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ABSTRACT: A growing number of deep learning (DL) methodologies have recently been developed to design novel compounds
and expand the chemical space within virtual libraries. Most of these neural network approaches design molecules to specifically bind
a target based on its structural information and/or knowledge of previously identified binders. Fewer attempts have been made to
develop approaches for de novo design of virtual libraries, as synthesizability of generated molecules remains a challenge. In this work,
we developed a new Monte Carlo Search (MCS) algorithm, DrugSynthMC (Drug Synthesis using Monte Carlo), in conjunction
with DL and statistical-based priors to generate thousands of interpretable chemical structures and novel drug-like molecules per
second. DrugSynthMC produces drug-like compounds using an atom-based search model that builds molecules as SMILES,
character by character. Designed molecules follow Lipinski’s “rule of 5″, show a high proportion of highly water-soluble nontoxic
predicted-to-be synthesizable compounds, and efficiently expand the chemical space within the libraries, without reliance on training
data sets, synthesizability metrics, or enforcing during SMILES generation. Our approach can function with or without an underlying
neural network and is thus easily explainable and versatile. This ease in drug-like molecule generation allows for future integration of
score functions aimed at different target- or job-oriented goals. Thus, DrugSynthMC is expected to enable the functional assessment
of large compound libraries covering an extensive novel chemical space, overcoming the limitations of existing drug collections. The
software is available at https://github.com/RoucairolMilo/DrugSynthMC.

■ INTRODUCTION
Since the 1980s, in silico approaches have been extensively and
routinely used in drug discovery and have transformed the
medicinal chemistry field,1 with expectation to do so even
more in the future. The need for rapid response, highlighted by
the emergence of resistant bacteria and, among others, the
COVID-19 pandemic, has fueled the development of novel
computational tools for drug design and screening.2In silico
virtual-library screening (VS) is usually the first critical step in
structure-based drug discovery, where the algorithm aims to
predict the best matching binding mode of a ligand to a
receptor.3 Despite the many attempts to improve accuracy of
VS methods,4,5 the relatively limited chemical diversity of
compounds in libraries reduces the ability of structure-based
VS to identify hits and leads.6,7 Indeed, it has been estimated
that only a small portion (106−107) of the 1063 drug-like

molecules predicted to be synthetically accessible has been
explored.8

Several studies have shown that screening larger libraries
that expand the accessible molecules by several order of
magnitude (∼1011) improves the rate of true high affinity (nM-
pM) binders.9−12 To further expand the chemical space within
virtual libraries, generative models based on deep learning
(DL) methodologies have been used to produce molecules

Received: August 12, 2024
Revised: August 16, 2024
Accepted: August 16, 2024

Articlepubs.acs.org/jcim

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jcim.4c01451

J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

90
.9

0.
90

.1
03

 o
n 

Se
pt

em
be

r 
9,

 2
02

4 
at

 2
2:

03
:1

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Milo+Roucairol"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexios+Georgiou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tristan+Cazenave"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filippo+Prischi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olivier+E.+Pardo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.4c01451&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?fig=agr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?fig=agr1&ref=pdf
https://github.com/RoucairolMilo/DrugSynthMC
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01451?fig=agr1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01451?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


with desired chemical features able to bind specifically
macromolecules of interest extensively reviewed in refs13−16.
Recurrent neural networks (RNNs) were among the first DL

methods to be developed to generate SMILES, a line notation
that describes the structure of a molecule.17 However, RNNs
tend to suffer from exposure bias, and a diverse range of
alternative approaches that differ in the training procedure and
model architecture has been proposed. These include varia-
tional autoencoders (VAEs),18 generative adversarial networks
(GANs),19 and graph-based generators.20 Nevertheless, even
these alternative approaches have limitations and, for example,
it has been reported that VAE-generated SMILES often fail to
be translated into interpretable chemical structures.21

Furthermore, a key requirement of generative models is that
designed molecules must be synthesizable. A wide range of
different approaches have been used to predict synthetic
feasibility of molecules, including scores based on structure
complexity and similarity to evaluate synthesizability,22 or
integrating computer-aided synthesis planning (CASP) tools as
part of the design process.23,24 However, as recently high-
lighted,25 approaches that embed CASP tools automatically
inherit CASP limitations, thus reducing chemical diversity of
compounds in de novo-generated libraries.
In this paper, we use Monte Carlo search (MCS) algorithms

in conjunction with DL and statistical-based priors to generate
thousands of interpretable chemical structures and novel drug-
like molecules per second. DrugSynthMC (Drug Synthesis
using Monte Carlo) relies on an algorithm never previously
used in chemistry/medicinal chemistry, differing from prior
efforts in that it rapidly produces valid molecules, while being
explainable and, importantly, requiring no training. The
algorithm does not enforce or reward synthesizability (like
DrugEx and SPOTLIGHT)26,27 or rely on synthesizability
metrics during SMILES generation or selection (like
SBMolGen and MolAICal),28,29 which has been shown to
reduce diversity and novelty of generated compounds.30

