Improved Diversity in Nested Rollout Policy
Adaptation

Stefan Edelkamp? and Tristan Cazenave!
! Fakultiat Mathematik und Informatik, Universitit Bremen
Am Fallturm 1, 28359 Bremen, Germany
2 LAMSADE - Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

Abstract. For combinatorial search in single-player games nested Monte-
Carlo search is an apparent alternative to algorithms like UCT that are
applied in two-player and general games. To trade exploration with ex-
ploitation the randomized search procedure intensifies the search with
increasing recursion depth. If a concise mapping from states to actions
is available, the integration of policy learning yields nested rollout with
policy adaptation (NRPA), while Beam-NRPA keeps a bounded number
of solutions in each recursion level. In this paper we propose refinements
for Beam-NRPA that improve the runtime and the solution diversity.

Introduction

Cazenave [4] has invented nested Monte-Carlo search (NMCS), a randomized
search algorithm inspired by UCT [12] but specifically designed to solve single-
player games. Instead of relying on a playout at each search tree leaf, the decision-
making in level [of the algorithm relies on a level (I —1) search for its successors.

With nested rollout policy adaptation (NRPA), Rosin [14] came up with the
idea to learn a policy within the recursive procedure. NRPA has been very
successful in solving a variety of optimiztation problems, including puzzles like
morpion solitaire, but also hard optimization tasks in logistics like constraint
traveling salesman problems [9] combined pickup-and-delivery tasks [8], vehicle
routing [10], and container packing [7] problems.

Monte-Carlo tree search algorithms balance entering unseen areas of the
search space (exploration) with working on already establisehd good solutions
(exploitation). Many Monte-Carlo search algorithms including NRPA, however,
suffer from a solution process that has many inferior solutions in the beginning
of the search. If policies are learnt too quickly, the number of different solutions
reduces, and if not strong enough they will not help sufficiently well to enter
parts of the search space with good solutions.

In other words, the diversity of the search remains limited. Beam-NMCS [5]
is a combination of memorizing a set of best playouts instead of only one best
playout at each level. This set is called a beam and all the positions in the set are
developed. Beam search carries over to improve NRPA, enforcing an increased

diversity in a set of solutions. In Beam-NRPA [6], for each level of the search, the
algorithm keeps a bounded number of solutions together with their policies in
the recursion tree. In selected applications, Beam-NRPA improves over NRPA.

In this paper, we reengineer the implementation of Beam-NRPA. We show
that the solution quality can be improved by applying a selection of refinements.
In particular, we study more closely how to increase the diversity.

NRPA and Beam-NRPA

NRPA is a randomized optimization scheme that belongs to the wider class of
Monte-Carlo tree search (MCTS) algorithms [3]. The main concept of MCTS is
the random playout (or rollout) of a position, whose outcome, in turn, changes
the likelihood of generating successors in subsequent trials. Prominent members
in this class of reinforcement learning algorithms are upper confidence bounds
applied to trees (UCT) [12], and nested monte-carlo search (NMCS) [4]. MCTS
is state-of-the-art in playing many two-player games [11] or puzzles [2], and has
been applied also to other problems than games like mixed-integer programming,
contraint problems, mathematical expression, function approximation, physics
simulation, cooperative pathfinding, as well as planning and scheduling.

What makes NRPA [14] different to UCT and NMCS is the concept of learn-
ing a policy through an explicit mapping of moves to selection probabilities. The
pseudo-code of the recursive search procedure is shown in Fig. 1 (left). NRPA
has two main parameters that trade exploitation with exploration: the number
of levels [and the branching factor N of successors in the recursion tree. If r
is not better than best, on the first glance it looks like the same call to NRPA
is performed within the loop on i. However, rollouts change due to randomness,
and policy adaptation in other level of the recursion.

Beam-NRPA is an extension of NRPA that maintains B instead of one best
solution in each level of the recursion. The motivation behind Beam-NRPA is to
warrant search progress by an increased diversity of existing solutions to prevent
the algorithm from getting stuck in local optima. The basic implementation of
Beam-NRPA algorithm [5] is shown in Fig. 1 (right). Each solution is stored to-
gether with its score and the policy that was used to generate it. Better solutions
are inserted into a list that is sorted wrt. the objective to be optimized.

