
A Scalable Framework for Automatic Playlist Continuation
on Music Streaming Services

Walid Bendada
Deezer Research

LAMSADE, Université Paris Dauphine, PSL
research@deezer.com

Guillaume Salha-Galvan
Deezer Research

Thomas Bouabça
Deezer Research

Tristan Cazenave
LAMSADE, Université Paris Dauphine, PSL

ABSTRACT
Music streaming services often aim to recommend songs for users
to extend the playlists they have created on these services. How-
ever, extending playlists while preserving their musical character-
istics and matching user preferences remains a challenging task,
commonly referred to as Automatic Playlist Continuation (APC).
Besides, while these services often need to select the best songs to
recommend in real-time and among large catalogs with millions
of candidates, recent research on APC mainly focused on models
with few scalability guarantees and evaluated on relatively small
datasets. In this paper, we introduce a general framework to build
scalable yet effective APCmodels for large-scale applications. Based
on a represent-then-aggregate strategy, it ensures scalability by
design while remaining flexible enough to incorporate a wide range
of representation learning and sequence modeling techniques, e.g.,
based on Transformers. We demonstrate the relevance of this frame-
work through in-depth experimental validation on Spotify’s Million
Playlist Dataset (MPD), the largest public dataset for APC. We also
describe how, in 2022, we successfully leveraged this framework
to improve APC in production on Deezer. We report results from a
large-scale online A/B test on this service, emphasizing the practical
impact of our approach in such a real-world application.

CCS CONCEPTS
• Information systems → Recommender systems; Personalization.

KEYWORDS
Automatic Playlist Continuation, Scalability, Music Recommender
Systems, Music Streaming Services, A/B Testing.

ACM Reference Format:
Walid Bendada, Guillaume Salha-Galvan, Thomas Bouabça, and Tristan
Cazenave. 2023. A Scalable Framework for Automatic Playlist Continuation
on Music Streaming Services. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3539618.3591628

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3591628

1 INTRODUCTION
Recommender systems are becoming increasingly important for
music streaming services such as Apple Music, Deezer, or Spotify
[6, 24, 46]. While these services provide access to ever-growing
musical catalogs, their recommender systems prevent information
overload problems by identifying the most relevant content to
showcase to each user [3, 45]. Recommender systems also enable
users to discover new songs, albums, or artists theymay like [24, 46].
Overall, they are widely regarded as effective tools to improve the
user experience and engagement on these services [3, 5, 38, 62].

In particular, music streaming services often recommend songs
for users to continue the personal playlists they have created on
these services. Broadly defined as ordered sequences of songs in-
tended to be listened to together, playlists often comply with spe-
cific music genres, moods, cultural themes, or activities [2, 5, 60].
Automatically extending them while preserving their musical char-
acteristics and matching user preferences remains a challenging
task, commonly referred to asAutomatic Playlist Continuation (APC)
[7, 46, 54, 60]. Although there have been attempts to tackle APC
predating music streaming services (see, e.g., the survey of Bonnin
et al. [4]), the advent of these services has driven music listeners
towards more and more playlist consumption [25], and the need
for viable APC solutions has been growing ever since. APC is now
considered one of the “most pressing current challenges in music
recommender systems research” by Schedl et al. [46].

As APC is closely related to sequence-based and session-based
recommendation [8, 56], recent research on this problem exten-
sively focused on leveraging models already successful in other se-
quence modeling tasks, notably language modeling, for recommen-
dation purposes. Drawing on the analogy that exists between words
within sentences on the one hand, and songs within playlists on the
other hand, researchers have proposed various effective APC mod-
els based on word2vec [52, 55], recurrent neural networks [10, 27],
convolutional neural networks [59], and attention mechanisms [19].
However, as we will detail in Section 2, these promising studies
often overlooked scalability concerns and evaluated their models
on relatively small subsets of real-world datasets.

Yet, scalability is essential for industrial applications on music
streaming services, which must select the best songs to recommend
for APC among large catalogs with tens of millions of candidates.
Besides the number of songs to handle when training the APC
model, scalability of inference, while being sometimes neglected, is
also crucial. As we will further elaborate in Sections 3 to 5, music
streaming services must usually perform APC online, repeatedly,

https://doi.org/10.1145/3539618.3591628
https://doi.org/10.1145/3539618.3591628

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan W. Bendada, et al.

and in real-time. Indeed, users regularly create new playlists and
modify the existing ones. In return, they expect the system to
provide updated recommendations, with minimal delay.

In summary, there is a discrepancy between the complexity and
evaluation procedure of APC models proposed in the recent sci-
entific literature, and the scalability requirements associated with
industrial applications. As an illustration of this discrepancy, we
stress that modern sequence modeling techniques were seldom
used during the RecSys 2018 APC Challenge [26, 60]. Aiming to
foster research on large-scale APC, this open challenge was eval-
uated on Spotify’s Million Playlist Dataset (MPD), which, to this
day, remains the largest public dataset for APC [7]. To provide APC
recommendations on this dataset, many teams favored relatively
simpler methods during the challenge (see our review in Section 2)
and, as of today, leveraging the modern APC models discussed
above in such a large-scale setting still poses scalability challenges.

In this paper, we propose a general framework to overcome these
challenges and remedy this observed discrepancy. While remaining
versatile enough to incorporate a wide range of modern methods,
our solution formally characterizes the requirements expected from
suitable APC solutions for large-scale industrial applications. More
precisely, our contributions in this paper are listed as follows:

• We introduce a principled framework to build scalable yet
effective APC models. Based on a represent-then-aggregate
strategy, it permits incorporating a wide range of complex
APC models into large-scale systems suitable for industrial
applications. Our framework systematically decomposes
these models into a part handling song representation learn-
ing, and a part dedicated to playlist-level sequence modeling.

• We illustrate the possibilities induced by our framework,
showing how one can design scalable APCmodels benefiting
from the most popular architectures for sequence modeling,
e.g., recurrent neural networks [22] or Transformers [53],
combined with complex song representation learning mod-
els, e.g., neural architectures processing metadata [40].

• We demonstrate the empirical relevance of our framework
for large-scale APC through in-depth experimental valida-
tion on Spotify’s MPD dataset, the largest public APC dataset.
Along with this paper, we publicly release our source code
on GitHub to ensure the reproducibility of our results.

• We also describe how, in 2022, we leveraged this framework
to improve APC in production on the global music streaming
service Deezer. We present results from a large-scale online
A/B test on users from this service, emphasizing the practical
impact of our framework in such a real-world application.

This article is organized as follows. In Section 2, we introduce the
APC problemmore precisely and review previous work. In Section 3,
we present our proposed framework to build scalable yet effective
APC models, providing a detailed overview of its possibilities and
limitations. We report our experimental setting and results on the
public MPD dataset in Section 4, and describe our online A/B test
on the Deezer service in Section 5. Finally, we conclude in Section 6.

2 PRELIMINARIES
We begin this section by precisely defining the APC problem we
aim to solve. We subsequently review the relevant related work.

Figure 1: An example of a user playlist on Deezer.

2.1 Problem Formulation
2.1.1 Notation. This paper considers a catalog S = {𝑠1, ..., 𝑠𝑁 }
of 𝑁 ∈ N∗ songs available on a music streaming service. Users
from this service can create playlists containing these songs, as in
Figure 1. They can update their existing playlists at any time, by
adding, removing, or reordering songs. We denote by 𝐿 ∈ N∗ the
maximum length for a playlist, a parameter fixed by the service.
We denote by P the set of all playlists that can be created from S:

P =

𝐿⋃
𝑙=1

S𝑙 . (1)

Lastly, we associate each song 𝑠 ∈ S with a descriptive tuple𝑚𝑠

of size 𝑀 ∈ N∗. This tuple captures metadata information on the
song, e.g., the name of the artist or the album it belongs to:

𝑚𝑠 ∈ M = M1 ×M2 × · · · ×M𝑀 . (2)

In this equation, eachM𝑖 denotes the set of possible values for a
given metadata type, e.g., the set of possible artists.