However, the synthesizability of generated compounds was
analyzed using an open-source retrosynthesis analysis tool,
AiZynthFinder,31 and the synthetic accessibility score (SA-
score) method.32 We show that our method generates drug-
like libraries with a high proportion of predicted-to-be
synthesizable compounds and efficiently expands the chemical
space within the libraries. Finally, DrugSynthMC is highly
flexible and could be easily tuned in the future using multiple
parameters to tailor for a wide range of different chemical goals
and/or create customized libraries of compounds for specific
targets.

■ METHODS
Search Model. The search model consists of a set of

instructions defining what available moves (character addition)
can be applied to unfinished SMILES. All SMILES operations
start empty, and only one atom can be added at that stage.
Once atoms are added, cycles and subtrees can be initiated.
This search model ensures that initiated SMILES can be
completed from any point of the search into a valid final
SMILES, with generation being heavily restricted by the below
rules. The central rule is to respect the total number of bonds
that each atom can form. To do so, the number of available
bonds of the last added atom in the current subtree is stored.
This number is checked to compute possible legal moves and
decreased when adding a character corresponding to a new
atom in a different subtree level, according to the number of

bonds used to connect the new atom to the previous one. To
maximize the chance of generating valid molecules with drug-
like properties, we scanned the FDA subset of the ZINC20
database33 to obtain frequency information on types of atoms
and bonds involved. This information was stored in frequency
matrices, allowing the search model to label as illegal moves’
bonds that were never or very rarely encountered (less than 1/
10 000 of the bonds for each atom involved). It also enabled us
to focus the generator on using the most commonly
encountered atoms only, which are carbon (C), oxygen (O),
nitrogen (N), fluorine (F), sulfur (S), and chlorine (Cl), while
bromine (Br) and phosphate (P) atoms were excluded due to
their relative rarity. These could, however, be easily
reintroduced in the search model, along with inorganic
atoms. Finally, we added shortcuts for the different bonding
modes of S: bond to 2 atoms, or 4 atoms in sulfinyl, or 6 atoms
in sulfonyl. Rather than learning the entire functional groups
and edge possibilities through the prior, we decided to
preprocess the SMILES prior to training, allocating the
trifluoromethyl (W), sulfinyl (M), and sulfonyl (U) their
own symbols used in building SMILES.

Operating Principle. To give an accurate list of possible
characters to append to an incomplete SMILES, the search
model keeps track of several parameters concerning SMILES at
any step:
(1) The depths of the nested subtrees: The subtrees are

expressed in SMILES language using the ″(“symbol for
opening and the ″)” symbol for closure. Termination of
SMILES is not allowed unless they are back to the root tree,
meaning that all open parentheses must be closed. Closing a
subtree when no parentheses are open is also forbidden.
(2) Covalence bounds counts: Each subtree contains an

active atom, which is the last one added at that level. It is the
atom to which other atoms, cycles, and subtrees are then
added. The search model keeps track of the number of
available covalent bounds on the last atom of each subtree until
the latter is closed by a “)”. Moves that exceed the number of
covalent bonds available are not allowed.
(3) Cycle nesting: Nested cycles that share more than one

bond are uncommon in drug-like molecules. Thus, only the
most recent cycle is allowed to be terminated.
(4) Cycle length: More rules, not inherent to the SMILES

grammar, were added to improve the drug-likeness and
stability of the molecules. These included not allowing cycles
smaller than 5 and larger than 7 atoms to be generated. Indeed,
while these cycle sizes exist in drug-like molecules, size 4 cycles
are usually hard to synthesize and unstable, while cycles longer
than 7 atoms are rare.
Additionally, to avoid unnecessarily long playouts and

molecules, a Boolean flag called “finish ASAP” is added. It is
set to true once a certain number of characters is met and
disallows certain moves, such as opening a new subtree or
cycle, with some exceptions (i.e., finishing an already open
subtree). This complicated set of rules is necessary to prevent
the search from cornering itself due to cycles or using all of the
covalent bounds available on a particular level. However, this
results in a rather lengthy function enumerating the legal
moves from an incomplete SMILES (about 100 lines long).

