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Abstract. Motivated by transformers’ success in diverse fields like lan-
guage understanding and image analysis, our investigation explores their
potential in the game of Go. Specifically, we focus on analyzing Trans-
formers in Vision. Through a comprehensive examination of factors like
prediction accuracy, win rates, memory, speed, size, and learning rate, we
underscore the significant impact transformers can make in the game of
Go. Notably, our findings reveal that transformers outperform the previ-
ous state-of-the-art models, demonstrating superior performance metrics.
This comparative study was conducted against conventional Residual
Networks.
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1 Introduction

Due to a huge game tree complexity, the game of Go has been an important
source of work in the perfect information setting. In 2007, search algorithms have
been able to increase drastically the performance of computer Go programs [11,
12, 20, 16]. In 2016, a groundbreaking achievement occurred when AlphaGo be-
came the first program to defeat a skilled professional Go player [26]. Currently,
the level of play of such algorithms is far superior to those of any human player
[26–28].

Over the years, various significant advances have been made to improve per-
formance in the game of Go [3, 34, 32, 31, 33]. Many of these innovations find
their roots in other domains, notably in computer vision, where the recogni-
tion and interpretation of the Go board’s image serve as fundamental inputs.
Algorithms such as ResNet [18, 3] and MobileNet [19, 7, 5] have demonstrated
exceptional performance by harnessing groundbreaking developments in com-
puter vision. However, it is worth noting that one remarkable advancement in
the realm of computer vision remains relatively untapped for Computer Go:
transformers [30].

Transformers represent a groundbreaking leap in deep learning, reshaping
how various tasks in natural language processing (NLP), computer vision, and
beyond are approached. Initially developed for NLP tasks, transformers in-
troduce a departure from conventional sequential methods by employing self-
attention mechanisms. These mechanisms simultaneously capture intricate in-
terdependencies among all elements in a sequence. This ability to understand
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nuanced relationships over long distances, without relying on recurrent or con-
volutional structures, has propelled transformers to the forefront of AI research.
Notably, transformers have not only advanced language understanding, exem-
plified by models like BERT [13], but have also expanded their utility to image
analysis, as seen in Vision Transformers (ViTs) [15] and other transformer-based
models. EfficientFormer [21], a transformer-based model, achieves high perfor-
mance and matches MobileNet’s speed on mobile devices, proving that well-
designed transformers can deliver low latency in computer vision tasks.

In this paper, we propose to analyze the impact of using Transformer methods
in the game of Go. To do this, we use the EfficientFormer architecture. Our study
analyses were done in comparison with other state-of-the-art vision architectures
in Go such as Residual Networks on a wide range of criteria including prediction
accuracy, win rates, memory, speed, architecture size, and even learning rate.
We tune the learning rate and the size of the network for each network and we
find that EfficientFormer improves better than Residual Network with longer
training times. Both the policy accuracy, the Mean Squared Error (MSE), and
the Mean Absolute Error (MAE) are better with longer training time. Other
important properties of the tested networks are their latency and their memory
use. To take into account the latency in the performance of the networks, we
make them play using the same Monte Carlo Tree Search search time at every
move and record their winning rates. We observe that EfficientFormer of size ‘l9’
with a learning rate of 0.0005 with 1,000 epochs of 100,000 states and a batch of
32 is better than Residual Networks on CPU and on GPU with the same number
of epochs.

In Section 2, we present Computer Go, while Section 3 introduces the various
algorithms and network architectures employed in this paper. Our results are
detailed in Section 4, and the final section provides a comprehensive summary
of our work along with insights into future avenues.

2 Computer Go

The game of Go is a turn-taking strategic board game of perfect information,
played by two players. One player adds black stones to a vacant intersection of
the board and the opponent adds white stones. After being placed, a player’s
stones cannot move. A group of contiguous stones is removed if and only if the
opponent surrounds the group on all orthogonally adjacent points. The players
aim at capturing the most territory and the game ends when no player wishes
to move any further. There exist multiple rules for scoring. We have used the
Chinese rule in our experiments: the winner of the game is defined by the number
of stones that a player has on the board, plus the number of empty intersections
surrounded by that player’s stones and komi (bonus added to the second player
as compensation for playing second).