2.1.2 APC. In such a setting, the APC problem consists in extend-
ing a playlist 𝑝 ∈ P by adding more songs matching the target
characteristics of 𝑝 [7, 46]. Formally, an APC model is a function:

𝑓 : P × S → R, (3)

associating each 𝑝 ∈ P and 𝑠 ∈ S with a “relevance” or “similarity”
score 𝑓 (𝑝, 𝑠). The higher the score, the more likely 𝑠 will fit well
as a continuation of 𝑝 , according to 𝑓 . To assess and compare the
performance of APC models, the standard methodology consists in:

• Collecting a set of test playlists, unseen during training.
• Then, masking the last songs of these test playlists.
• Finally, evaluating the ability of eachmodel to complete these
partiallymasked sequences using song relevance scores, com-
puting metrics such as the ones we will consider in Section 4.

2.2 Related Work
In recent years, the APC problem has garnered significant attention
from researchers, leading to substantial efforts to address it.

A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

2.2.1 Collaborative Filtering for APC. Historically, Collaborative
Filtering (CF) [30, 49] has been a prevalent approach for APC [11,
34, 46, 54]. As illustrated in Figure 2a, CF methods for APC usually
represent playlist datasets as sparse matrices where each row cor-
responds to a playlist, each column corresponds to a song, and the
associated binary value indicates whether the song appears in the
playlist. In essence, they aim to infer the relevance of a song within
a playlist by leveraging the content of similar playlists. Some of
these CFmethods compute inner products between pairs of playlists
sparse vectors on one side, pairs of songs sparse vectors on the other
side, and use the information of song occurrence within playlists to
compute similarities between playlists and songs [11, 54]. Others
assume that the sparse playlist-song occurrence matrix has a low-
rank structure and depict it as the product of two rectangular dense
matrices using Matrix Factorization (MF) techniques [31, 34]. The
first matrix, of dimension 𝐾 × 𝐷 (with 𝐾 the number of playlists in
the dataset, and some fixed 𝐷 ≪ min(𝐾, 𝑁)), represents a playlist
by row. The second one, of dimension 𝐷 × 𝑁 , represents a song by
column. They can be interpreted as 𝐷-dimensional vectorial repre-
sentations of playlists and songs in a common “embedding” vector
space. In this space, one can compute the similarity between any
pair, e.g., using inner products [23]. As these CF methods usually
fail to provide recommendations for songs absent from existing
playlists [18, 40], researchers have also proposed to integrate meta-
data information into predictions, with the underlying assumption
that co-occurrence information of frequent songs should flow to
rare songs sharing similar attributes. Notable examples of CF mod-
els integrating metadata include Factorization Machines (FM) [40].
FM represent metadata in the same embedding space as playlists
and songs, and add inner products between embedding vectors of
various metadata to the original prediction score. They have been
successfully used for APC [13, 34, 43, 58].

2.2.2 Sequence Modeling for APC. Over the past few years, an
increasing number of research works on APC have proposed to
represent playlist datasets, not as sparse interaction matrices, but
as uneven lists of song sequences, as illustrated in Figure 2b. These
studies have adapted techniques already successful in other se-
quence modeling tasks, notably language modeling, to extend the
ordered sequences of songs that playlists naturally constitute [10,
19, 52, 55, 59]. More specifically, they have introduced APC models
based on word2vec [52, 55], recurrent neural networks [10, 27], con-
volutional neural networks [59], and attention mechanisms [19]. In
the experimental evaluations of these studies, such sequential meth-
ods often outperform the pure CF approaches from Section 2.2.1.
However, these promising results were obtained on relatively small
subsets1 of real-world datasets (see, e.g., the first four lines of Ta-
ble 1), due to the absence of larger public real-world datasets (for
studies predating the MPD release [7]) but also to intrinsic scalabil-
ity issues related to some of these models [60]. Hence, their practi-
cal effectiveness in large-scale applications involving millions of
songs and playlists still needed to be fully demonstrated. Regarding
the most recent class of sequence modeling neural architectures,
1In particular, the range of recommendable songs was often restricted to the most pop-
ular ones. Besides scalability concerns, such a restriction also questions the ability of
these models to recommend songs from the long tail, a matter of great importance con-
sidering that the size of the catalog is one of the specificities of music recommendation
[46] and that numerous models tend to be biased towards popular artists [32].

Table 1: Public datasets for APC.

Dataset Songs Playlists Interactions

AOTM [37] 91 166 27 005 306 830
NOWPLAYING [61] 75 169 75 169 271 177

30MUSIC [51] 210 633 37 333 638 933
MELON [14] 649 091 148 826 5 904 718
MPD [7] 2 262 292 1 000 000 66 346 428

1 0 ... 0
0 1 ... 1
...
1 0 ... 1

p1

...
p2

pk
(a) Sparse matrix

s1,1 s1,2 s1,l1p1
p2

pk

s2,l2s2,1 s2,2
...

sk,1 sk,2 ... sk,lk

(b) List of sequences

Figure 2: An APC dataset represented as (a) a sparse playlist-
song occurrence matrix, (b) a list of uneven song sequences.

i.e., Transformers [53], they have been proposed for sequential
product recommendation (see, e.g., SASRec and BERT4Rec [28, 50]),
but we have not seen examples of usage on large-scale APC. Sim-
ilarly, nearest neighbors techniques have been proposed for se-
quence prediction, sometimes outperforming complex neural mod-
els [33, 35, 36], but were not evaluated on large-scale APC. Finally,
while some approaches leverage the multi-modal aspect of APC
and others focus on its sequential nature, to our knowledge, few
attempts have been made to explicitly consider both components
while remaining efficient enough for large-scale applications.

2.2.3 Towards Large-Scale APC. To foster research on large-scale
APC, the 12th ACM Conference on Recommender Systems hosted
the “RecSys 2018 APC Challenge” [7], evaluated on the Million
Playlist Dataset (MPD), which was then publicly released. Com-
posed of one million playlists created by Spotify users, the MPD
stands out for its magnitude compared with other public datasets
from Table 1, as well as for its sparsity. Indeed, while more than
two million songs can be found in the dataset, roughly 60% of them
do not appear more than twice within playlists [7]. Spotify also
provided side information on songs and playlists. In practice, such
information often helps overcome the cold start problem induced
by data sparsity [6, 44]. In 2019, Zamani et al. [60] analyzed key
insights from the challenge, explaining that many teams leveraged:

• Ensemble architectures: several teams combined several APC
models of the form 𝑓 : P × S → R, each of them providing
different “candidate” songs to extend playlists.

• Or, two-stage architectures: a first simple model rapidly
scored all songs from S, retrieving a subset of “candidate”
songs, several orders of magnitude smaller than the original
song set. Then, some more sophisticated model(s) re-ranked
candidate songs to improve APC recommendations. The per-
formance of such two-stage strategies was highly dependent
on the quality of candidate retrieval models [60].