As the NRPA recursion otherwise remains the same, the number of playouts
to a search with level L and (iteration) width N rises from N to (N - B)L. To
control the size of the beam, we allow different beam widths B; in each level [
of the tree. At the end of the procedure, B; best solutions together with their
scores and policies are returned to the next higher recursion level. For each level
[of the search, one may also allow the user to specify a varying iteration width
Nj. This yields the algorithm Beam-NRPA to perform H1L=1 N B; rollouts.

Refinements

We propose several refinements to Beam-NRPA.

procedure NRPA(level [, policy p) procedure Beam-NRPA (level I, policy p)

ifl=0 if I=0
Best + Playout(p) (score, rollout) <+ Playout(p)
else return (score,rollout,p)
P p Beam; + (Init,(),p)
Best < (Init,()) fori=1,...,N
fori=1,...,N SL <+ 0
r < NRPA(l —1,p)) for t < (score,rollout,p) € Beam
if r better than Best SL + SLU{t}
Best «r T < Beam-NRPA(l — 1,p)
Adapt(best, p, p;) for t' + (score’,rollout’,p') € T
return Best Adapt(rollout’, p’, p)

SL«+ SLU{t'}
Beam; + B best in Beam; U SL
return Beam;

Fig.1. NRPA and Beam NRPA. To cover both minimization and maximization prob-
lems, score ordering is imposed by means of implementing Init, better, and best. SL is
implemented as a sorted list.

Dropping Policy Information First, we have observed that copying the policy in
each rollout of Beam-NRPA is a rather expensive operation that can dominate
the runtime of the entire algorithm.

In fact, further code analysis showed that the policy update is always per-
formed wrt. the currently best solution found in a level and the policy one level
up, so that it is not required to store the policy attached each solution, as long
as we keep B; best policies alive for each level [of the recursive search procedure.

Employing Faster Adaptation For a faster processing of policy adaptation, we
avoid the regeneration of successors by providing all the information that is
needed at the time we construct the solution in the rollout. Hence, we store the
sequence of codes C'ode; and successor node codes Suce; for each best solution
(relative to a level 1) produced, where the code is a user-specified domain-specific
address into the policy table calculated based on the current state and the current
move executed in this state [14].

The implementation in Fig. 2 shows that this strategy is already applicable to
the original NRPA algorithm. It leads to minor extensions to the implementation
of the generic playout function: each time a successor is checked for availability
the corresponding code is stored. We see that the update in Adapt affects only
the codes of the good solution to be adapted and its successor codes, to balance
the postive effect put on choosing it as negative effect to all of its successors.

Avoiding Memory Defragmentation To avoid fragmented access to the memory
and operating system calls to provide memory, high-speed algorithm implemen-
tations often avoid dynamic memory allocation or have their own memory main-
tenance and allocators. Beam-NRPA pre-allocates the information in the beam
in static arrays and operates on the stored information directly. Besides faster

procedure NRPA-Adapt (rollout best, procedure NRPA-Adapt-Improved(level

level , policy p, policy p') 1, policy p, policy p’)
p—p for ¢; € Code;
for i € best; plei] + p'la] + «
¢; < code of move best; ; 2+ 0
Swucey,; < successors codes of best; ; for ¢’ € Succy;
p'led] < p'lei] +a z 4 2z + exp(p[c'])
2+ 0 for ¢’ € Sucer;
for ¢’ € Sucer,; p'lc] < p'[¢] — a-exp(plc])/z

z + z + exp(p[c’])
for ¢ € Sucey;

Ple] < p'[c] — a-exp(plc])/2

Fig. 2. Old and new policy adaptation procedure for NRPA reproducing rollout data
and its successors (left) and recorded solution information (right); z is used for nor-
malization, « is the learning rate, usually o = 1.

insertion and deletion this allows to follow the progress of the search by showing
the top k < B; elements.

