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M etapr ogramming Forced Moves

Tristan Cazenavel

Abstract. Knowledge about forced moves enables to seled a small number
of moves from the set of passble moves. It is very important in complex
domains where search trees have a large branching factor. Knowing forced
moves dragtically cuts the search trees. We propose a language and a
metaprogram to create automatically the knowledge about interesting and
forced moves, only given the rules about the dired effeds of the moves. We
describe the successul application d this metaprogram to the game of Go. It
creates rules that give complete sets of forced moves.

1 INTRODUCTION

Knowledge aout forced moves enables to select a small number of
moves from the set of posdble moves. It is very important in
complex domains where seach trees have alarge branching factor.
Knowing forced moves drastically cuts the seach trees. We
propose alanguage and a metaprogram to creae aitomatically the
knowledge about interesting and forced moves, only given the rules
about the direct effects of the moves. We describe the sucoessul
application of this metaprogram to the game of Go. It creaes rules
that give complete sets of forced moves.

The second section describes computer Go. The third section
uncovers the goal of metaprogramming. The fourth section is an
introduction to the metalanguage Introspect. The fifth section
shows how rules concluding an the moves to try at OR nodes are
creaded. The sixth section describes how rules concluding on
forced moves are creaed using metaprogramming. The last section
gives the results of our computer Go system.

2 COMPUTER GO

2.1 Thegameof Go

Go was developed three to four millennia ago in Ching; it is the
oldest and one of the most popular board game in the world. Like
chess it is a deterministic, perfect information, zero-sum game of
strategy between two players. In spite of the simplicity of its rules,
playing the game of Go is a very complex task. Robson [16] proved
that Go generalized to NxN boards is exporential in time. More
concretely, Van den Herik [19] and Allis [1] use complexity
measures of different games to compare them. They define the
whole game tree complexity A. Considering the average length of
actual games L and average branching factor B, we have A = BL.
The state-space complexity of a game is defined as the number of
legal game positions reechable from the initial position of the
game. In Go, L=150 and B=250 frence the game tree complexity
A=10**. Go state space complexity, bounded by 3**=10'"2 and
game treecomplexity are far larger than those of any other perfect-
information game. Moreover, a position takes time to evaluate, on
the contrary of chess where positions can be evaluated very fast.
This makes Go wvery difficult to program. Computer Go has been
recognized as a challenge for Atrtificial Intelligence [17].
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The board is made of 19 vertical lines and 19 forizontal lines
and therefore 361 intersections. At the beginning the board is
empty. Each player (Black or White) moves dternatively in adding
one stone on an empty intersection. Two adjacent stones of the
same color are connected and they are part of the same string. For
example, the white stones of Figure 1 marked with A are connected
and are part of the same string. Empty adjacent intersections of a
string are the liberties of the string. The string of four marked
white stones of Figure 1 has eight liberties. When a move fill s the
last liberty of a string, this gring is removed from the board. The
repetitions of positions are forbidden. Acoording to the posshility
of being captured or not, the strings may be dead or alive. A player
controls an intersection either when he has an alive stone on it,
either when the intersection is empty but adjacent to alive stones.
The am of the game is to control more intersections than the
opponent. The game ends when the two players pass.

In spite of the simplicity of the rules, a Go player uses a lot of
concepts to understand a position and to play a move. This
paragraph lriefly shows ome intuitive definitions of these
concepts. At the lower level, a player looks at the safety of the
strings in performing look-ahead. When a string has enough
liberties, the string is said to be safe. A player also checks if an
intersection is controlled by one player or not. An eye is a small
enclosed area Figure 2 gives an example of an eye on intersection
A. In this figure, B is one of the four diagond intersections of A.
When seaching to make an eye, it isimportant to control diagonal
intersections.
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A virtual conrection is a configuration that enables to connect
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strings whatever the opponent plays. Figure 3 gives an example of
a ‘Bamboo join’. If the white player plays at A, black plays at B
and connects its gones. If white plays at B, then black a A
connects. The four stones are virtually connected.