Even though the rules are relatively simple, the game of Go is known as
an extremely complex one in comparison to other board games such as Chess.
On the standard board of size 19 × 19, the number of legal positions has been
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estimated to be 2.1 × 10170. Algorithms based on Monte Carlo Tree Search
(MCTS) [1] have been achieving excellent performance in the game of Go for
many years. Combining deep reinforcement learning and MCTS as introduced
in the AlphaGo series programs [26, 28, 27] has been widely applied. The neural
network takes an image of the board as input and produces two outputs: a
probability distribution over moves (policy head) and a scalar of score prediction
(value head) (see Fig. 1).

Fig. 1: AlphaZero network architecture

3 Network Architectures

3.1 Residual Network

Residual Networks are the standard networks for games [3, 28]. They are used
in combination with MCTS to evaluate the leaves of the search tree and to give
a prior on the possible moves. To speed up the computation of the evaluation
and of the prior the networks are usually run on a batch of states [6].

The employed residual layer in image classification integrates the input of the
layer with its output, incorporating two convolutional layers before the addition.
ReLU layers are applied following the first convolutional layer and after the ad-
dition. Figure 2 illustrates the structure of the residual layer. We will experiment
with this kind of residual layer for our Go networks.

3.2 Transformer

Transformers are advanced neural network architectures that leverage the con-
cept of self-attention to process and understand complex sequences of data, such
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Fig. 2: The residual block.

as language. Self-attention allows a transformer model to analyze different ele-
ments within a sequence and determine their relative importance in relation to
one another. By calculating attention scores based on the similarity of these ele-
ments, the model can dynamically weigh their significance and understand how
they interrelate. Transformers employ multiple self-attention mechanisms (mul-
tihead self-attention) operating in parallel, enabling them to capture intricate
patterns, dependencies, and contextual nuances across the entire input sequence.

Transformer was originally proposed as a sequence-to-sequence model [29]
for machine translation. Later works show that Transformer-based pre-trained
models (PTMs) [23] can achieve state-of-the-art performances on various tasks.
In addition to language-related applications, Transformer has also been adopted
in computer vision [22, 2, 15], audio processing [14, 17, 10] and even other disci-
plines, such as chemistry [25] and life sciences [24]. In natural Language Pro-
cessing, the mechanism of attention of the Transformers tried to capture the
relationships between different words of the text to be analyzed, in Computer
Vision the Vision Transformers try instead to capture the relationships between
different portions of an image.

3.3 Efficient Former

The EfficientFormer model is a big step forward in making transformer archi-
tectures work better for tasks that need real-time results, especially on devices
with not much computing power. Adding a dimension-consistent plan allows the
model to easily switch between different ways of organizing its parts, like in 4D
and 3D setups. This way of thinking helps the EfficientFormer model to make
the time it takes for predictions much shorter. By focusing on making predictions
happen fast, a set of EfficientFormer models emerges, each achieving a careful
equilibrium between performance and latency. This change in approach reaches
its peak with models like EfficientFormer-l1, which impressively demonstrates
outstanding top-1 accuracy on benchmarks like ImageNet-1K. At the same time,
it manages to keep inference latency remarkably low on mobile devices, aligning
closely with the efficiency of optimized versions of MobileNet.

In Figure 3, we illustrate the network architecture of the EfficientFormer.
The network begins its operations with a convolution stem. This part usually
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Fig. 3: Overview of EfficientFormer architecture [21].

carries out a set of actions to pull out basic features from the input data. These
actions typically involve using convolutional layers, pooling layers, and normal-
ization layers. Following that, there is a set of MetaBlocks (MB). There are two
types of MetaBlocks: MB4D and MB3D. The layers that make up each block are
illustrated in Figure 3. In between these blocks, we have the embedding layers.
These layers break down the input into patches of a fixed size and assign each
patch to a high-dimensional vector representation. These patch representations
are then sent into the transformer blocks (within MB3D) for further processing.

