Machine Self-Consciousness More Efficient Than Human Self-
Consciousness?

Tristan Cazenave

LIP6, Tour 46-00 2™ étage
Université Pierre & Marie Curie, 4, placeJussieu
75252 Paris Cedex 05 France

e-mail : Tristan.Cazenave@Iip6.fr

Abstract

An artificial system that introspeds itself and
improves itself has written another system
that gives better results than systems diredly
written by people that incrementally creates
model of expertise: cognitive scientists, Ar-
tificial Intelligence researchers and experts
of the domain it has been applied to. It has
been applied successully to the game of Go,
to multi-agent simulations and to ather do-
mains. This is an encouraging result for re-
searchers working on modeling conscious-
ness it proves that a machine model of con-
sciousness can be more dficient in creating
complex cognitive models than the n-
sciousnessof an expert.

1 Introduction

Using self-consciousness human beings can have
some knowledge about their own behaviors; this
knowledge is very useful and self-consciousness is
more developed in human beings than in any other
animals. According to [Pitrat 1990, thisis the reason
why we overestimate our potential for being self-
conscious. The medchanisms of consciousnesscould be
much more powerful. [McCarthy 1996 gives ome
medhanisms that conscious machines sould have.
Introsped [Cazenave 19960 is a system that experi-
ments ome of these mechanisms for real. The system
can observe its own behavior so as to deted its own
inefficiencies and repair them. When it deteds ineffi-
ciencies, it reasons on its reasoning process ® as to
understand why it has been inefficient. Then it modi-
fies itself so as not to be inefficient again in similar
situations. Introsped has mainly been used to dis-
cover knowledge in the game of Go. It has only been
given the rules of the game, by playing the game, it
has observed, understood, then modified itself and
has discovered a lot of useful expert Go knowledge. It
has found by itself more Go knowledge and more
useful Go knowledge than some of the best experts of
the game of Go associated to computer scientists that
have worked during years on the problem.

Consciousnessis very difficult to explain because we
know we are mnscious, but we @nnot observe how

we are mnscious. My opinion is that consciousnessis
the observation of a system (for example short term
memory) by another one. But we are limited in the
observations by the low capacity of our short term
memory. To understand itself, consciousness would
have to olserve another system, and using the same
mechanism, to observe itself observing the subsystem
while dynamically changing. This kind of self self-
observation may be of limited interest in everyday life
(except for Artificial Intelligence researchers and
Cognitive Scientists), and would need a much larger
short term memory than we have. That may be the
reason why we are unaware of how consciousness
works in our minds.

We know that we are cnscious, but it is very diffi-
cult, because of our limits, to explain what is con-
sciousness and even to define it. In this paper, we
will study consciousnessas the ability for a system to
observe itself, reason about itself and make appropri-
ate changes of itself so as to improve itself. Some
attempts to explain consciousness from a cognitive
science point of view [Dennett 1991] are interesting
for defining useful concepts and tods to understand
consciousness but they lack of experimental founda-
tions and of scientific facts for proving their asser-
tions. We strongly believe that the best way to under-
stand consciousnessis to build a model of it, to make
it run on a computer, and to incrementally refine it by
comparing its behavior to aurs (that is the way good
computer Go system are made, but we will explain
that later in the paper). This is not the easy way, but
this is the best way to prove scientific and reproduci-
ble facts about consciousness as a property of a com-
plex system [Sloman 199§ .

In sedion 2, we explain why computer Go is a good
domain to study introspedion. In sedion 3, we -
plain how Go experts and Artificial Intelligence re-
searchers build computer models of Go players. Sec-
tion 4 describes the Introsped system, an imple-
mented model of introspedion. Sedion 5 is oriented
toward the logic language used in our model of intro-
spedion. Sedion 6 is about the usefulness of uncon-
sciousness Sedion 7 gives the results of Introsped.
Sedion 8 outlines promising areas for future work.