Playouts. In Monte Carlo Search, a playout is a
computationally cheap unfolding of actions from a starting
search space state. Moves are selected and played until the
resulting new search is terminal or no move is available. The
terminal state is then evaluated and returned to be used by the
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algorithm, calling the playout. Playouts are a core element of
most Monte Carlo Search algorithms, and the move selection
process differentiates algorithms. Many algorithms use random
playouts, usually when tackling NP-hard problems where
expert knowledge cannot help. The prior upper confidence
bounds applied to trees (PUCT)34 used in DeepMind’s
AlphaGo35 employs a neural network to recommend moves to
play in a game of Go. The nested rollout policy adaptation
(NRPA)34 learns a reinforcement learning policy on the fly to
select the moves. Some other applications can evaluate
nonterminal states and use greedy playouts (our unpublished
results). In fact, preliminary data suggest that the choice of
playout mode can be more important to the success of an MCS
than the algorithm used. In this study, we used the sampling
method to act as a baseline to compare our algorithms. This
method consists of independent playouts from the start state
and ends once a molecule reaches the best possible score.

Guided Playouts: Ngrams. Ngrams are short subsequen-
ces derived from larger sequences of characters. They were one
of the first machine learning approaches, mostly used in natural
language processing (NLP). Through the use of grams, it is
possible to compute the statistics of every sequence of
characters in a learning corpus to predict the next character
in a Markovian process. Here, ngrams were generated through
extracting every sequence of characters from the FDA subset of
the ZINC20 database and were associated conditional
probabilities used to guide the playout of an incomplete
SMILES given its last characters at any step. For instance, if the
learning corpus only contained “COCC” and “COCO”, the
entry for “COC” would report P(C|COC) = 0.5 and P(O|
COC) = 0.5. The ngrams were only used to value moves and
act as a priori, following the rules of the search model. Hence,
whenever the ngrams valued a move that was forbidden by the
model, the move was discarded. The ngrams also used the
cycle length computed from the FDA-approved compound
database to guarantee the right proportion of cycles of each
length in the final molecules. Storing information about the
cycles’ length within the ngrams themselves would be possible
but expected to be more error-prone. Therefore, we instead
decided to use a probability to end a cycle at a certain length.
These probabilities are 0.228 for a cycle of length 5, 0.751 for a
cycle of length 6, and 0.02 for a cycle of length 7. Smaller and
longer cycles were omitted for the reasons mentioned above.

Guided Playouts: Neural Network. As previously
explored,36 neural networks can be trained to give conditional
probabilities of the next character given all of the SMILES. The
neural network is then repeated on the newly extended
SMILES until the SMILES is terminal, similar to recent large
language models (LLMs). This method strays from the usual
playouts as it is not limited by the rules of the search model,
but is prone to produce invalid smiles.36 The same neural
network can also be used as a priori, following the rules of the
search model just like in the case of ngrams. This method has
two advantages over approaches using ngrams: (1) taking the
entire context of the SMILES into account and (2)
generalization (as ngrams require an exact precursor).
However, ngrams are faster, more easily explainable, and
require no training.
The neural network used in the present study is the same as

in ref36 and was trained using the same data set. It was only
slightly modified to accommodate the shortcuts, with no
apparent repercussions on the results obtained.

Monte Carlo Search: Upper Confidence Bounds
Applied to Trees. Monte Carlo search (MCS) encompasses
a wide range of search algorithms. These differ from regular
search algorithms in that they are not deterministic, but use
randomness to explore search spaces too large for regular
algorithms and learn guiding policies.37 In 2006, Kocsis and
Szepesvaŕi introduced a variant of Monte Carlo tree search
(MCTS) called upper confidence bounds applied to trees
(UCT) or Bandit-based Monte Carlo planning.38 It is now the
most widely used MCTS and MCS algorithm in the literature,
often in the form of prior UCT (PUCT).
UCT is a bandit-based reinforcement learning algorithm

similar to Q-learning. The algorithm learns a policy and selects
to go down the tree in order to balance exploitation and
exploration.
Like all MCTS, UCT is composed of 4 phases:
1. Selection: Progress in the selection tree is reported

according to the policy.
2. Expansion: Once a state that has not yet been explored is

encountered, it is added to the tree.
3. Evaluation: A playout (or another fast algorithm) is used

to evaluate the quality of the new state.
4. Backpropagation: The result of the evaluation is used to

update all of the parent states visited during the selection step.
These four steps are repeated indefinitely, starting from the

initial state each time, much like in Q-learning. What differs
among the various MCTS algorithms is the formula of the
policy.
UCT uses the following formula to evaluate child state S to

select:

X C
V

V
UCT

ln
S S

S
= + ·

where XS is the average score of state S, C is the exploration/
exploitation constant (usually 1), V is the number of visits of
the current state, and VS is the number of child state S visits.
PUCT is a generalization of UCT. It uses a prior to guide

not only the playouts but also the selection process, allowing us
to speed up the latter with knowledge from outside this
execution. PUCT uses a different selection formula:

X C P V
V

UCT
1S S S

S
= + · ·

+

where PS the value is given by the prior for state S.
Nested Monte Carlo Search. Nested Monte Carlo search

(NMCS) is a different type of MCS algorithm.39 It uses lower-
level NMCS on each available move of the current state to
explore the search tree and register the sequences of actions
leading to the best scores. Once the lower-level NMCS returns
its best routes to the higher level, it executes the next move of
the best route and calls new lower-level NMCS on the
resulting state. The lowest level of NMCS is (usually) a
playout. Unlike UCT, the NMCS does not explore the entire
search space given enough time but gains in precision as it
explores the tree and is less prone to being stuck in a local
maximum. This property led to generally better results from
NMCS over UCT and other algorithms for optimization
problems.

Validation of the Generated Small Molecules. An in
silico validation was performed to understand the quality and
synthesizability of the generated molecules. SMILES validity,
clogP, Tanimoto index, quantitative estimate of druglikeness
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(QED) score PAINS, and SAscores were calculated with the
RDKit.40 The AiZynthFinder software was used to predict
synthetic routes of generated SMILES.31 Physicochemical
properties, drug-likeness, and pharmacokinetic parameters
were estimated using the SwissADME and Deep-PK Web
servers.41,42

■ RESULTS AND DISCUSSION
Performance of Models. The aim of this work was to

generate large sets of novel small molecules (i) that expand the
chemical diversity of available compounds libraries, (ii) possess
drug-like properties, (iii) robustly and reliably, independently
from the complexity of the target, and (iv) could be used for
future VS campaigns and be easily grown into larger drugs and
tailored to specific targets. As such, DrugSynthMC generates,
in the absence of any training, SMILES of drug-like molecules
without prior targets in mind. Thus, the score function is
meant to maximize only the validity and drug-likeness of the
output molecules and is not goal-oriented (e.g., tailored to
bind a specific biological target). The drug-likeness is obtained
through maximizing the general chemical properties associated
with drugs according to the “Rule of 5”.43−45 Indeed, easily
calculated physicochemical descriptors, such as molecular
weight (MW) and number of hydrogen bond donors and
acceptors, have been found to correlate with the success rate of
clinical trials.46 The function of compliance (score function)
was defined as

α1 = −max(mass − 500)/500 (1) Ensures that generated
compounds have a molecular weight ≤500

α2 = −max(natoms − 70)/70 (2) Ensures that the maximal
number of atoms is 70

α3 = min(natoms − 20)/20 (3) Ensures that the minimal
number of atoms is 20

α4 = −max(nhbd − 5)/5 (4) Ensures that the maximal
number of hydrogen bond donors is 5

α5 = −max(nhba − 10)/10 (5) Ensures that the maximal
number of hydrogen bond acceptors is 10
score = α1 + α2 + α3 + α4 + α5 (6) Represents the final

score with maximum possible value of 5
With mass being the MW of the molecule, natoms is the

number of atoms (including hydrogens), nhbd is the number of
hydrogen bond donors, and nhba is the number of hydrogen
bond acceptors. This formula has the advantage of being
computationally cheap and requiring only a pass through the
SMILES string.
To identify the most efficient method, we compared the

UCT and NMCS MCS algorithms combined with different
types of playouts. (i) random: the next character is selected
uniformly randomly among the ones proposed by the search
model. (ii) enforced: as in random, the next character is
selected uniformly among the ones proposed by the search
model. In order to generate compounds that are structurally
valid and synthetically accessible, the score function aims to
generate molecules containing the same heavy atom (C, O, N,
F, S) ratios as in FDA drugs (retrieved from the FDA subset of
the ZINC20 database).33 (iii) ngrams: the next character in
the SMILES is selected randomly among the ones proposed by
the search model, according to the conditional probabilities of
the 3 character ngrams computed on the SMILES from the
FDA subset. To balance the number of rings containing 5, 6,
and 7 atoms, the score function uses the probability of
occurrence of different rings calculated on FDA drugs in order
to end a ring at a certain length. No conditional probability was

used to balance the type of ring (i.e., aromatic and aliphatic,
homo- and heterocycles). Additionally, characters with a
probability under 0.001 are pruned, as they are judged too
rare. (iv) neural: the next character is selected randomly
among the ones proposed by the search model, according to
the neural network output weight based on the incomplete
SMILES input. As for ngram, characters with a probability
under 0.001 are pruned. In addition, we used the sampling
method as a control. This method consists of independent
playouts from the start state which ends once a molecule
reaches the best possible score.
For NMCS, we used a level of 3. For PUCT/UCT, we used