Overall, the modern sequence modeling neural networks from Sec-
tion 2.2.2 were seldom used for candidate retrieval in these systems,

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan W. Bendada, et al.

either because they were used in a way that did not scale to mil-
lions of songs, or led to underperforming results with respect to
alternatives [60]. When considering both candidate selection mod-
els of ensemble/two-stage architectures, as well as single-stage
architectures directly scoring all songs, most approaches leveraged
simpler and faster non-parametric nearest neighbor models, ap-
plied to various CF-based song/playlist embedding representations
learned using models from Section 2.2.1. In summary, most teams
favored simpler and more scalable methods than the ones presented
in Section 2.2.2 despite their promising performances on smaller
datasets. We believe this challenge highlighted the current discrep-
ancy between the complexity and evaluation procedure of APC
models proposed in the recent scientific literature, and the simpler
ones successfully used for large-scale applications. In particular, in
the context of a global questioning of the ability of deep learning
to actually improve recommender systems [12, 36, 41], we believe
that research on APC would benefit from a formal characterization
of the requirements expected from suitable solutions for large-scale
APC applications, which we provide in the remainder of this paper.

3 LARGE-SCALE PLAYLIST CONTINUATION
In this section, we present and analyze our proposed framework to
build scalable yet effective APC models for large-scale applications.

3.1 Objectives and Requirements
Our main goal is to provide a comprehensive set of guidelines for
implementing APC models that are scalable by design. Additionally,
we aim to maintain flexibility and generality in our approach.

Specifically, in this paper, our definition of scalability is twofold.
Firstly, we want to build models that can handle large datasets
with millions of songs and users, as is often required in real-world
applications on music streaming services. Furthermore, insights
from industrial practitioners have emphasized that scalability is
also essential during the inference phase [41]. In practice, while reg-
ularly training an APC system is necessary to incorporate new data
(e.g., get information on new songs and playlists, and consequently
update model parameters), these updates can be purposely delayed
until a batch of new events has been observed. This allows model
training operations to be performed offline on a regular schedule,
such as once per day, and enables the model to take more time to
update its parameters [42]. In contrast, the inference process, re-
peatedly making recommendations to users, must be accomplished:

• Online on the service: as users regularly create and update
playlists, the exact song sequence that must be extended by
the APC model can not be processed offline in advance.

• With minimal delay: to minimize latency costs when provid-
ing updated recommendations to users. For example, on a
global service like Deezer, an inference time longer than a
few tens of milliseconds would be unacceptable in production.

For these reasons, scalability of inference will be particularly
crucial in our framework. Consequently, we will aim to minimize
the number of online operations whose complexity depends on the
size of the dataset, described by 𝑁 , 𝐿,𝑀 , and max1≤𝑘≤𝑀 |M𝑘 |. In
practice, the number of songs 𝑁 is the largest of these parame-
ters. Therefore, we will prioritize the offline pre-computation of
operations depending on 𝑁 , whenever possible.

3.2 A Scalable Framework for APC
We now formally introduce our framework for APC at scale. We
focus2 on single-stage models 𝑓 : P × S → R directly scoring
each song 𝑠 ∈ S with a similarity score 𝑓 (𝑝, 𝑠) for extending some
playlist 𝑝 ∈ P. Also, we focus2 on APC models learning “embed-
ding” vectorial representations for any playlist 𝑝 and song 𝑠 . We
denote them by h𝑝 ∈ R𝐷 and h𝑠 ∈ R𝐷 , respectively, for some em-
bedding dimension 𝐷 ∈ N∗. Such models can be written as follows:

𝑓 (𝑝, 𝑠) = SIM(h𝑝 , h𝑠), (4)

for some similarity function SIM : R𝐷 ×R𝐷 → R. For each element
of Equation (4), we establish properties that must be verified in our
framework, following the principles from Section 3.1.

3.2.1 Song Representation. Firstly, we note that each song em-
bedding vector h𝑠 depends on the song 𝑠 ∈ S and, possibly, the
metadata𝑚𝑠 ∈ M. As an embedding vector must be computed for
each of the 𝑁 songs of the catalog, we require to perform this opera-
tion offline in advance, with its result stored to be rapidly accessible
with a simple read operation. Consequently, song embedding vec-
tors should not depend on the playlist 𝑝 to extend. Formally, in our
framework, each h𝑠 vector should be computed via a function3:

𝜙 : S → R𝐷 , (5)

learning a unique vectorial representation for each song.

3.2.2 Playlist Representation. On the other hand, the represen-
tation h𝑝 of each playlist 𝑝 ∈ P can not be computed offline in
advance, as playlists can be created and updated at any time by users
(see Sections 2.1 and 3.1). Hence, according to our requirements,
the playlist-level representation learning operations should not
depend on a large set of inputs. We propose to learn h𝑝 solely from
the song sequence (𝑠𝑝1, ..., 𝑠𝑝𝑙) characterizing 𝑝 . Since large-scale
APC usually implies dealing with sparse data [7], our framework
also aims to benefit from parameter sharing whenever possible, by
adding two constraints on the function learning h𝑝 :

• It should leverage song representations h𝑠 as input.
• It should be independent of the playlist length 𝑙 ∈ {1, . . . , 𝐿}.

Hence, by defining E =
⋃𝐿

𝑙=1 R
𝐷×𝑙 , each h𝑝 should be computed via:

𝑔 : E → R𝐷 , (6)

a function aggregating representations from the songs present in
the playlist 𝑝 into a single playlist embedding representation h𝑝 .

3.2.3 Similarity. The final scoring operation 𝑓 (𝑝, 𝑠) = SIM(h𝑝 , h𝑠),
estimating how likely each song 𝑠 will fit well as a continuation of
some playlist 𝑝 using the above h𝑠 and h𝑝 , constitutes the complex-
ity bottleneck of the APC prediction process. Indeed, it depends
on 𝑁 , assuming that the APC model actually considers all songs
fromS whenmaking recommendations (and not some approximate
subset). Moreover, it can not be pre-computed offline beforehand,
as it depends on the playlist representation, which is itself com-
puted online when we model observes the exact song sequence to
2This focus is made without loss of generality. Indeed, single-stage APC models
stemming from our scalable framework could be integrated into two-stage/ensemble
systems such as the ones from Section 2.2.3. Also, while embedding representations
are ubiquitous in the related work from Sections 2.2.1 and 2.2.2, our framework could
be adapted to settings where h𝑝 and h𝑠 capture more general descriptive information.
3We imply the metadata in dependencies, as each𝑚𝑠 exclusively depends on 𝑠 .

A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

extend. Although similarity functions based on neural networks
have been proposed [21], Rendle et al. [41] have demonstrated that
they do not outperform the traditional inner product, whose ability
to rapidly score millions of items makes it a natural choice for use
as a similarity function in our framework: 𝑓 (𝑝, 𝑠) = ⟨h𝑝 , h𝑠 ⟩.

3.2.4 Represent-Then-Aggregate. In summary, as illustrated in Fig-
ure 3, our framework constraints APCmodels to adopt the structure:

𝑓 (𝑝, 𝑠) = ⟨𝑔(h𝑠𝑝1 , ..., h𝑠𝑝𝑙), h𝑠 ⟩, with ∀𝑘 ∈ S, h𝑘 = 𝜙 (𝑘) . (7)

As it involves a function 𝜙 representing songs and a function 𝑔
aggregating these representations, we refer to our framework as
Represent-Then-Aggregate (RTA) in the following. Our experiments
from Sections 4 and 5 will empirically confirm the scalability of
various APC models complying with this framework.

3.3 Examples of RTA Architectures
While ensuring scalability by design, our RTA framework remains
flexible enough to incorporate a wide range of modern models. In
particular, our experiments will consider the following options for
song representation learning and playlist-level aggregation.

3.3.1 Song Representation Function 𝜙 .

• h𝑠 = 𝜙𝑒 (𝑠) = e𝑠 : we directly associate each song 𝑠 with
a vector e𝑠 ∈ R𝐷 using a representation learning model
trained from playlist-song occurrence data (see Section 4.2.1).

• h𝑠 = 𝜙FM (𝑠) = ∑
𝑚∈𝑚𝑠

e𝑚 : we represent each song by the
sumor average of embedding vectors associatedwith itsmeta-
data, which we themselves learn using a model trained from
occurrence data. We refer to this approach as FM due to its
connection to Factorization Machines from Section 2.2.1.