Figure3

Using these tactical results, a Go player starts its grategic
reasoning with the use of groups. A group is a complex concept for
human players. It may be dther a set of intersections that are
virtually connected, either a set of intersections that gather the
same properties. A group hes a status. A statusis dead or dive and
it is derived from other intuitive concepts like influence, fight,
circling, life-base. The reader does not need explanations of these
concepts to understand the following sections.

2.2 Different levelsin a Go program

Asit isimpossble to search the entire treefor the game of Go, the
best Go playing programs rely on a knowledge intensive gproach.
They are generally divided in two modules:

B A tactical module that develops narrow and deep seach
trees. Each treeis related to the achievement of a goal of the
game of Go.

B A strategic module that choases the move to play according
to the results of the tactical module.

Strategic reasoning is concerned with groups of stones. A group
of stones is a set of stones of the same color, each stone can be
connected to each other.

The tactical module uses rules to decide what moves to try in
the seach trees. The strategic module uses the results of the
tactical module to creae the groups and calculate their properties.
Then it chooses the move that maximizes its territory.

3 THE GOAL OF METAPROGRAMMING

The goal of metaprogramming, in our system, is to write programs
that write other programs that enable to safely cut seach trees,
therefore enabling grea speedups. In our applications to games,
metarules are used to credae theorems that tell what are the
interesting moves to try to achieve atactical goal (at OR nodes).
They are dso used to crede rules that find the complete set of
forced moves that prevent the opponent to achieve atactical goal
(at AND nodes).

Each time our Go program tries to see the degree of
achievement of a gaal, it develops two AND/OR prodf trees. One
with the friend color playing first, and the other with the enemy
color playing first.

The Figure 4 gives an example of a prod tree for the gaal
connect. Black is the friend color, and the goal is to connect the
two black stones. The first move works (the leftmost arrow) and as
it is an OR node, the other branches are cut. The moves at the OR
nodes are given by rules that conclude on moves that can achieve
the goal if two moves in arow by the friend color are played. This
heuristic is used because these moves lead to positi ons containing
threas to win by the friend dayer, and therefore forced moves for
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We give a visua and intuitive definition of the rules by
selecting the part of the board corresponding to the conditions of
the logical rule. The rules conclude on a move or a set of moves.
This is represented using arrows that leal to positions after each
move in conclusion. For example, the first visual rule of Figure 5
is represented by the following logical rule ('S1' and 'S2' are the
two strings, 'l' and 'l1' the empty intersections and 'C' the color):

Figure4

connect (S1, S2, I, © :- color (Q, color
(s1,0, color (S2,0), liberty (I, S1),
liberty (11, S2), neighbor (I, I1).
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Figure5

The rules of Figure 5 are rules that tell the moves to try at the
OR levels of the prodf trees. Thisis visually explained in the first
diagram of Figure 5, where atreeis represented with the color of
the moves associated to the branches. We can see that the only
avail able information is that Black can win the gael if it plays two
moves in arow (state W of the first diagram), otherwise the three
other combination leads to unkrnown situations (state U). When
Black plays the moves advised by the rule, it switches to a
threaening situation represented by the treeon the right of the first
diagram. Black can now win the gl if it plays one move, and
therefore White has now to play to prevent Black from doing so.