Improving the Diversity

Beam-NRPA itself is inspired by the objective of higher diversity in the solution
space of NRPA. In larger search spaces NRPA often got stuck with inferior
solutions. It simply takes too long to backtrack to less determined policies in
order to visit other parts in the search space. The beam is stored in a bounded
number of buckets. The information contained in the buckets is visualized in
Fig. 6. Instead of the moves executed in a rollout we store the Code of the
chosen move and the code of its successors Succ. Additionally, the length of the
rollout and its score is stored for each bucket in the beam.

Improving Diversity in the NRPA Driver When looking at a beam, a natual aim
is to keep solutions in the beam substantially different. This can be imposed by a
matching the best obtained rollout with of the ones stored in the beam. Duplicate
solutions wrt. this criterion are excluded from the beam. Fig. 3 provides a pseudo-
code implementation.

The application of a filter to improve diversity is implemented in method
Similar. We expect that s; = s; implies Similar(s;, s;) and Similar(s;,s;) =
Similar(s;, s;). The output is a truth value (interpreted as a number in {0, 1}).
The beam is scanned for similar states, and if present, the new insertion request
is rejected. Such similarity can be implemented on top of the score of the solution,
the solution length, or other features of the rollout. The example implementation
in Fig. 4 looks at the score and the length of the rollout.

The concept of similarity implies a formal characterization of solution di-
versity. Let S be a set of solutions of an optimization problem with and let
Similar be a pairwise similarity score (being large for high similarity and small

procedure Diversity-NRPA (level [, policy p)
forb=1,...,B;
scoreyp < Init
if =0
Scorep,1 + Playout(p)
return Scoreo1
fori=1,..., N
score < Diversity-NRPA(l — 1, p)
if score better than Score;,p,
for v/ = 1,...,Bl_1
if — Similar(Score; pr, Length i, 1)
and Score;_1 » better than Score; p,
insert (Score;_1 ., Length;_1 pr, Code;_1 1, Succ;_1 p) into Beamy
if (1 > 6))
Diversity-Adapt (I, p;)
return Score; 1

Fig. 3. Beam-NRPA with high diversity; B; is the size of the beam Beam; maintained
in level I, Score; is the score of the rollout in bucket b; in level I, Length; is the
length of the rollout in b;, Code;, is an array with codes for the rollout in bucket by,
Swuccyp is a matrix for the successor codes for the rollout in bucket b;.

for low similarity) between every two solution s; and s; in S, then the di-
versity is defined as the sum of the pairwise similarities, i.e., Diversity(S) =
quz,s,'GS Similar(s;, s;). This means that if the solutions are pairwise similar
the diversity is low. A similar concept is that of pre-sortedness in an input array
by adding the pairwise number of inversions.

One important aspect is that adaptation is now applied in every iteration,
while before it was applied only for improved solutions. This increases the num-
ber of calls significantly, but allows more information exchange between the
members in the beam. If the parameters are chosen carefully, the efforts for the
playouts and for executing policy adaption are roughly the same.

We also skip some O, iterations before we start learning. The motivating
objective is the secretary problem, in which the best secretary out of n rankable
applicants should be hired for a position. Applicants are interviewed one after
the other and the final decision has to be made immediately after the interview.
The stopping rule rejects the first applicants after the interview and then stops
at the first applicant, who is better than every applicant interviewed so far.

Diversity is an objective that has to be dealt with care. In some domains
the solution length (like the snake-in-the-boz) already is the score, so that only
solutions of different lengths are kept in the beam. This may limit the number of
good solutions in the beam (too) drastically. As a solution to this problem, we
propose to include other state features into the fractional part of the solution.

A good compromise has to be found. Using the entire state vector for sim-
ilarity detection requires comparing regenerated solutions, which can be slow,

procedure Similar(score s, length r, level)
forb=1,...,B;
if Score;, =s A Lengthip, =r
return true
return false

Fig. 4. Example of applied similarity measure, returning true iff both the score and
the length of a solution matches one in the beam Beam; of size B;.

or storing the full state in the rollout to be retrieved in later calls of the policy
adaptation, which would results in a significant overhead in space and time.