EfficientFormer is available in various sizes, denoted as l1, l3, l7, and l9.
Each size is linked to a tuple of information where the first information is the
width and the second information is the depth. The width is a list designing
different dimensionalities (number of channels) of the feature vectors processed
by different layers and blocks within the neural network. The width represents
the number of blocks in different levels of the EfficientFormer architecture. The
sizes tested throughout the paper are the following:

– ‘l1’ : ([48, 96],[3, 4])

– ‘l3’ : ([64, 128],[4, 6])

– ‘l7’ : ([96, 192],[6, 8])

– ‘l9’; ([128,256],[8,10])

In order to clarify the notations used for transformers, we are going to explain
in detail the parameters of the first example ‘l1’. The entire structure comprises
7 MetaBlocks (MBs): 3 MBs4D and 4 MBs3D. The count of these blocks is
determined by examining the second list [3, 4]. Let’s denote the set of the 3
MBs4D as X and the set of the 4 MBs3D as Y. The number 48 from the first
list represents the number of channels in all layers of X. while 96 is the number
of channels in all layers of Y. Between the set X and the set Y, we have an
embedding layer. This embedding layer allows the transition of the number of
channels from 48 in X to 96 in Y.
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3.4 Adaptation for the game of Go

In this paper, we took the same work on EfficientFormer model of Li et al. [21]
and adapt the transformer mechanism to the Go game prediction. This neces-
sitated modifying the final layers, which were originally designed for tasks like
classification or segmentation, and instead, replacing them with layers tailored
for policy and value (i.e., the probability of winning the game) prediction.

This modification transformed the tasks into a dual output setting, combin-
ing multiclass classification and regression functionalities. The value head uses
Global Average Pooling followed by two Dense layers [4, 8]. The policy head uses
a 1x1 convolution to a single plane that defines the convolutional policy [8].

Another significant adjustment involved the downsampling and embedding
layers commonly used in image classification tasks to detect features by reducing
the image size before feeding it into the transformer. However, in the context of
Go, the input board’s dimensions were fixed at 19 × 19, and it was imperative
to preserve this size throughout the training process to avoid losing critical
information. Therefore, to retain the richness of the board data, the height and
width of the board were maintained during training, ensuring that no valuable
details were lost in the process. This tailored architectural approach played a
pivotal role in optimizing the models for Go game prediction.

4 Experimental Results

4.1 Dataset

The data used for training comes from the Katago Go program self played
games [31]. KataGo is one of the strongest open-source Go bots available on-
line. There are 1,000,000 different games in total in the training set. Input data
consists of 31 planes with a size of 19x19 each, encompassing information such
as the color to play, ladders, the current state on two planes, and two previous
states on four planes. The output targets are the policy (a vector of size 361
with 1.0 for the move played, 0.0 for the other moves), and the value (close to
1.0 if White wins, close to 0.0 if Black wins).

4.2 Experimental Information

To compare the different network architectures we trained them on multiple
epochs. One epoch uses 100, 000 states randomly selected from the Katago
dataset with two labels: a one-hot encoding of the Katago move and an evalua-
tion between 0 and 1 by Katago of the winrate for White. The training is done
with Adam and cosine annealing [9] without restarts. Cosine annealing leads to
better convergence by modifying the learning rate of Adam.

In the next tables, we denote Residual(X,Y), the Residual Network of X
blocks of Y planes and we denote Efficient(lX), the lX architecture of Effi-
cientFormer. Among the different metrics used, we compute the accuracy, mean
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squared error (MSE), mean absolute error (MAE), and when possible the win-
ning rate against an opponent. The winning rate is more informative than the
other because it combines the impact of improving policy and value network. It
also takes into account the latency of the networks. Accuracy measures the close-
ness of strategies between the policy network and Katago data. In the following
experiment, we present the result on the validation set.

4.3 Training and Playing

Our research paper focuses on the study of transformers and their impact on
several performance criteria, as well as speed and memory. In our experiments,
we first analyze the best hyperparameters obtained on performance for models
of varying sizes (l1/l3/l5/l9) and with varying lengths of training (100/500/1000
epochs). Our results on Efficient are compared against Residual Network, which
is the current state of the art in the field. After that, we delve into a compre-
hensive analysis with a specific focus on assessing memory consumption and
processing speed for each model.