a constant of 1. We use PUCT instead of UCT when a prior
method is used (ngram and neural). Here, DrugSynthMC was
run on Rust 1.59, on an Intel Core i7-11850H 2.50 GHz using
a single core, to generate 1000 valid drug-like molecules in
independent runs (Table S1). Generation times are not
dependent on the molecule size or complexity. In all cases, the
neural playout is much slower (approximately 5000 times)
than that of the ngrams. The random and enforced playouts do
not use a policy and show how the algorithm selection can
affect the generation speed. PUCT and UCT use a timeout of
10 s, because both methods lock into local maxima induced by
the shortcuts, failing to generate molecules (unless restarted
immediately, turning them into Sampling). Indeed, shortcuts
in PUCT and UCT increase the size of molecules and the
linked scores, but often produce molecules which deviate from
desirable drug-like properties.43−45 In contrast, UCT without
shortcuts can return molecules for random and enforced
generation. However, while UCT without shortcuts has
generation times identical with those of NMCS and Sampling
with random playouts, with enforced playouts UCT is over 100
and 6 times slower than NMCS and sampling, respectively.
The NMCS shows a clear advantage over UCT and

sampling when a more complex score function is used. The
design of the NMCS forces it to explore other subtrees of the
search tree, thus preventing locking in local maxima. However,
this feature increases generation times when using a prior
method in this set of experiments. Nevertheless, as suggested
by the random and enforced playout generation times, NMCS
is likely to outperform UCT and sampling for specific goal-
oriented generation, requiring more complex score functions.

Validation of the Generated Drug-Like Molecules. In
recent years, with the expansion of DL methods for drug
design, several initiatives have been launched to assess
generated compounds, which include benchmarks such as
Guacamol and MOSES.47,48 However, these benchmarks are
not suitable for methods that, like DrugSynthMC, do not
exclusively rely on training data sets. Instead, we evaluated
similar metrics (validity, uniqueness, novelty, diversity,
physicochemical properties, and synthesizability) and used
comparable tools (RDkit, ZINC databases, AiZynthFinder) to
validate our algorithm.
To assess the reliability of the tool to generate valid and

interpretable molecules, 10,000 generated SMILES for each of
our playouts and algorithm combinations (Supplementary File
1) were translated into structure representations using RDkit.40

We estimated Validity as the percentage of SMILES that RDkit
was able to read and correctly evaluate, and in all cases, the
Validity of the inputted SMILES was 100% (Table 1), showing
no syntax errors. This is significantly superior to other
methods, which showed validity scores ranging from 85% for
generative autoencoders to about 96% for RNN-based models
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(e.g., 86.24% for DeLA-Drug, 95% for ReLeaSE, 99% for
MolAICal).28,49−53 Furthermore, DrugSynthMC shows more
consistency in Validity of outputs. In fact, a recent survey of
algorithms for de novo drug design highlighted a significant
variability in the Validity of generated SMILES using different
models, ranging from as low as 40.2% for E-NF (using a flow-
based equivariant graph neural network (EGNN) model), to
91.9%, 94.8%, and 99% for EDM, GCDM, and JODO,
respectively (all using diffusion-based EGNN models and
trained on similar databases).54 The ability to generate novel
compounds was determined by measuring the percentage of
molecules in a library of 10,000 generated SMILES which was
not present within ZINC-250 K55 (containing nearly 250,000
molecules) (Table 2), and this percentage was reported as the

Novelty metric. In all cases, we see a high level of novelty
within our generated SMILES. It is logical to assume that
designing compounds based on general physicochemical
properties of drugs instead of on a training set allows DL
methods to explore a wider chemical space. Within each of the
libraries generated, uniqueness was assessed by identifying the
proportion of identical molecules produced within each
playout and reported as the Uniqueness metric (Table 3).

This shows substantial differences among the different playouts
used, with ngram and neural ligands showing a higher number
of replicated molecules within libraries. This is linked to the
priors restricting the search space to what is more probable. To
confirm this, we measured the structural similarity of
compounds by determining the average edit distance.56 This
is defined as the average minimum number of operations
(insertions, deletions, and substitutions of a single character)
required to transform one SMILES into another, comparing all
pairwise combination of SMILES in a library of 1000
compounds. We clearly showed that both priors similarly
restrict the explored chemical space (Table 4), as lower
average edit distance values indicate more comparable
structures, likely associated with similar properties.57 Con-
versely, generating larger drugs with a SMILES string
containing ≥30 characters pushes the uniqueness above 95%
with all methods. Unfortunately, it is more challenging to
predict synthesizability of these larger drugs using retrosyn-
thesis programmes.58,59