Improving Diversity in the Policy Adaptation We refine beam NRPA by a
reduction of elements eligible to be included in the beam. Therefore, we use
(¢j,¢;) € Beamy 1. p—1 to denote that the best rollout code (defined by (¢j,¢;))
in a given level is already present in the prefix of the beam to bucket b in level
[. This avoids overly stressing good solutions that have already influenced the
policy to be learnt. We also do not want to update elements twice. The according
code is shown in Fig. 5. The main function Diversity-Adapt calls the function
Other which works as a filter, and collects the codes of moves that should be
used to change the policy.

We used simple arrays for the data structure to check that a code and set
of successor codes is contained in the beam and thus learnt already. Profiling
revealed that a significant part of the running time is spent here. Surely, a hash
map would be more efficient for checking (c;, ¢;) € Beamy1.p—1 . However, the
algorithm has to be modified as the hash map then has to support deletion,
given that elements in the buckets being dominated by incoming solutions are
removed from the beam, and, thus, do no longer serve for duplicate detection in
form of membership queries.

Given that the selection strategy of the successors does not prune away moves
that are required to generate an optimal rollout sequence, NRPA and Beam-
NRPA are probabilistically complete in the sense that an optimal solution can
eventually be found. This, however, does not imply any performance quality like
the e-optimality of the resulting search algorithms.

Experiments

Same Game The same game (Fig. 7) is an interactive game frequently played on
hand-held devices. The input is an n x m board with tiles each of which having
one (usually, n = m = 15 and k = 5). Tiles can be removed, if they form a
connected group of [> 1 elements. The reward of the move is (I —2)? points. If
a group of tiles is removed, others fall down. If a column becomes empty, others
move to the left, so that all non-empty columns are aligned. The objective is to
maximize the total reward until no more move is possible. Total clearance yields
an additional bonus of 1,000 points.

procedure Other(level I, index b, i, j)
LC + 0
for c; € Succip,i
if (cj,ci) ¢ Beamy 1 b1
LC + LCU {Cj}
for ¥ =b+1,...,Bi, ¢y € Codey
if C; = Cyr
for c;; € Succypr i
if ¢y ¢ LC A (cjr,ci) ¢ Beamy1..p—1
LC «+ LCU{j'}
return LC

procedure Diversity-Adapt(level I, policy p, policy p')
p e
forbel,...,B
for ¢; € Codey
if ¢; ¢ Beam1..p-1
p'lei] < plei] +
CL « Other(l,b,1,)
z+0
for ce CL
z < z + exp(p[d])
for ce CL
plel < p'ld — a - eap(plc))/=

Fig. 5. Policy adaptation within Diversity-NRPA, with function Other checking for
fork duplicates; CL and LC are list of codes, (cj,¢;) € Beamy,1..p—1 is shorthand for
checking that the code ¢; and successor codes c¢; match the one stored in any bucket
smaller than b of Beam,;.

The problem is known to be hard [1]. It is solvable in polynomial time for
one column of tiles but NP-complete for two or more columns and five or more
colors of tiles, or five or more columns and three or more colors of tiles.

Table 1 shows the scores in a level 4 (iteration 100) Diversity-NRPA and 30 x
level 3 (iteration 100) Diversity-NRPA searches both obtained with beam width
10 and initial offset for learning 10. This is compared to NRPA and NMCS.
An entire level 4 search takes about half a day of computation, while 30 level 3
searches finish in about two hours on our computer3. The sum of the high scores
of Diversity-NRPA is 81706 (+144 if the 30 level 3 searches are included). While
this is best wrt. all published results on the game, it is still inferior to the results

3 We used one core of an Intel® Core™ i5-2520M CPU @ 2.50GHz x 4. The
computer has 8 GB of RAM but all invocations of the algorithm to any prob-
lem instance used less than 10 MB of main memory. Moreover, we had the fol-
lowing software infrastructure. Operating system: Ubuntu 14.04 LTS, Linux kernel:
3.13.0-74-generic, the compiler: g++ version 4.8.4, and the compiler options: -03
-march=native -funroll-loops -std=c++11 -Wall

NN
R

s |
s |
s » |

< N
R
\

N ’y ye

Fig. 6. Sketch of information that is stored in a beam of Diversity-NRPA; the buckets
on top stand for the beam, thin arrows indicate successors (codes, stored in Succ), the
thick arrow the best solution (codes, stored in Code). A duplicate are checked wrt.
forks of state and set of successor states.