In Table 1, we analyze the impact of the learning rate on the Accuracy, MSE,
and MAE for multiple Residual networks across 1000 epochs in comparison to
Efficient(l9). We will then use the best learning rate in Table 2 where we ana-
lyze the Accuracy, MSE, and MAE for both Residual and Transformer networks
across 500 epochs. We found that Efficient(l9) performs better than the other
Efficient Former and Residual networks. Additionally, Figure 4 provides a vi-
sual comparison of the training curves for Accuracy, MAE, and MSE between
Efficient (l9) and Residual (20,256) over 1000 epochs.

In Tables 3 and 4, an analysis of winning rates among multiple algorithms
compared to Efficient (l9) over 500 and 1000 epochs is presented. It is note-
worthy that Efficient (l9) exhibits superiority over the majority of algorithms,
demonstrating a remarkable performance trend. An exception is observed in the
case of the 500-epoch scenario 3, where Efficient (l7) achieves comparable perfor-
mance on CPU, and Residual (20,256) attains equivalent performance on GPU.
The longer training time and the better GPU are in favor of the transformer
network.

In Table 5, we conduct an analysis of latency and peak memory utilization
on GPU and CPU for the various network architectures under examination. The
experiments on GPU were carried on a RTX 2080 Ti with 11 Gb of Memory and
Epyc server for the CPU. On GPU, it is noteworthy that both Residual Networks
and Transformers exhibit similar latency characteristics, however, Transformers
incur a memory usage approximately three times greater than that of Residual
Networks. On CPU (Table 5), for smaller network, we observe that Efficient
architecture achieve a lower evaluation rate per second than Residual. Neverthe-
less, this trend shifts as network sizes increase, with the Efficient architecture
ultimately surpassing Residual Networks in evaluation per second.

Lastly, Table 6 charts the evolution of GPU latency concerning batch size
variation for the different network configurations. Large batch sizes are relevant
to self-play in Alpha Zero style [28, 31]. Smaller batch sizes are relevant to normal
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play with batch parallel MCTS [6]. This analysis sheds light on how network
performance scales with batch size changes. The Residual Networks use relatively
more playouts since they parallelize better with current GPU hardware and
software.

Table 1: Comparaison of large network architectures for 1000 epochs of 100,000
states per epoch.

Network Size Learning Rate Batch Accuracy MSE MAE

Residual

20,256 0.0002 64 52.13% 0.0496 0.1510
20,256 0.0001 64 53.30% 0.0458 0.1456
20,256 0.00005 64 53.82% 0.0465 0.1434
20,256 0.00002 64 53.28% 0.0471 0.1483
20,256 0.00001 64 51.23% 0.0516 0.1595
40,256 0.0002 64 45.68% 0.0717 0.1990
40,256 0.0001 64 51.88% 0.0513 0.1599
40,256 0.00005 64 52.64% 0.0475 0.1493
40,256 0.00002 64 52.90% 0.0486 0.1497
40,256 0.00001 64 51.10% 0.0551 0.1625

Efficient l9 0.0005 32 56.22% 0.0360 0.1240

Table 2: Comparison of networks for 500 epochs of 100,000 states per epoch and
a batch size of 64. The Accuracy, MSE and MAE were computed on a set of
50,000 states sampled from 50,000 games that were never seen during training.

Network Size Learning Rate Accuracy MSE MAE

Residual

10,128 0.0002 49.12% 0.0534 0.1649
20,128 0.0002 50.29% 0.0516 0.1618
20,256 0.00005 52.50% 0.0476 0.1518
40,256 0.00005 51.27% 0.0499 0.1586

Efficient

l1 0.002 49.35% 0.0553 0.1659
l3 0.002 51.28% 0.0484 0.1519
l7 0.002 53.01% 0.0440 0.1422
l9 0.001 54.29% 0.0405 0.1351

5 Conclusion

This paper investigates the impact of the Vision Transformer architecture on the
game of Go. Building upon the proven success of the Transformer architecture
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Fig. 4: Efficient(l9) versus Residual(20,256) comparisons on Accuracy, MAE and
MSE over 1,000 epochs of 100,000 states. All values are computed with the test
set that contains games that were never seen in the training set.