Synthesizability of the Generated Drug-Like Mole-
cules. A recent comparison of tools used to predict
synthesizability of compounds carried out by Sanchez-Garcia
et al.60 showed that retrosynthesis programmes tend to be
more accurate than SA scores. Yet effectiveness and efficiency
of different retrosynthesis tools varies quite dramatically and is
still restricted in the variety of reaction types considered.61

Retrosynthesis programmes use a combination of search
algorithms and 1-step retrosynthesis deep learning to apply
reactions to a molecule and divide it into reactants available on
the market. AiZynthFinder is an open-source full-fledged
template-based retrosynthesis planning framework that adopts
a root-parallelized MCTS,31 similar to ASKCOS,62 using
PUCT. AiZynthFinder tends to successfully identify paths to
synthesis in less than 2 min.31 Indeed, this was consistent with
our retrosynthesis analysis of drugs retrieved from the FDA
subset, showing that AiZynthFinder finds routes for the
majority of molecules within the first 2 min of search (Figure
1A). Hence, 2 min was chosen as the maximum search time for
the retrosynthesis assessment of sets of 1000 molecules
generated by our algorithm. As mentioned above, there is a

Table 1. Validity of 10,000 SMILES

random enforced ngram neural

NMCS 100% 100% 100% 100%
PUCT − − 100% 100%
sampling 100% 100% 100% 100%

Table 2. Novelty of 10,000 SMILES

random enforced ngram neural

NMCS 100.00% 99.99% 99.98% 99.96%
PUCT − − 99.99% 100.00%
sampling 100.00% 100.00% 100.00% 99.99%

Table 3. Uniqueness of 10,000 SMILES

random enforced ngram neural

NMCS 99.94% 99.17% 81.78% 87.12%
PUCT − − 86% 85.32%
sampling 99.83% 98% 82.58% 68.01%

Table 4. Average Distance for of 1,000 SMILES Compared 2
by 2

random enforced ngram neural

NMCS 17.93 14.266 12.954 13.988
PUCT − − 13.334 13.956
sampling 17.801 13.94 13.1 14.051

Figure 1. AiZynthFinder synthetic routes search: (A) histogram plot
showing the number of drugs from a data set comprising 909 drugs
retrieved from the FDA subset of the ZINC20 database versus
AiZynthFinder synthetic routes search time in seconds. (B)
Histogram plot showing the number drugs for which AiZynthFinder
successfully finds synthetic routes in less than 2 min versus drugs
Molecular Weight. “Solved 1-step” drugs that can be produced
directly from commercially available compounds; “Already in stock”
drugs that are identified as commercially available by AiZynthFinder.
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connection between the number of characters in a SMILES
and success in identifying retrosynthesis paths. We noticed that
the larger the compounds generated, the less likely AiZynth-
Finder successfully completed a search within 2 min or more.

Indeed, AiZynthFinder finds retrosynthesis routes for ∼60% of
the 1615 FDA-approved drugs and tends to fail for larger
molecules (Figure 1A,B). Therefore, as proof-of-principle
study, we chose to generate lower MW drug-like compounds,

Figure 2. Physicochemical properties of generated drug-like Mmolecules. Comparison of physicochemical properties among drug-like compounds
generated with Random and Ngram, and the “Rule of 5” drugs within the FDA subset of the ZINC20 database. Violin plots showing (A) number of
hydrogen bond donors (HBD), (B) hydrogen bond acceptors (HBA), (C) molecular weight (MW), (D) total number of Carbons, (E) heavy
atoms, (F) hydrogens, (G) nitrogen, (H) oxygen, (I) fluorine, (K) sulfur, (L) chlorine, (M) pentamers, (N) hexamers, (O) heptamers, (P)
aromatic cycles, and (Q) clogP. Physicochemical properties were calculated on libraries containing 1,000 generated compounds.
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at the expense of uniqueness, to show the ability of our
approach to generate synthesizable compounds. Due to the
similarities between the algorithms when using neural or
ngram playouts and, as shown above, the overall better
performances of NMCS, we focused on the molecules
generated by this latter method. Table S2 shows the difference
in proportion of molecules predicted to be synthesisable
depending on the type of NMCS playout used. The ngram
playout is the one that generates the largest number of
synthesizable compounds. The predicted 32.2% synthesiz-
ability is promising and in line with previously reported
accuracy rates for different retrosynthesis programmes.61 This
is also consistent with results from Kerstjens and De Winter,63

which show similar synthesizability predictions for their
LEADD generated compounds and, based on AiZynthFinder
analysis of molecules in ChEMBL, suggests that AiZynthFinder
may underestimate synthesizability of molecules. The neural
playouts, while still promising, provided a much lower rate of
predicted synthesizability. This can be explained by the fact
that the neural network does not return the exact conditional
probability from the training set, and thus rare moves such as
the shortcuts are overrepresented in these generations. We
adopted the neural network from Yang et al.36 with adaptations
for our shortcuts and explicit bonds. While it showed worse
outcomes with the implicit bonds and no shortcuts, it delivered
similar results with explicit bonds and no shortcuts. However,
with more fine-tuning, neural networks may have the potential
to reach the same level of synthesizability as with the ngrams,
although with the added disadvantage of having slower
execution.
The random and enforced generations act as control

experiments. As no policy governs the structure of the
generation, nothing can direct the molecule generation toward
a sensible and synthesizable outcome. Indeed, AiZynthFinder
is unable to propose reactions, thus ending the search long
before the 2 min time limit (generally in less than a second).