• h𝑠 = 𝜙NN (𝑠) = NN({e𝑚,∀𝑚 ∈ 𝑚𝑠 }): we represent each
song by the output of a neural network NN processing song
metadata. Our experiments will consider an attention-based
neural architecture similar to the one of Song et al. [47].

3.3.2 Playlist Sequence Modeling / Aggregation Function 𝑔.

• 𝑔AVG (h𝑠𝑝1 , ..., h𝑠𝑝𝑙) = 1
𝑙

∑𝑙
𝑖=1 h𝑠𝑝𝑖 : the playlist representa-

tion is the average representation of the songs it contains.
• 𝑔CNN (h𝑠𝑝1 , ..., h𝑠𝑝𝑙) = CNN([h𝑠𝑝1 ; ...;h𝑠𝑝𝑙]): a gated convo-
lutional neural network (CNN) processing a concatenation
of song representations learns the playlist representation. A
key component of the ensemble model that won the RecSys
2018 APC challenge [54], the use of such gated CNN for APC
was inspired by its successful use in language modeling [9].

• 𝑔GRU (h𝑠𝑝1 , ..., h𝑠𝑝𝑙) = GRU([h𝑠𝑝1 ; ...; h𝑠𝑝𝑙]): a recurrent neu-
ral network (RNN) composed of gated recurrent units (GRU)
learns the playlist representation. Our experiments will con-
sider an architecture similar to the one of Hidasi et al [22]
but with a different loss, presented in Section 3.4.

• 𝑔Transformer (h𝑠𝑝1 , ..., h𝑠𝑝𝑙) = Decoder([h𝑠𝑝1 ; ...;h𝑠𝑝𝑙]): the
Decoder part of a Transformer network [53] learns the playlist
representation. The choice of keeping only the Decoder for
APC was motivated by the recent surge of GPT models,
which have demonstrated state-of-the-art performances on
the analogous task of sentence continuation [39].

s1 s2 ... sl-1 sl

h1 hl-1 hlh2 ...

hp

Figure 3: Our Represent-Then-Aggregate framework for APC.

3.3.3 Limitations. These examples illustrate the versatility of our
RTA framework. Simultaneously, we are also aware of some limi-
tations it imposes. In particular, Equation (7) can not express APC
architectures inspired by word2vec models [52, 55]. Indeed, they
leverage different song representations depending on whether they
are used to characterize the context of other songs, or evaluated
as candidates for APC. Leveraging different representations is rel-
evant for language modeling, since words within a sentence are
rarely synonyms and should not be given close representations, yet
models attempt to represent words by their context, motivating the
need for different representations for each word (see the discus-
sion by Goldberg et al. [16]). On the contrary, in the case of APC,
we believe songs appearing in the same playlist should have close
representations, i.e., songs should be similar to their context (an
assumption at the core of matrix factorization techniques [31]). For
this reason, our framework excludes these approaches in favor of
the scalability induced by more parameter sharing.

3.4 Example of a Training Procedure
While our RTA framework remains general, we suggest the follow-
ing training procedure, which can be applied to optimize all models
stemming from this framework. Our experiments in this paper will
adopt this same procedure to train all RTA-based APC models.

Our preliminary experiments have shown that leveraging pre-
trained embedding vectors from a weighted regularized matrix fac-
torization as initial song representations improves performances.
Therefore, we propose to start by factorizingthe playlist-song occur-
rence matrix of the APC problem under consideration, associating
each song 𝑠 with some e𝑠 ∈ R𝐷 used for initialization. Simultane-
ously, we initialize embedding vectors of metadata information by
averaging vectors e𝑠 of songs sharing the same metadata value.

Starting from these initial representations, we jointly optimize
weights of the models selected as 𝜙 and 𝑔, using batches of playlists
of varying lengths. For each playlist 𝑝 of length 𝑙 ∈ {2, . . . , 𝐿}, we
create 𝑙 − 1 sub-playlists denoted 𝑝:𝑖 using the first 𝑖 songs of 𝑝 ,
with 𝑖 ∈ {1, . . . , 𝑙 − 1}. Then, we sample a song set S− (𝑝) from
S\𝑝 . As we expect the APCmodel to return a high similarity scores
for 𝑓 (𝑝:𝑖 , 𝑝𝑠𝑖+1) and a lower score for songs that are absent from
𝑝 , our procedure optimizes model weights via gradient descent

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan W. Bendada, et al.

minimization [17] of the loss L(𝑝) = Lpos (𝑝) + Lneg (𝑝), with:

Lpos (𝑝) = −
𝑙−1∑︁
𝑖=1

log
(1
1 + 𝑒−𝑓 (𝑝:𝑖 ,𝑝𝑠𝑖+1)

)
, (8)

and:

Lneg (𝑝) = −
𝑙−1∑︁
𝑖=1

∑︁
𝑠−∈S− (𝑝)

log
(
1 − 1

1 + 𝑒−𝑓 (𝑝:𝑖 ,𝑠−)
)
. (9)

4 OFFLINE EXPERIMENTS
We now present an experimental evaluation of our framework on
the Million Playlist Dataset (MPD) [7, 60]. We release our source
code on GitHub4, to ensure the reproducibility of our results and
to encourage the future usage of our framework.

4.1 Experimental Setting
4.1.1 Dataset. We consider the entire MPD for our experiments.
This dataset includes one million playlists created by Spotify users,
using more than two million songs (see Table 1). For each song 𝑠 ,
we have metadata information5 corresponding to its artist (art𝑠),
the album it belongs to (alb𝑠), the duration of the song (dur𝑠), and
the number of times it occurs in the dataset, a metric referred to
as popularity (pop𝑠). Hence,𝑚𝑠 = (art𝑠 , alb𝑠 , dur𝑠 , pop𝑠). As dur𝑠
and pop𝑠 are numerical values that can not be easily mapped to
embedding vectors, we group similar values together into buckets:

• For the duration, we create linear buckets of 30 seconds each,
with songs longer than 20 minutes being assigned to the

same bucket. We have: bucketdur (𝑠) = min(40,
⌈
dur𝑠
30

⌉
).

• For the popularity, we create buckets using a logarithmic
scale, so that we distinguish smaller values while higher val-
ues are assigned to the same bucket. By setting𝛼 = 45 000, i.e.,
the highest number of occurrences observed in the dataset,

we have: bucketpop (𝑠) = min(100, 1 + 100 ×
⌊
log(pop𝑠)
log(𝛼)

⌋
).

4.1.2 Task. We consider a large-scale APC evaluation task simi-
lar to the one presented in Section 2.1.2. Specifically, we start by
randomly sampling 20 000 playlists of length 𝑙 ≥ 20 songs from the
MPD, to constitute a validation set and a test set of 10 000 playlists
each. The remaining 980 000 playlists constitute our training set.

Then, we mask the last songs of test playlists, so that only their
𝑛seed first songs are visible. We consider ten different configura-
tions, with 𝑛seed varying from 1 to 10, randomly selecting 1 000
test playlists for each configuration. Our experiments consist in
assessing the ability of several APC models trained on the 980 000
train playlists (see Section 4.2) to retrieve the masked songs of each
test playlist. Consistently with the RecSys 2018 APC Challenge,
we require each APC model to predict a ranked list of 𝑛reco = 500
candidate songs to continue each test playlist.

4 https://github.com/deezer/APC-RTA
5The MPD also includes the title of each playlist as an additional information [7].
However, Zamani et al [60] have reported that this information did not significantly
improve performances during the RecSys 2018 APC Challenge. Moreover, titles are
often unavailable for APC, as well as for closely related tasks such as radio genera-
tion/personalization [5]. For these reasons, we omit playlist titles in these experiments.