Table 3: Comparison of networks for 500 epochs of 100,000 states per epoch and
a batch size of 64. The winrate WinCPU is the result of 800 randomized matches
on CPU against Efficient(l9) with 10 seconds of CPU per move for both sides.
The GPU winrate is calculated by using the same RTX 2080 Ti GPU time for
both networks with a batch of 64. The learning rate is fixed to 0.0005 for the
Residual network and 0.001 for the Efficient network.

Network Size
vs Efficient(l9)

WinCPU WinGPU

Residual
10,128 33.5% 20.4%
20,128 31.6% 25.8%
20,256 30.6% 46.4%
40,256 8.9% 29.7%

Efficient
l1 11.6% 8.1%
l3 31.0% 19.4%
l7 50.4% 38.3%

Table 4: Comparison of the winning rate for multiple networks trained during
1, 000 epochs of 100, 000 states per epoch. The winrate WinCPU is the result
of 400 randomized matches on CPU with 10 seconds of CPU per move for both
sides. The GPU winrate is calculated by using the same A6000 GPU time for
both networks with a batch of 32 for the inference.

Network Size
vs Efficient(l9)

WinCPU WinGPU

Residual
20,256 30.5% 39.0%
40,256 15.0% 33.0%
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Table 5: Latency and number of evaluations per second on CPU/GPU for dif-
ferent architectures and networks of different sizes and peak memory on GPU.
The CPU used is Epyc server. The GPU used is a RTX 2080 Ti GPU with 11
Go. The latency and the peak memory on the GPU are measured using a batch
of 64 states. They are averaged over 100 calls to predict after a warmup of 100
previous calls. The latency is the average time in seconds to make a forward
pass.

Network Size
CPU GPU

Latency Evals/s Latency Evals/s Peak Memory

Residual

10,128 0.043 23.07 0.0890 719 436,656,640
20,128 0.082 12.24 0.0943 679 350,025,728
20,256 0.304 3.29 0.1185 540 452,578,816
40,256 0.455 2.20 0.1580 405 529,187,072

Efficient

l1 0.065 15.27 0.0958 668 1,101,474,048
l3 0.074 13.52 0.1106 579 1,148,030,976
l7 0.092 10.90 0.1307 490 1,159,418,368
l9 0.159 6.30 0.1700 376 1,179,129,088

Table 6: Evolution of the A6000 GPU latency with the size of the batch. The
latency and the peak memory are the median values of 7 runs. Each run is the
average over 100 forwards after a warmup of 100 forwards.

Network Size Batch GPU Latency Evals/s on GPU Peak Memory

Residual

20,256 32 0.111 288 253,801,472
20,256 64 0.126 508 548,938,240
20,256 128 0.159 805 800,936,192
20,256 256 0.227 1,128 1,566,134,528
20,256 512 0.368 1,391 2,954,716,416
20,256 1,024 0.667 1,535 4,793,448,960

Efficient

l9 32 0.128 250 589,454,592
l9 64 0.168 381 1,141,404,672
l9 128 0.224 571 2,297,159,168
l9 256 0.346 740 4,359,236,608
l9 512 0.583 878 8,672,660,992
l9 1,024 1.062 964 17,121,701,376
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across diverse domains, our investigation seeks to explore its potential in the
context of Go. Our analysis traverses a multitude of critical dimensions, ranging
from prediction accuracy and win rates to memory utilization, processing speed,
and learning rates. Through this examination, we underscore the significant role
that Transformers can play in enhancing performance in the game of Go.

Significantly, our findings highlight the benefits of the EfficientFormer archi-
tecture, showcasing remarkable performance enhancements on both CPU and
GPU platforms. Notably surpassing the benchmarks set by the previous state-
of-the-art algorithms, this superiority becomes particularly pronounced in the
context of larger networks, underscoring the scalability and efficiency of the Ef-
ficientFormer.

In addition, it is essential to emphasise that the impact and adaptability
of the EfficientFormer architecture goes beyond the boundaries of the game of
Go, extending its applicability to a wide range of games and domains. This
versatility positions the EfficientFormer as a promising candidate for pushing
the boundaries of artificial intelligence not only in strategic board games but
also in various other complex decision-making scenarios.
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