Physicochemical Properties of the Generated Drug-
Like Molecules. To further validate their drug-likeness, we
compared the distribution of key physicochemical properties of
molecules generated with NMCS with ngram playout (which
generated the highest proportion of synthesizable compounds)
with those generated with NMCS with random playout (used
as control) and drugs retrieved from the FDA subset of ZINC-
2033 (Supplementary File 2). For the latter, we focused on
molecules abiding to the same rules used in our generation
process (Lipinski’s “Rule of 5”).
It is been shown that, to avoid reducing oral bioavailability,

the number of hydrogen bond donors (HBD) should be lower
than 6 and hydrogen bond acceptors (HBA) lower than
15.64,65 Despite our stated upper limit of 10 for HBA and 5 for
HBD, we found that compounds generated with ngram peak at
2 and 1 for HBA and HBD, respectively, with an overall lower
number of HBA than random, and a higher ratio of
compounds with fewer HBD than random and FDA (Figure
2A,B). By design, ngrams generate compounds with lower MW
and total number of carbons (and, as a consequence, lower
number of heavy atoms) and hydrogens than drugs in FDA
(Figure 2C−F). This is a byproduct of the search stopping
whenever the Lipinski rules are satisfied, and an indispensable
requirement for (i) future optimization studies where
compounds may need to be grown to adapt to pockets in
targets and increase overall affinity, and (ii) synthesizability
analysis with AiZynthFinder. The distribution of heavy atoms

is overall comparable in all plots, as the score function
generates molecules containing the same heavy atoms
(nitrogen, oxygen, fluorine, sulfur, chlorine) ratios as in FDA
drugs (Figure 2G−L). DrugSynthMC’s score function balances
the number and size of rings (Figure 2M−O), but not their
type (aromatic and aliphatic, homo- and heterocycles), based
on the probability of occurrence of different rings calculated
from FDA drugs. The formula returns drugs with a nearly
equal distribution of compounds with zero or one aromatic
cycle, which is lower than the aromatic cycle content in FDA
drugs (Figure 2P). However, it has been shown that oral drugs
with less than 3 aromatic rings have good compound
developability,66 suggesting that DrugSynthMC has the
potential to generate molecules with low risk of attrition in
early stage development. Generated compounds also have
promising oral bioavailability parameters. Earlier work by
Soares et al.67 showed that FDA-approved drugs in the last 20
years have a relatively stable number of rotatable bonds (mean
5, median 7.5) with about 89% drugs containing less than 10
rotatable bonds. ngram playouts successfully generated
compounds with less than 6 rotatable bonds (mean 3) and,
in proportion, produced a higher number of molecules with
fewer and higher rotatable bonds than the FDA drugs and
Random playout, respectively, thus potentially identifying a
balance between flexibility and diffusional cross-section (Figure
2P).
The logarithm of the octanol−water partition coefficient

(logP) is a widely used parameter to define solubility of
compounds in water and their upper limit of intrinsic
solubility. Extensive analysis of experimental logP and
calculated logP (clogP) of approved drugs over the past 30
years showed that the cutoff <5 remained constant with a
mean of about 3.4.68−70 Unlike other rule of 5 physicochemical
descriptors which are routinely calculated based on SMILES or
compounds structures, the clogP is highly dependent on the
calculation method, with recent approaches relying on
computationally expensive and state-of-the-art neural ap-
proaches.71 Faster approaches are available but they trade
accuracy for speed. As such, to avoid making the evaluation
function computationally demanding or inaccurate, the
calculation of logP was not included in the score function.
Instead, the clogP was calculated on generated compounds
using Rdkit, which provides an implementation of the atom-
based Wildman-Crippen method.72 All three sets of molecules
analyzed have overall similar clogP (Figure 2Q). The
distribution of clogP showed that the majority of molecules
have a value between −2 and 4, with ngram showing a larger
number of compounds with lower clogP (∼2) than that of the
FDA, suggesting high likelihood of these compounds being
orally bioavailable. Water solubility can also be conveniently
estimated using SwissADME which relies on the ESOL
model73 to classify SMILES. Consistent with clogP analysis,
all SMILES are classified as soluble, very soluble, and highly
soluble (Supplementary File 3).