The first rule of Figure 5 is used to find the upper left move of
the prodf tree of Figure 4. The second rule of Figure 5 is a rule
advising a move to try to make an eye.
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The Figure 6 gives the second prodf tree developed by the Go
progam with White playing first, and the goal Connect the two
black stones. In order to save place, we have numbered at the
leaves of the tree the sequences of moves (odd numbered moves
are Black moves and even numbered moves are White single
forced moves) that lead to the winning positions for Black. The
two forced white moves at the roat of the prodf tree ae refuted by
Black. So the result of the two prodf treesis that Black can connect
its two stones even if White plays first: the two black stones are
virtually connected.
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The last rule of Figure 7 is used to find the forced move & the
lowest AND node of Figure 6. The first rule of Figure 7 is used to
find the two forced moves at the roat of the prodf tree of Figure 6:
note that these two moves are the only ones that neel to be
considered out of al the possble moves. The second rule is used to
find the only forced move to prevent an eye. The visual definition
of aforced move is given in the first diagram: a White move leads
to an unkrown state (state U), whereas a Black move leals to a
lost state for White (a lost state L for White is a winning state W
for Black: White loses if Black is connected in our example).

4 THE INTROSPECT LANGUAGE

Metaprogramming in logic has already attracted some interest [14]
[2] [9]. More specifically, specidlization of logic program can be
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traced back to [18], it has been well defined and related to Partial
Evaluation in [11], and successfully applied [8].

Introspect [4] is a metaprogramming system based on predicate
logic. On the contrary of Prolog programs, The Introspect programs
areredly declarative: the result of their execution does not depend
on the resolution strategy. Prologis based on the SLDNF strategy,
it means that the order of clauses isimportant and it is harmful for
the declarativity of the programs. A fixed resolution strategy is
harmful when one wants to speed upa concise but inefficient logc
progam into an efficient but usualy longer logc program by
specializing it. It prevents the reordering o the goms inside the
clauses and the reordering o the clauses. A goad reordering o the
specialized programs can lea to large speedups [3]. For similar
reasons, we do not use negation as fail ure. Moreover, we can have
multiples atoms in the head of a clause and we use forward
chaining.

Introspect uses metapredicates that enable it to manipulate its
own programs. We will describe some of them in this sction.
They will be used to explain how to metaprogram forced moves.
Constants and variables are typed. Conventionally, variables begin
with a capital letter, whereas constants begin with a tiny letter.
Each example of metapredicate is followed by a definition.

rule (R) : Instantiates in the variable R al the rules of the object
program.

conclusion (R, P) : Instantiates in P the &oms in the head of the
rule R.

conclusion (R, Color (V1)) : Instantiates in the variable V1 all the
variables and constants of the head of R that are aguments of the
Color predicate.

initcut () : Affects 0 to the interna variable that test is the
conclusion of a rule has been found This affectation is done for
eachinstantiation of each variable above tiistapredicate.

cutifdeduction () : Stops backtracking if a conclusion with the
current instantiations of variables has been found It is different
from the traditional cut operator of logic programming.

setofmodifyingmoves (SET, SET1, SET2) : Putsin the set variable
SET the set of moves that enable to change ay of the conditions
contained in the set of conditions SET2. SET1 returns the set of
conditi ons that have to be added to SET2 so that the move of SET
are aaured to change & least one of the condition of SET2. Thisis
a metapredicate that calls a logic program that uses the rules of a
game to build SET and SET1 using SET2.

condition ( R, oppositecolors (V1, V2)): Instantiates in the
variables V1 and V2 the variables and constants of the rule R that
are argument of the predicatggpositecolors.

Introspect uses numerous metapredicates. Most of them can be
uncerstoad intuitively given their names. We will not define dl of
them here.

5 METAPROGRAMMING OR NODESMOVES

The rules used to decide the moves to try at the OR nodes of the
seach trees are atomatically creged by an Introspect
metaprogram that partially evaluates the target concepts using
domain knowledge. Introspect is also able to speciali ze the target
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concepts using examples. Systems like Introspect that lean by
specializing gals have been formalized as Explanation Based
Leaning/Generali zation systems [12] [10] [6]. They have received
attention more recently in [15]. The first application to games can
be traced back to [13]. The relation to Partial Evaluation in logic
programming has been uncovered in [20].