4.1.3 Metrics. In the following, we analyze nine different metrics
to evaluate each model on the specified APC task. Firstly, we con-
sider five accuracy-oriented metrics. Besides the prevalent Precision
and Recall scores [46], we report the three metrics used for evalua-
tion during the RecSys 2018 APC Challenge [7]:

• Normalized Discounted Cumulative Gain (NDCG): acts as a
measure of ranking quality. It increases when the ground
truth masked songs are placed higher in the ranked list of
candidate songs recommended by the APC model [57].

• R-Precision: jointly captures the proportion of masked songs
and artists recommended by the model. Artist matches in-
crease the score even if the predicted song is incorrect [7].

• Clicks: indicates how many batches of ten candidate songs
must be recommended (starting with the top ten candidates)
before encountering the first ground truth song. Unlike pre-
vious metrics, Clicks should, therefore, be minimized [7].

Zamani et al. [60] provide exact formulas for these three metrics.
In addition, we compute two popularity-oriented scores, described
by Ludewig and Jannach [33]. They monitor the tendency of each
model to cover the entire catalog when providing recommendations:

• Coverage: computes the percentage of songs from the cata-
log recommended at least once during the test phase.

• Popularity bias: averages the popularity of recommended
songs, computed by counting the occurrences of each song
in the training set and applying min-max normalization [33].
Low scores indicate that less popular songs are recommended.

Finally, to compare the scalability of each model, we compute:
• Training time: the time required for amodel to learn from the
training set until no more improvement on the validation set
could be observed, regarding any accuracy-oriented metrics.

• Inference time: the average time required to recommend a
list of 𝑛reco = 500 candidate songs to extend a test playlist.

4.2 APC Models
We compare the scalability and performance of ten APC models.

4.2.1 Models based on our RTA framework. Firstly, we consider
six different RTA models, built by leveraging the following song
representation and playlist aggregation/modeling functions:

• MF-AVG6: employs the representation function 𝜙𝑒−MF (see
below), combined with the aggregation function 𝑔AVG.

• MF-CNN6: 𝜙𝑒−MF combined with 𝑔CNN.
• MF-GRU: 𝜙𝑒−MF combined with 𝑔GRU.
• MF-Transformer: 𝜙𝑒−MF combined with 𝑔Transformer.
• FM-Transformer: 𝜙FM combined with 𝑔Transformer.
• NN-Transformer: 𝜙NN combined with 𝑔Transformer.

In the above list, we use the notation from Section 3.3. We addi-
tionally denote by 𝜙𝑒−𝑀𝐹 a particular example of representation
learning function 𝜙𝑒 . Specifically, 𝜙𝑒−𝑀𝐹 initializes song embed-
ding vectors using the weighted regularized matrix factorization
mentioned in Section 3.4 and directly refines these representations
via the minimization of the loss defined in this same section. All
six models learn embedding vectors of dimension 𝐷 = 128. We
optimized them via the procedure of Section 3.4, using stochastic
6 The ensemble system that won the RecSys 2018 Challenge included such a model [54].

https://github.com/deezer/APC-RTA

A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 2: Automatic Playlist Continuation (APC) on the Million Playlist Dataset (MPD) [7], using various models stemming
from our proposed Represent-Then-Aggregate (RTA) framework and other baselines. Scores are computed on test playlists
and averaged for 𝑛seed varying from 1 to 10. All models are required to provide a ranked list of 𝑛reco = 500 candidate songs to
continue each test playlist. All embedding models learn representations of dimension 𝐷 = 128, with other hyperparameters set
as described in Section 4.2. The two columns “Acceptable for MSS?” indicate whether the reported training and inference times
would be acceptable (✓) or not (×) for APC on a Music Streaming Service (MSS), and are discussed in Section 4.3.2.

Models Precision Recall R-Precision NDCG Clicks Popularity Coverage Total time for Acceptable Inference time Acceptable
(in %) (in %) (in %) (in %) (in number) (in %) (in %) model training for MSS? by test playlist for MSS?

Baselines
SKNN 4.93 ± 0.09 36.94 ± 0.49 21.42 ± 0.30 27.66 ± 0.40 3.82 ± 0.22 14.86 ± 0.17 12.64 4 min ✓ ∼ 0.5 sec ×

VSKNN 4.93 ± 0.09 36.83 ± 0.49 21.27 ± 0.30 27.54 ± 0.40 3.84 ± 0.22 15.18 ± 0.17 12.28 4 min ✓ ∼ 0.5 sec ×
STAN 4.32 ± 0.09 32.73 ± 0.48 19.12 ± 0.28 24.26 ± 0.38 4.73 ± 0.23 13.43 ± 0.16 27.03 4 min ✓ ∼ 0.5 sec ×

VSTAN 4.59 ± 0.09 34.84 ± 0.49 20.33 ± 0.30 25.99 ± 0.40 4.49 ± 0.23 11.35 ± 0.16 20.54 3 min ✓ ∼ 0.5 sec ×
RTA Models

MF-AVG 4.43 ± 0.09 32.64 ± 0.46 19.80 ± 0.28 24.46 ± 0.37 5.95 ± 0.28 21.37 ± 0.19 1.07 15 min ✓ < 0.01 sec ✓
MF-CNN 5.00 ± 0.09 37.89 ± 0.45 21.15 ± 0.26 26.83 ± 0.35 3.13 ± 0.19 15.43 ± 0.14 3.99 ∼ 5 h ✓ < 0.01 sec ✓
MF-GRU 5.16 ± 0.09 39.16 ± 0.46 21.83 ± 0.27 28.22 ± 0.36 2.77 ± 0.18 12.70 ± 0.13 3.18 ∼ 7 h ✓ < 0.01 sec ✓

MF-Transformer 5.20 ± 0.09 39.76 ± 0.47 22.30 ± 0.28 29.04 ± 0.38 2.60 ± 0.17 10.46 ± 0.13 5.35 ∼ 5 h ✓ < 0.01 sec ✓
FM-Transformer 5.31 ± 0.09 40.46 ± 0.47 22.29 ± 0.27 29.21 ± 0.37 2.52 ± 0.17 11.74 ± 0.13 10.18 ∼ 6 h ✓ < 0.01 sec ✓
NN-Transformer 5.26 ± 0.09 40.17 ± 0.47 22.18 ± 0.27 29.14 ± 0.37 2.17 ± 0.15 10.33 ± 0.13 11.81 ∼ 6 h ✓ < 0.01 sec ✓

gradient descent [17] with batches of 128 playlists and 100 nega-
tive samples. We tuned all hyperparameters to maximize NDCG
scores on the validation set, using the Optuna library [1] for ef-
ficient hyperparameter search. For brevity, we report all optimal
hyperparameter values in our GitHub repository4. All 𝑔CNN, 𝑔GRU,
𝑔Transformer, and 𝜙NN models had from 1 to 3 layers. The width of
hidden layers went from 128 to 1024 units. The kernel size for 𝑔CNN
models went from 2 to 5. The number of heads for 𝑔Transformer and
𝜙NN was a power of 2 ranging from 21 to 26. We tested learning
rates ranging from 10−3 to 1, weight decays from 10−9 to 10−4, and
dropout rates from 0 to 0.5 [48]. For every model, we halved the
learning rate at each epoch and performed early stopping using the
validation set [17]. We used Python, training models on a single
CPU machine with 25 GB of RAM and a Tesla P100 GPU accelerator.

4.2.2 Baselines. By studying these six different RTA models, our
goal is to measure how well various modern methods would scale
and perform using our framework, including techniques previously
overlooked for large-scale APC. To establish reference points, we
also concurrently evaluate and compare four non-RTA baselines:

• SKNN [20]: a session-based nearest neighbors approach that,
despite its apparent simplicity, can reach competitive perfor-
mances with respect to CNN and GRU models [36].