[N RN R VI I U VNS
PR DO PSR, O00Ws 0N
NS R BNDEE DN WN
HWWNWOOWOOS PO o
NN B R P WP, WL NDWD N
NO WD DD D WD R O R
WOINRARBPNONOOR RN
WA ONCTENWNWNWR DR
N D WAWRNNWWO RN O
PR NORNER WM WO
H OB NOOIWOOO R OO0 N
NWRBPNBENNDNDWD S O-N
NN WD OB EREDOEN O
BB NP PR, RO RONR W
WO NUTNBRNNRNDBNGD
WO NS NN O

AN wWwN
NWNFP, W

12 5 3
2515352

Fig. 7. Initial and terminal position in the same game.

published in the Internet®. Little is known about the holders of these records.
However, we could exchange emails with a record holder who told us he is using
beam search with a complex domain specific evaluation function.

We can see that improving the diversity generally gives better results than
NMCS and NRPA, even though, through randomization, there are problem in-
stances where the opposite is true.

Snake-in-the-Box The snake-in-the-box problem is a longest path problem in a
d-dimensional hypercube. The design of a long snake has impact for the genera-
tion of improved error-correcting codes. During the game the snake increases in
length, but must not approach any of its previous visited vertices with Hamming
distance 1 or less. The formal definition of the problem and its variants as well

4 http://www.js-games.de/eng/games/samegame

ID|NMCS(4) NRPA(4) Diversity-NRPA(4) Diversity-NRPA(3)
1 3121 3179 3145 3133
2 3813 3985 3985 3969
3 3085 3635 3937 3663
4 3697 3913 3879 3887
5 4055 4309 4319 4287
6 4459 4809 4697 4663
7 2949 2651 2795 2819
8 3999 3879 3967 3921
9 4695 4807 4813 4811

10 3223 2831 3219 2959

11 3147 3317 3395 3211

12 3201 3315 3559 3461

13 3197 3399 3159 3115

14 2799 3097 3107 3091

15 3677 3559 3761 3423

16 4979 5025 5307 5005

17 4919 5043 4983 4881

18 5201 5407 5429 5353

19 4883 5065 5163 5101

20 4835 4805 5087 5199

Sum 77934 80030 81706 74753

Table 1. Results in the same game.

[2 3 4 5 6 7 [2 3 4 5 6 7
3 4*v 3*v 3*v 3*v 3*v 3*v 3 6*v 6*v 6*v 6*v 6*v 6*v
4 T*v 5%v 4*v 4*v 4*v 4%y 4 8*v 8*v 8*v 8*v 8*v 8*v
5 13*v T*v 6*v 5%v 5%v 5*v 5 14*v 10*v 10*v 10*v 10*v 10*v
6 26*v 13*v 8*v T*v 6*v 6*v 6 26%v 16*%v 12%v 12%v 12% 12%y
7 50%v 21%v 11%v 9*v 8*v THv 7 48%v 24%v 14%v 14%v 14F 14%v
8[98%(95) 35*v 19%v 11%v 10%v 9%v 8[96%(92) 36*v 22%¥v 16%v 16* 16%v
9 190 63(55) 28%v 19*v 12%v 11*v 9 188 64(55) 30*v 24v* 18%v 18*v
10 370 103 47%(46) 25%v 15%v 13*v 10 358 102 46%v 28v* 20%v 20*v
11 707 157 68 39%v 25%v 15%v 11 668 160 70(64) 40v* 30*v 22*v
12 1302 286 104 56(54) 33*v 25%v 12 1276 288 102 60(56) 36*v 32*v
13 2520 493 181 79 47(46) 3lv 13 2468 494 182 80 50*v 36*v

Table 2. Best known results in snakes-in-the-box and coil-in-the-box problems vali-
dated with Diversity-NRPA (approximate solutions are shown in brackets).

as heursitic search techniques for solving it are studied by [13]. Information on
snake visits are kept in a perfect hash table of size 2¢.

