed using CP instead of beam search.

In our CP approach, GNN guidance impacts solving time
only. Moreover, the CP paradigm eases future adaptation to
problem variations, compared to ad-hoc handcrafted solving
algorithms.

Discussion and Further Works
We propose a hybrid solving approach for single-vehicle
route planning, combining GNN learning with a CP search
algorithm. The approach can cope with recurrent route plan-
ing problems of interest for autonomous vehicles. We use
an edge-wise GNN architecture, agnostic to graph order and
problem size. Several hyper parameters have been investi-
gated during training. An interruptible and incremental search
method is proposed, and formalized with constraints. It ex-
ploits edge scores from GNN inferences to select variables
within the search tree. Experiments have been carried out
over real world data for both training and testing purposes.
The 6 presented hypothesises have been verified in practice,
exhibiting the feasibility of the approach.

On real scale problems, it is shown that the learning
schema generalizes in the following three ways. Test and
train losses are similar with no visible overfitting. The GNN
can be trained on different static graphs using similar hyper-
parameters. It also infers properly on problem sizes larger
than the training ones. As a result, the GNN can be used
as an efficient probe to guide the search algorithm, even on
large scale instances. The complete CP search algorithm,
guided by the GNN model, avoids heavy tuning requirements
of meta-heuristics and related hyperparameters. Lastly, the
search neither requires sophisticated restarts nor other intru-
sive mechanisms (backjumping or hooks). Other advantages
have been discussed in terms of data frugality and trustwor-
thiness for embedding purposes. Annotated data and imple-
mentation extracts are made available on Github 1.

As a follow up to this research, future works could also
involve extensions to multi-agent planning problems, with
specific constraint-like coordination, taking into account time-
windows.
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