• VSKNN [33]: a variant of SKNN considering the song order
within the playlist sequence as well as its popularity.

• STAN [15]: a variant of SKNN capturing the position of the
song in the playlist, information from past playlists, and the
position of recommendable songs in neighboring playlists.

• VSTAN [36]: combines the ideas of STAN and VSKNN into
a single approach, and adds sequence-based item scoring.

We selected these four baselines for two reasons:
• Firstly, regarding performances, they tend to surpass alterna-
tives in the recent empirical analysis of Ludewig et al. [36].

• Secondly, although they were evaluated on smaller datasets,
we could train them on the MPD using our machines.

We tuned all hyperparameters by maximizing NDCG validation
scores. Our set of possible values for hyperparameters is similar to

Ludewig et al. [36]. These four models require timestamps of actions
performed on the items of each sequence. As the MPD includes the
timestamp of the latest update of each playlist and the duration of
each song, we made the simplifying assumption that each song had
been added right after the previous one had been listened to once.

4.2.3 Scope Limitation. For completeness, we note that we ini-
tially considered other baselines, which we ultimately discarded
for scalability reasons. Most notably, we will not compare to the
multimodal CF model from Yang et al. [58] and the hybrid model
from Rubtsov et al. [43]. While reaching promising results during
the RecSys 2018 APC Challenge, both of these two models require
more than four full days to train on the MPD using their respective
implementations (even on a machine with 28 cores and 200GB of
RAM, for the latter one [43]). Considering that the MPD represents
only a small fraction of playlists created by Spotify users, these
models would require even more time and resources to be used
by such a service. As scalability is at the core of our work, our
experiments, therefore, discard these demanding baselines.

In addition, as explained in Section 3.2, we focus on single-stage
APC models, directly processing and scoring all songs from S. For
clarity of exposure and comparisons, our experiments do not in-
clude systems aggregating multiple song scoring models. Nonethe-
less, it bears mentioning that the ten models from our experiments
could easily be used as the first “candidate retrieving” part of a two-
stage architecture (see Section 2.2.3), or as components in a larger
ensemble system (e.g., Volkovs et al. [54] themselves combined
MF-AVG and MF-CNN in their ensemble during the challenge). As
future work, we plan to extend the scope of this paper, by examining
the use of several RTA models in conjunction for large-scale APC.

4.3 Results
4.3.1 Performance. Table 2 reports all scores7 on test playlists,
averaged for 𝑛seed varying from 1 to 10, along with 95% confi-
dence intervals. Firstly, we confirm previous insights [36] claiming

7Recall: we aim to minimize Clicks and Popularity. We report no confidence intervals
for Coverage as it considers the total number of recommended songs for the test set.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan W. Bendada, et al.

1 2 3 4 5 6 7 8 9 10

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

Pr
ec

is
io

n
(i

n
%

)

1 2 3 4 5 6 7 8 9 10
30.00

32.00

34.00

36.00

38.00

40.00

42.00

Re
ca

ll
(i

n
%

)

1 2 3 4 5 6 7 8 9 10

18.00

19.00

20.00

21.00

22.00

23.00

R-
Pr

ec
is

io
n

(i
n

%
)

1 2 3 4 5 6 7 8 9 10

22.00

24.00

26.00

28.00

30.00

N
D

CG
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10

2.00

3.00

4.00

5.00

6.00
Cl

ic
ks

 (
in

 n
um

be
r)

1 2 3 4 5 6 7 8 9 10

10.00

12.00

14.00

16.00

18.00

20.00

Po
pu

la
ri

ty
 (

in
 %

)

Number of seed songs

SKNN
VSKNN
STAN
VSTAN
MF-AVG
MF-CNN
MF-GRU
MF-Transformer
FM-Transformer
NN-Transformer

Figure 4: Automatic Playlist Continuation (APC) on the Million Playlist Dataset (MPD) [7], using the setting and models from
Table 2. Contrary to this previous table, we split scores depending on 𝑛seed, i.e., the number of visible songs in each test playlist.

that properly tuned nearest neighbors models, such as SKNN and
VSKNN, can reach comparable performances with respect to some
neural models (e.g., with a 27.66% NDCG for SKNN, vs. 26.83% for
MF-CNN and 28.22% for MF-GRU). Regarding accuracy-oriented
metrics, STAN, VSTAN, and MF-AVG tend to underperform, while
Transformer-based models using our RTA framework achieve the
best results (e.g., with a top 40.46% Recall for FM-Transformer).
The FM-Transformer variant, leveraging Factorization Machine
methods for song representation learning, slightly surpasses MF-
Transformer and NN-Transformer on three metrics, even though
all scores are statistically very close. We note that, in particular,
Transformer-basedmodels outperform alternatives in terms of rank-
ing quality (NDCG, Clicks), a valuable property for real-world usage.
This validates the relevance of our work, which specifically aims to
facilitate and support the incorporation of such modern sequence
modeling techniques into large-scale APC systems.

Figure 4 shows the evolution of different metrics as the number of
visible songs 𝑛seed in test playlists increases. While confirming pre-
vious conclusions, the figure also highlights that sequence modeling
neural architectures struggle on very short playlists. For 𝑛seed ≤ 2,
VSKNN and SKNN even surpass Transformers. Another interesting
observation from Figure 4 and Table 2 relates to popularity-oriented
scores. On average, MF-AVG provides the most mainstream rec-
ommendations (with a top 21.37% Popularity score, and a bottom
1.07% Coverage of the catalog), followed by VSKNN and SKNN.
On the contrary, the good performances of Transformers do not
stem from focusing only on popular songs. Interestingly, STAN and
VSTAN recommend the most diverse songs (e.g., with a top 27.03%
Coverage for STAN), but at the cost of a deteriorating performance.

4.3.2 Scalability. We now discuss scalability metrics. They are the
ones that best showcase the relevance of our RTA framework for
large-scale industrial applications. While baselines were faster to
train (3 to 4 minutes on our machines), the training times associ-
ated with RTA-based models (15 minutes to a few hours) would
remain acceptable for APC on a music streaming service. Indeed,
as explained in Section 3.1, training operations do not have to be
executed in real-time on such a service. They can be performed
offline on a regular schedule (e.g., once per day) to update the pa-
rameters of the production model. In practice, all models evaluated
in Table 2 could integrate new input data overnight.

In contrast, the inference process could not be delayed by a music
streaming service. As detailed in Section 3.1, it would usually need
to be repeatedly performed online, to provide recommendations in
real-time to many users. In particular, we explained in this previous
section that an inference time longer than a few tens of milliseconds
by playlist would be unacceptable in the production environment
of a service like Deezer. In Table 2, baselines require 500 millisec-
onds (0.5 seconds) to extend each test playlist with a list of 500
recommended songs. All RTA models perform this same operation
in less than 10 milliseconds, even the most advanced models like
NN-Transformer, using an attention-based network for song repre-
sentation and a Transformer for playlist modeling. While all models
could benefit from better hardware, overall, the inference times
associated with our RTA models make them more suitable for pro-
duction usage. These results highlight the ability of our framework
to integrate complex but promising models, previously overlooked
for large-scale APC, into effective systems meeting the scalability
requirements associated with real-world industrial applications.

A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

5 ONLINE EXPERIMENTS
This section showcases how our framework recently helped Deezer
improve APC at scale. Our objective in this section is not to re-
evaluate all models from Section 4, but rather to complete our anal-
ysis by further illustrating the practical relevance of our framework,
through its successful application in an industrial setting.