Instead of having a Hamming distance of at least k = 2 for the incrementally
growing head to all previous nodes of the snake (except the ones preceding the
head), one may impose a minimal Hamming distance k£ > 2 to all previous nodes
(inducing a Hamming sphere that must not be revisited). In Table 2 (left) we
show the best-known solutions lengths for the (k,n) snake problem, where an
asterisk (*) denotes that the optimal solution is known. The validation of the
results in generating a solution with Diversity-NRPA is indicated with suffix v.
For the first problem not solved, the best solutions are shown in brackets (all
within one hour, (11,5) = 39 within two days of computation in about 3.3 billion
rollouts).

Another variant asks for a closed cycle, by means that the snake additionally
has to bite its own tail at the end of its journey. The algorithm’s implementation
has to take care that this is in fact possible. In Table 2 (right) the best-known
solutions lengths and our validation results are given.

VRP In the vehicle routing problem (VRP) we are given a fleet of vehicles, a
depot, and a time delay matrix for the pairwise travel between the customers’
locations, service times, time windows and capacity constraints, the task is to
find a minimized number of vehicles with a minimized total distances that sat-
isfies all the constraints. Clearly, by choosing only one vehicle, VRP extends the
capacitated traveling salesman with time windows. We chose instances to the
Solomon VRPTW benchmark for our experiments®. It containts a well-studied
selection of (N=)100-city problem instances. Different solvers have contributed
to the state-of-the-art.

Our implementation of the problem is based on the simple observation that
a tour with V' vehicles can be generated by a single vehicle, where the time
(makespan) and the capacity of the vehicle are reset at each visit of the depot.
Of course, in difference to all other cities the depot is allowed to be visited more
times. In the implementation the i-th visit to the depot gets the ID ¢ and has to
be revisited. The tour again has size N + V but the range of stored index of a
city has increased from This imposes an order to set of depot IDs in every tour
to 0,1,...,V —1,0. This form of symmetry reduction saves about factor V! for
the permutations of the depot visits. The solver has the selective strategy that
whenever a candidate city invalidates reaching another city it is discarded from
the successor set. We selected a (5,50) Diversity-NRPA search with threshold 0
to start learning.

We could repeat the experiment of solving r101 in our implementation and
found the optimal solution of cost 1650.79 in about 20 minutes after 625 thousand
playouts. With 20 vehicles we a found slightly better solutions than this one, but
the published results often assume a hierarchical objective of first reducing the
number of vehicles, and only after that, reducing the score.

With about 2.5 days of computation we could solve the r102 problem. After
215.125 million rollouts in total, we found a new high score 1486.664889, slightly
improving the reported best solution®.

In about a week of computation and more than 550 million rollouts we could
not finish solving the r103 problem. Our best solution 1332.77670, while the
best has value 1292.68. The learning process of the cost function is visualized
in Fig. 8. We see that even after considerable time of no visible progress, there

® https://www.sintef .no/projectweb/top/vrptw/solomon-benchmark
http://web.cba.neu.edu/~msolomon/problems.htm

5 The sequence of cities we found was 73, 22, 72, 54, 24, 80, 12, 0, 65, 71, 71, 20, 32,
70, 0, 92, 37, 98, 91, 16, 86, 85, 97, 13, 0, 83, 45, 61, 84, 5, 60, 89, 0, 94, 96, 99, 6, 0,
50, 33, 30, 51, 9, 67, 1, 0, 14, 44, 38, 43, 100, 95, 0, 27, 69, 76, 79, 68, 0, 52, 7, 11,
19, 49, 48, 82, 0, 28, 29, 78, 34, 35, 3, 77, 0, 62, 88, 8, 46, 17, 93, 59, 0, 36, 47, 18,
0, 39, 23, 67, 55, 4, 25, 26, 0, 63, 64, 90, 10, 31, 0, 87, 57, 2, 58, 0, 40, 53, 0, 42, 15,
41, 75, 56, 74, 21, 0.