The formali sm used to represent the rulesisfirst order predicate
logic. The rules are programmed by Introspect, only given the rules
of the game in predicate logic.

The target concepts are the tactical subgaals of the game of Go :
Remove a string, Make a string alive, Connect two strings,
Disconnect two strings, Make an eye and Remove an eye. Each of
these target concepts is defined using rules in predicate logc. For
example the target concept for the tactical goal removestring is
defined using this rule:

removestring (S, I, friend) :- color (S
eneny), nove (r, eneny),
nunberof | i berti esbeforenove (S, 1), liberty
(I, S), legalnove (I, eneny).

Thousands of rules are creaed by using the rules of the game to
speciali ze the tactical goals. Example of a simple creaed rule used
to find connections between strings of stones

connect (S1, S2, I, © :- color (Q, color
(Ss1, ©, color (S2, O, oppositecolors (C,
Cl), liberty (I, S1), liberty (I, S2).

This rule tell s that if an intersection | is a liberty of strings S1
and S2 that have the same color C, playing a stone of color C at |

enables to achieve the goal Connect between the two strings.

Figure8

The creaed rule previously given as example gplies to the
move marked A that connects the two black strings in the Figure 8.
The initial target concept defining the connect goal is:

connectedafternove (Sl1, S2) :- color (O,
color (S1, ¢, color (S2, C, oppositecolors
(C ), el enent of afternmove (I, S1),

el enent of afternmove (I, S2).

The rules used to specialize the target concept in this example
are:

el ementof afternove (I, S) :- liberty (I, 9),
color (S, O, nmove (I, O.
connect (S1, S2, I, C© :- nmove (I, O,

connect edafternove (S1, S2).

There ae different predicates to describe the board after the
move and the board before the move. Thisis to prevent side dfects
to happen, and to avoid incomplete explanations. The predicate
'move (I, C )" is retracted from the creaed rule because it is
redundant.

The specialized rules used at OR nodes of the prodf tree give
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moves that achieve the gaal if they are followed by another move
of the same color, as the rules in Figure 5.

6 METAPROGRAMMING FORCED MOVES

Metaprograms can be used to automatically creae programs. We
give in this ction an explanation of the metarule that enables to
creae rules concluding on forced moves, given rules concluding an
winning moves.

addconcl usion (Rl1, forcednovetolive (V4, V2,
SET)), addrule (R1) :-
rule (R,
conclusion (R novetotake (V1, V2, V3)),
condition (R, color (V1)),
condition (R, oppositecolors (V1, V4)),
setof condi tions (R SET2),
set of nodi fyi ngnoves (SET, SET1, SET2),
length (SET, N),
greaterthan (5, N,
new ul e (R1),
addcondi ti ontoset (Rl, SET1),
addcondi ti ontoset (Rl, SET2).

The rules concluding on winning moves are dso creaed by
Introspect as described in the previous section.

The first condition of this metarule, rule (R)', selects dl the
rules and instantiate them in the variable R. The second condition
selects among the rules those that conclude on a winning move for
color V1 (V1 contains either a constant or a variable representing a
color, V2 contains a variable representing a string to Take, and V3
contains a variable representing an intersection where to play the
winning move), with V4 containing the color opposite to V1. Note
that if there is a winning move for color V1, then the forced moves
to prevent V1 to win have the color V4. The next condition
'setofconditions (R, SET2)' puts into SET2 the set of conditions of
the rule R selected. Then the condition 'setofmodifyingmoves
(SET, SET1, SET2)' cals a metaprogram specific to the rules of
the game that fills SET with the forced move to prevent V1 to
make the winning move, and that fills SET1 with a set of
conditions that ensure that the moves in SET are the complete set
of forced moves. After that, the metarule verifies that there ae less
than 5 forced moves, creaes a new rule R1 and adds SET1 and
SET2 to the set of conditions of R1. Eventually, the metarule alds
in the conclusion of the rule R1 the predicate containing the set of
forced moves.