5.1 APC on a Music Streaming Service
The global music streaming service Deezer offers an APC feature,
illustrated in Figure 5. It allows millions of Deezer users to au-
tomatically extend the playlists they have created on the service.
In April 2022, we conducted a large-scale online A/B test on this
feature, aiming to improve recommendations by leveraging the
possibilities induced by our RTA framework. Our reference system,
used in production before the test and denoted “Reference” in the
following, exploited a collaborative filteringmodel analogous toMF-
AVG. It also incorporated various internal rules on the frequency
of artist and album appearances in the list of recommended songs.

During the test, we instead used our RTA-based MF-Transformer,
one of the three best models from Section 4, to provide APC to a
randomly selected cohort of test users. We trained MF-Transformer
and Reference on a private dataset of 25 million user playlists.
Both models chose recommendations from a pool of two million
recommendable songs. As illustrated in Figure 5, users requesting
a playlist continuation were presented with a vertically scrollable
list of 100 songs, with the five first ones being initially visible on
mobile screens. Users were unaware of the algorithm change.

5.2 Online A/B Test Results
Firstly, our RTA framework proved to be a valuable asset in inte-
grating MF-Transformer into Deezer’s production environment. It
permitted the successful integration of this model, resulting in its
ability to perform APC at a minimal latency cost for users. As an
illustration, we observed a 99th percentile inference time of only 12
milliseconds on the service, unnoticeable by users (this corresponds
to the time to compute the playlist representation, score two mil-
lion songs, and return 100 recommendations, using an AMD EPYC
7402P CPU machine with ten threads by inference process). This
example demonstrates how our framework can enable practitioners
to effectively leverage modern APC models such as Transformers,
that may have otherwise been left out for scalability reasons.

Regarding performances, our test confirmed the superiority of
MF-Transformer over Reference on Deezer. Using MF-Transformer
improved our internal performance indicators for the APC fea-
ture, such as the Add-To-Playlist rate, i.e., the percentage of rec-
ommended songs added to playlists by users. For confidentiality
reasons, we do not report exact Add-To-Playlist rates in this paper,
nor the number of users involved in each cohort. Instead, Figure 6
presents relative Add-To-Playlist rates with respect to Reference. On
average, users exposed to MF-Transformer added 70% more recom-
mended songs to their playlists than those in the reference cohort.

Following this conclusive test, MF-Transformer has been de-
ployed to all users. Future experiments will evaluate other APCmod-
els on the service, such as FM-Transformer and NN-Transformer.
Additionally, we plan to study the application of our framework to
related sequential tasks on Deezer, including radio personalization.

Figure 5: APC on Deezer: songs recommended by our MF-
Transformer to continue the playlist from Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Relative Add-To-Playlist Rates

M
F-

Tr
an

sf
or

m
er

R
ef

er
en

ce

Figure 6: Online A/B test: relative Add-To-Playlist rates com-
pared to the reference model from Deezer. Differences are
statistically significant at the 1% level (p-value < 0.01).

Lastly, as recent work [29] identified biases in playlist datasets that
can be reproduced by recommender systems, we intend to further
study these important aspects in the context of our framework.

6 CONCLUSION
In this paper, we introduced a general framework to build scal-
able APC models meeting the expected requirements associated
with large-scale industrial applications, e.g., on music streaming
services. We provided a detailed overview of its possibilities and
limitations, showing its versatility in incorporating a wide range
of advanced representation learning and sequence modeling tech-
niques, often overlooked in previous large-scale APC experiments
due to their complexity. We demonstrated the empirical relevance
of our framework through both offline experiments on the largest
public dataset for APC, and online experiments, improving APC
at scale on a global music streaming service. Besides the already
discussed future tests on this same service, our future work will
consider multi-modal song representation learning models (e.g.,
processing audio signals and lyrics in addition to usage data) to en-
hance the representation part of our framework. We will also aim to
incorporate the ability for it to adapt to user feedback in real-time.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan W. Bendada, et al.

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-Generation Hyperparameter Optimization Frame-
work. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2019), 2623–2631.

[2] Walid Bendada, Guillaume Salha, and Théo Bontempelli. 2020. Carousel Person-
alization in Music Streaming Apps with Contextual Bandits. Proceedings of the
Fourteenth ACM Conference on Recommender Systems (2020), 420–425.

[3] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez.
2013. Recommender Systems Survey. Knowledge-Based Sys. 46 (2013), 109–132.

[4] Geoffray Bonnin and Dietmar Jannach. 2014. Automated Generation of Music
Playlists: Survey and Experiments. Comput. Surveys 47, 2 (2014), 1–35.

[5] Théo Bontempelli, Benjamin Chapus, François Rigaud, Mathieu Morlon, Marin
Lorant, and Guillaume Salha-Galvan. 2022. Flow Moods: Recommending Music
by Moods on Deezer. Proceedings of the 16th ACM Conference on Recommender
Systems (2022), 452–455.

[6] Léa Briand, Guillaume Salha-Galvan, Walid Bendada, Mathieu Morlon, and Viet-
Anh Tran. 2021. A Semi-Personalized System for User Cold Start Recommendation
on Music Streaming Apps. Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining (2021), 2601–2609.

[7] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. Recsys
Challenge 2018: Automatic Music Playlist Continuation. Proceedings of the 12th
ACM Conference on Recommender Systems (2018), 527–528.

[8] Tran Khanh Dang, Quang Phu Nguyen, and Van Sinh Nguyen. 2020. A Study of
Deep Learning-Based Approaches for Session-Based Recommendation Systems.
SN Computer Science 1, 4 (2020), 1–13.

[9] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Lan-
guage Modeling with Gated Convolutional Networks. Proceedings of the 34th
International Conference on Machine Learning (2017), 933–941.

[10] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential User-Based
Recurrent Neural Network Recommendations. Proceedings of the 11th ACM
Conference on Recommender Systems (2017), 152–160.

[11] Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli. 2018. Efficient Similarity
Based Methods for the Playlist Continuation Task. Proceedings of the ACM
Recommender Systems Challenge 2018 (2018), 1–6.

[12] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are We
Really Making Much Progress? A Worrying Analysis of Recent Neural Recom-
mendation Approaches. Proceedings of the 13th ACM Conference on Recommender
Systems (2019), 101–109.

[13] Andres Ferraro, Dmitry Bogdanov, Jisang Yoon, KwangSeob Kim, and Xavier
Serra. 2018. Automatic Playlist Continuation using a Hybrid Recommender
System Combining Features from Text and Audio. Proceedings of the ACM
Recommender Systems Challenge 2018 (2018), 1–5.

[14] Andres Ferraro, Yuntae Kim, Soohyeon Lee, Biho Kim, Namjun Jo, Semi Lim,
Suyon Lim, Jungtaek Jang, Sehwan Kim, Xavier Serra, et al. 2021. Melon Playlist
Dataset: A Public Dataset for Audio-Based Playlist Generation andMusic Tagging.
Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (2021), 536–540.

[15] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
2019. Sequence and Time Aware Neighborhood for Session-Based Recommen-
dations: STAN. Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (2019), 1069–1072.

[16] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: Deriving Mikolov et
al.’s Negative-Sampling Word-Embedding Method. arXiv:1402.3722 (2014).

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press.

[18] Jyotirmoy Gope and Sanjay Kumar Jain. 2017. A Survey on Solving Cold Start
Problem in Recommender Systems. Proceedings of the 2017 International Confer-
ence on Computing, Communication and Automation (2017), 133–138.

[19] Lei Guo, Hongzhi Yin, Qinyong Wang, Tong Chen, Alexander Zhou, and Nguyen
Quoc Viet Hung. 2019. Streaming Session-Based Recommendation. Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2019), 1569–1577.

[20] Negar Hariri, Bamshad Mobasher, and Robin Burke. 2015. Adapting to User
Preference Changes in Interactive Recommendation. Proceedings of the 24th
International Joint Conference on Artificial Intelligence (2015).