10000000
1000000

100000 |

10000 |

1000 |

100 |

10

1

R B R

Fig. 8. Learning curve solving a VRP with Diversity-NRPA (y-axis shows the change
in the score, x-axis denotes the number of completed level 4 search).

is continuation in the solving process. Fig. 9 compares the different single-agent
Monte Carlo search processes for the first 100 thousand playouts of the r101
problem. We see that Diversity-NRPA shows the fastest learning progress.

Conclusion

Nested Monte-Carlo tree search is a class of random search algorithms that has
lead to a paradigm shift in AT game playing from enumeration to randomization,
and NRPA has proven to be a viable option to solve hard combinatorial prob-
lems, combining random exploration with learning. In this paper we proposed
to add more diversity to Beam-NRPA search. Together with a number of imple-
mentation refinements the algorithm performed convincingly in our benchmark
domains.

References

1. T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen, and J. I.
Munro. The complexity of clickomania. CoRR, ¢s.CC/0107031, 2001.

2. B. Bouzy. An experimental investigation on the pancake problem. In IJCAI-
Workshop on Computer Games, 2015.

3. C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree
search methods. In IEEFE Transactions on Computational Intelligence and Al in
Games, volume 4, pages 1-43, 2004.

4. T. Cazenave. Nested monte—carlo search. In IJCAI, pages 456-461, 2009.

Solution Quality

1.8e+06

SimpleNessted —+—
HD-BEAM
NRPA -« %+

1.6e+06 %
1.4e+06 \
1.2e+06

le+06 \

800000
600000 -
o
400000 L.
200000 e
...... e ORRILTTITTTLTIVLPES e ssuupes - -
0 1 i
1 10 100 1000 10000 100000

Number of Rollouts [N]

Fig. 9. Comparing the learning in VRP of Nested MCS, NRPA, and Diversity-NRPA.

5.

6.

7.

10.

11.

12.

13.

14.

T. Cazenave. Monte-Carlo beam search. IEEE Transactions on Computational
Intelligence and Al in Games, 4(1):68-72, 2012.

T. Cazenave and F. Teytaud. Beam nested rollout policy adaptation. In FCAI-
Workshop on Computer Games, pages 1-12, 2012.

S. Edelkamp and M. Gath. Monte-Carlo tree search for 3d packing with object
orientation. In KI, 2014.

S. Edelkamp and M. Gath. Pickup-and-delivery problems with time windows and
capacity constraints using nested Monte-Carlo search. In ICAART, 2014.

S. Edelkamp, M. Gath, T. Cazenave, and F. Teytaud. Algorithm and knowledge
engineering for the TSPTW problem. In IEEE SSCI, 2013.

M. Gath, O. Herzog, and S. Edelkamp. Agent-based planning and control for
groupage traffic. In IEEE-CEWIT, 2013.

S.-C. Huang, B. Arneson, R. B. Hayward, M. Mueller, and J. Pawlewicz. Mohex
2.0: A pattern-based MCTS Hex player. In Computers and Games, pages 60-71,
2013.

L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In ECML, pages
282-293, 2006.

A. Palombo, R. Stern, R. Puzis, A. Felner, S. Kiesel, and W. Ruml. Solving the
snake in the box problem with heuristic search: First results. In Proceedings of
the Eighth Annual Symposium on Combinatorial Search, SOCS 2015, 11-13 June
2015, Ein Gedi, the Dead Sea, Israel., pages 96-104, 2015.

C. D. Rosin. Nested rollout policy adaptation for Monte-Carlo tree search. In
IJCAI pages 649-654, 2011.