We enforce rules to select lessthan five forced moves. This has
two justifications: having simple rules with a small number of
conditions (less than 200, and rot seaching too many forced
moves. Forced moves are used to develop the AND nodes of the
AND/OR seach tree So all the branches of an AND node have to
be proved before the node can be set to 1. Therefore it is
reasonable to try to keep the number of branches at an AND node
low. Otherwise the search will be less sicoesdul, wasting time
proving unnecessary things, and will solve less problems.

The set of forced moves is complete, because dl the posshble
moves to destroy each condition of the rule R, are alded to SET.
The completeness ensures that al the moves that are not
considered at an AND node, do not need to be considered.
Therefore, if al the move to prevent to achieve agoal a an AND
node ae refuted, no aher move can refute the goal, and the gaal
can be ahieved for every move played to try to prevent it.
Eventually, it ensures that the results of the proodf trees returning 1
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are theorems of the position: they are dways true, the goal can
always be achieved whatever the opponent plays.

The rule creaed with the example rule of the previous ction,
using ametarule similar to the previous one, is:

f or cednovet odi sconnect (S1, S2, I, Cl) :-
color (Q, color (S1, C©, color (S2, O,
oppositecolors (C, Cl), liberty (I, S1),
liberty (I, S2).

It means that | is the only move to prevent S1 and S2 from being
connected. This is because no moves can change the conditions
‘color (C)', 'color (S1, C)', 'color (S2, C)' and 'oppositecolors (C,
Cl)' of the example rule, and only a move on | can change the
condition 'liberty (I, S1)' and the condition 'liberty (I, S2)'.

This creaed rule gives the last rule of Figure 7. It is even more
general because it also applies to Figure 8, with only one forced
White move o to prevent the two Black strings to connect.

Note that rules about achieved goals are used to crede rules
about winning moves, that are themselves used to crede rules
about forced moves, that are in turn used to creae rule &out
achieved goals (when no forced move works). This enables the
system to incrementally creae more and more complex rules, urtil
no more rules can be creded. The atua limits are set to five

forced moves and less than 200 conditions in the created rules.

7 RESULTS

The rules resulting of metaprogramming enable to safely consider
only between 1 and 5 moves out of the 250 mssble moves on a
board. They strongly decrease the size of the brute force search tree
and the time to develop prodf seach trees. This enables our Go
progam to look as far as 60 moves aheal in some tactica
positions.

The Go program plays a move in 10 seconds on a Pentium 133
MHz, for each move it proves about 450 tactical theorems, each
theorem requires between 4 and 600 mdes in a seach treeto be
proved, at each node of each treg the rules leaned by Introspect
are caled to find the useful moves to try. Introspect has leaned
thousands of tactical rules. All the learned rules are compiled into
a 1 000000 lines C++ program.

Gogd competed in the international computer Go tournament
held duing IJCAI97 together with 40 cther participants. It finished
6 out of 40 participants [7]. The five first programs are commercia
programs that have required a lot of person*yeas of work. It has
outperformed other commercial systems that have required more
than 10person*years of work.

8 CONCLUSION

We have shown that metaprogramming forced moves enables to
drastically reduce the number of nodes of the seach trees and the
time to compute the seach trees. It is an improvement on the
seach algorithms used in Go playing programs that rely on many
hand-coded rule to heuristically cut seach trees. Our approach has
two advantages over the traditional approach: we aitomatically
crede the rules that otherwise take alot of time to creae, and the
results of our search trees are more reliable than the results of the
seach trees developed using traditional heuristic and hand-coded
rules.

The Go program that uses the rules resulting o the
metaprogramming has goad results in international competitions (6
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out of 40, best non-commercial program). We ae currently
applying Introspect to aher domains [5]. Our approach is
particularly suited to automatically creae complex, efficient and
reliable programs in domains that are complex enough to require a
lot of knowledge to cut search trees.
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