Pharmacokinetics and ADMET Predictions (Absorp-
tion, Distribution, Metabolism, Excretion, and Toxicity)
of the Generated Drug-Like Molecules. Pharmacokinetics
and ADMET properties of the generated compounds were
assessed by predicting metrics commonly employed in drug
discovery: (i) the quantitative estimate of druglikeness (QED)
score74 and similarity with FDA drugs; (ii) the synthetic
accessibility (SA) score;32 (iii) proportion of pan-assay
interference compounds (PAINS) (i.e., structural alerts likely
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to produce false positives in in vitro assays);75 (iv) predicted
metabolism and toxicity, defined as the likelihood to inhibit
one of the five isoforms of cytochromes P45041 and an
extensive subset of toxicity end points.42

As a result of the function of compliance adopted to design
DrugSynthMC, ngrams-generated compounds are character-
ized by a high druglikeness (average QED 0.53 ± 0.11) and
low violation (Supplementary File 3) of the five rule-based
filters implemented in SwissADME.41 Importantly, while being
drug-like, they are novel. In fact, the estimated similarity
between ngrams-generated compounds and FDA drugs,
estimated using the Tanimoto index76 computed between
each generated molecule and the FDA drugs, is very low with
most compounds having a Tanimoto index lower than 0.3
(Supplementary Figure 1).
To expand synthesizability analysis, we estimated the

SAscore, which relies on historical synthetic knowledge
obtained by analyzing synthesized chemicals and adds penalty
for molecular complexity, with values ranging from 1−5 (easy
to synthetize) to 6−10 (difficult to synthetize).32 In line with
results obtained for the retrosynthesis analysis, SAscore shows
that all generated drug-like molecules are predicted to be easily
synthesizable, with no significant differences with the FDA
subset (Supplementary Figure 2). As expected, the ngram-
generated compounds perform better in terms of SAscore than
those produced by the random method. It is worth noting that
the SAscores obtained for the ngram-generated compounds are
perfectly comparable with published SAscores from other
algorithms. For example, Popova et al.53 showed that the
median SAscore for one million compounds generated with
ReLeaSE is of 3.1, while the mean SAscores for 700,000 DeLA-
Drug generated molecules or 1000 AlphaDrug-generated drugs
is 2.9.52,77 Consistently, DrugSynthMC synthesizability anal-
ysis is also in line with SBMolGen, which filters out during the
design stage any molecules with SAscores greater than 3.5.28

DrugSynthMC generates also a very low percentage (ngrams
4.7%) of molecules predicted to be PAINS (Supplementary
File 3), comparable with results from other approaches.52

Similarly, ngrams-generated SMILES tend to be molecules that
can be metabolized by most isoforms of cytochromes P450,
with no compounds inhibiting all five tested isoforms and only
4% inhibiting 2 or more isoforms (Supplementary File 3).
Furthermore, only 0.03% compounds are predicted to be
substrate of the permeability glycoprotein, which plays a key
role in active efflux of compounds outside of the cell, driving
drug resistance in some types of cancers.78 The toxicity profile
varies according to the subset of toxicity end point considered,
but in general Deep-PK analysis of ngram-generated SMILES
is comparable to that of the FDA (Supplementary File 4), with
about 80% compounds predicted to be safe for the liver.
This supports the robustness of the design principle and the

suitability of generated compounds for real drug design
applications.

■ CONCLUSIONS
DrugSynthMC is capable of designing novel and chemically
diverse drug-like compounds by generating character-by-
character SMILES. We compared different algorithms with
different payouts. Importantly, we showed that the ngram
playout is superior to the more advanced neural approaches.
Very likely, this is linked to the ability of ngrams to follow
more closely the distribution of atoms of preexisting valid
molecules. Furthermore, as expected, NMCS outperforms

UCT in random and enforced generation, as NMCS has
usually previously been found to perform better than UCT on
optimization problems.79,80 Crucially, DrugSynthMC does not
rely on training data sets, thus generating drug-like compounds
in a robust, and reliable way, independently from both the
complexity and diversity of targets. DrugSynthMC is fast and
highly flexible and in the future could be easily tuned to
generate customized drug libraries tailored for specific binding
pockets on targets. For example, DrugSynthMC libraries could
be tested using our previously adopted ensemble screening
approach81 and generated pseudofree energy of binding could
be fed as a reward in a reinforcement learning method within
DrugSynthMC.82 Convergence to a minimal value of pseudo-
free energy of binding over several iterations of DrugSynthMC
is likely to highlight a set of compounds with the desired
pharmacophores and binding affinities.
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