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. Proceedings of the 26th International
Conference on World Wide Web (2017), 173–182.

[22] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-Based Recommendations with Recurrent Neural Networks. Pro-
ceedings of the 4th International Conference on Learning Representations (2016).

[23] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. Proceedings of the 8th IEEE International Conference
on Data Mining (2008), 263–272.

[24] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Romain Yon.
2016. Music Personalization at Spotify. Proceedings of the 10th ACM Conference

on Recommender Systems (2016), 373–373.
[25] Laurie Jakobsen. 2016. Playlists OvertakeAlbums in Listenership, says Loop Study.

Blog post on the "Music Business Association": https://musicbiz.org/news/playlists-
overtake-albums-listenership-says-loop-study/ (2016).

[26] Dietmar Jannach, Gabriel de Souza P. Moreira, and Even Oldridge. 2020. Why
Are Deep Learning Models Not Consistently Winning Recommender Systems
Competitions Yet? A Position Paper. Proceedings of the Recommender Systems
Challenge 2020 (2020), 44–49.

[27] How Jing and Alexander J Smola. 2017. Neural Survival Recommender. Proceed-
ings of the 10th ACM International Conference on Web Search and Data Mining
(2017), 515–524.

[28] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-
mendation. Proceedings of the 2018 IEEE International Conference on Data Mining
(2018), 197–206.

[29] Peter Knees, Andres Ferraro, and Moritz Hübler. 2022. Bias and Feedback Loops
in Music Recommendation: Studies on Record Label Impact. In Workshop of
Multi-Objective Recommender Systems (MORS’22), in conjunction with the 16th
ACM Conference on Recommender Systems, Vol. 22. 2022.

[30] Yehuda Koren and Robert Bell. 2015. Advances in Collaborative Filtering. Rec-
ommender Systems Handbook (2015), 77–118.

[31] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. Computer 42, 8 (2009), 30–37.

[32] Dominik Kowald, Markus Schedl, and Elisabeth Lex. 2020. The Unfairness of
Popularity Bias in Music Recommendation: A Reproducibility Study. Proceedings
of the 42nd European Conference on Information Retrieval (2020), 35–42.

[33] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-Based Recom-
mendation Algorithms. User Modeling and User-Adapted Interaction 28, 4 (2018),
331–390.

[34] Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. 2018.
Effective Nearest-Neighbor Music Recommendations. Proceedings of the ACM
Recommender Systems Challenge 2018 (2018), 1–6.

[35] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Perfor-
mance Comparison of Neural and Non-Neural Approaches to Session-Based
Recommendation. Proceedings of the 13th ACM Conference on Recommender
Systems (2019), 462–466.

[36] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2021. Empirical
Analysis of Session-Based Recommendation Algorithms. User Modeling and
User-Adapted Interaction 31, 1 (2021), 149–181.

[37] Brian McFee and Gert Lanckriet. 2012. Hypergraph Models of Playlist Dialects.
Proceedings of the 13th International Society for Music Information Retrieval Con-
ference (2012), 343–348.

[38] Ruihui Mu. 2018. A Survey of Recommender Systems Based on Deep Learning.
IEEE Access 6 (2018), 69009–69022.

[39] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving Language Understanding by Generative Pre-Training. OpenAI (2018).

[40] Steffen Rendle. 2010. Factorization Machines. Proceedings of the 2010 IEEE
International Conference on Data Mining (2010), 995–1000.

[41] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural
Collaborative Filtering vs. Matrix Factorization Revisited. Proceedings of the
Fourteenth ACM Conference on Recommender Systems (2020), 240–248.

[42] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Recom-
mender Systems Handbook. Recommender Systems Handbook (2011), 1–35.

[43] Vasiliy Rubtsov, Mikhail Kamenshchikov, Ilya Valyaev, Vasiliy Leksin, and
Dmitry I Ignatov. 2018. A Hybrid Two-Stage Recommender System for Au-
tomatic Playlist Continuation. Proceedings of the ACM Recommender Systems
Challenge 2018 (2018), 1–4.

[44] Guillaume Salha-Galvan, Romain Hennequin, Benjamin Chapus, Viet-Anh Tran,
and Michalis Vazirgiannis. 2021. Cold Start Similar Artists Ranking with Gravity-
Inspired Graph Autoencoders. 15th ACM Conference on Recommender Systems
(2021), 443–452.

[45] Markus Schedl. 2019. Deep Learning in Music Recommendation Systems. Fron-
tiers in Applied Mathematics and Statistics (2019), 44.

[46] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi
Elahi. 2018. Current Challenges and Visions in Music Recommender Systems
Research. Int. Journal of Multimedia Information Retrieval 7, 2 (2018), 95–116.

[47] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-
Attentive Neural Networks. Proceedings of the 28th ACM International Conference
on Information and Knowledge Management (2019), 1161–1170.

[48] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[49] Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A Survey of Collaborative Filtering
Techniques. Advances in Artificial Intelligence 2009 (2009).

[50] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. Proceedings of the 28th ACM International Confer-
ence on Information and Knowledge Management (2019), 1441–1450.

A Scalable Framework for Automatic Playlist Continuation on Music Streaming Services SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

[51] Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, and
Paolo Cremonesi. 2015. 30Music Listening and Playlists Dataset. RecSys Posters
(2015), 75.

[52] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2vec:
Product Embeddings using Side-Information for Recommendation. Proceedings
of the 10th ACM conference on recommender systems (2016), 225–232.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. Advances in Neural Information Processing Systems 30 (2017).

[54] Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott
Sanner. 2018. Two-Stage Model for Automatic Playlist Continuation at Scale.
Proceedings of the ACM Recommender Systems Challenge 2018 (2018), 1–6.

[55] Dongjing Wang, Shuiguang Deng, Xin Zhang, and Guandong Xu. 2016. Learning
Music Embedding with Metadata for Context Aware Recommendation. Proceed-
ings of the 2016 ACM on International Conference on Multimedia Retrieval (2016),
249–253.

[56] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet
Orgun. 2019. Sequential Recommender Systems: Challenges, Progress and
Prospects. Proceedings of the 28th International Joint Conference on Artificial
Intelligence (2019).

[57] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. 2013.
A Theoretical Analysis of NDCG Ranking Measures. In 26th Annual Conference
on Learning Theory, Vol. 8. 6.

[58] Hojin Yang, Yoonki Jeong, Minjin Choi, and Jongwuk Lee. 2018. MMCF: Multi-
modal Collaborative Filtering for Automatic Playlist Continuation. Proceedings
of the ACM Recommender Systems Challenge 2018 (2018), 1–6.

[59] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A Simple Convolutional Generative Network for Next Item
Recommendation. Proceedings of the 12th ACM International Conference on Web
Search and Data Mining (2019), 582–590.

[60] Hamed Zamani, Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2019. An
Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Auto-
matic Music Playlist Continuation. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 5 (2019), 1–21.

[61] Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Günther Specht. 2014. #now-
playing Music Dataset: Extracting Listening Behavior from Twitter. Proceedings
of the 1st Int. Workshop on Internet-Scale Multimedia Management (2014), 21–26.

[62] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. Comput. Surveys 52, 1
(2019), 1–38.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Related Work

	3 Large-Scale Playlist Continuation
	3.1 Objectives and Requirements
	3.2 A Scalable Framework for APC
	3.3 Examples of RTA Architectures
	3.4 Example of a Training Procedure

	4 Offline Experiments
	4.1 Experimental Setting
	4.2 APC Models
	4.3 Results

	5 Online Experiments
	5.1 APC on a Music Streaming Service
	5.2 Online A/B Test Results

	6 Conclusion
	References