2 Computer Go and Introspection

This ®dion describes the game of Go. It briefly de-
scribes how are made actual Go program and stresses
the interest of the game of Go for machine introspec-
tion.

Go was developed three to four millennia &o in
Ching; it is the oldest and one of the most popular
board game in the world. Like dhess it is a determi-
nistic, perfed information, zero-sum game of strategy
between two players. In spite of the simplicity of its
rules, playing the game of Go is a very complex task.
[Robson 1983 proved that Go generalized to NxN
boards is exponential in time and [Allis 1994 shows
that Go is the most complex two persons complete
information game. It is imposdble to make a brute
force search of all the moves in the game of Go, the
best Go playing systems rely on a knowledge inten-
sive approach. A Go expert uses a large number of
rules. Go programmers usually try to enter these rules
by hand in a Go program. Creating this large number
of rules requires a high level of expertise, a lot of
time and a long processof trial and error. Moreover,
even the people who are expert in Go and in Com-
puter Science find it difficult to design these rules.
This phenomenon can be explained by the high level
of spedalization of these rules: once the expert has
acquired them, they become subconscious and it is
hard and painful for the expert to explain why he has
chosen to consider a move rather than another one.
He is not conscious of all the reasons why he has
chosen the right move. The difficulty of encoding Go
knowledge is the amnsequence of a well known diffi-
culty of expert system development: the knowledge
engineging bottlenedk. Writing a program that is
able to olserve itself, to deted its own inefficiencies,
to create new knowledge so as to uncover them, and
to use the new knowledge dficiently is a nice way to
avoid this bottlenedk by replacing the knowledge
extraction processwith an automated learning system
based on introspedion. Machine introspedion and
learning enable to get rid of the painful expert
knowledge acquisition. Thus, computer Go is an ideal
domain to test the dficiency of machine introspedion
when faced with expert human programmers associ-
ated to professonal Go players (i.e. human intro-
spedion).

3 How people use introspection to
model Go players

Every Go programmer who is also a good Go player
(and they usually are) is faced with an introspedive
problem. They use a lot of knowledge to play Go, but
they cannot tell the knowledge they use. It is even
worse, they build models of themselves they think to
be right, but that are in fact quite wrong. When they
write their first system, they give the system what
they think is useful Go knowledge. Then they make
the program play and are horrified by its play and its
obvious lack of very simple Go knowledge. Those
who can psychologically survive such a dramatic

experience (it is dramatic from the Go player point of
view, but it is even more dramatic from the phil o-
sophical and Socratic point of view : being faced to
one' s inability, or at least high difficulty, of knowing
itself), begin to look at the problem with less ®lf-
confidence. After alot of trial and errors and threeto
four complete cdhange of their models and rewriting of
their program, they usually come to work on their
program as described in Figure 1, incrementally re-
fining it.

Madhine Traceof
Knowledge \ | Madhine
Madhine Reasoning
Problem
/ Solving || Madine |
Go Solution 1
Problem \
Expert
Expert Expert Comparison
Problem | Soluti
Solving ution | +
Expert Compilation
A4
Expert Expert Expert Expert Focus
Generali zation F | Understanding [€] Observation of Attention

Figure 1

This is what comes out of talks with other authors of
good Go programs. This also what comes out from
my personal observation of someone aeating a com-
puter model of a Go player in my laboratory [Bouzy
1995. As people are only conscious of their short-
term memory, they do not have access to their long-
term memory, and therefore do not have a dired ac-
cessto their knowledge. To accessit they have to use
it. When the machine tries to solve a problem, it
shows the knowledge it has used to solve it. If the
machine fail s to solve it, and the expert succeel, then
the expert can dedde to focus its attention on the
trace of machine reasoning so as to find the knowl-
edge that the machine does not have and give it. So,
by observing the machine reasoning, the expert finds
the differences with its own reasoning and under-
stands what is the missing knowledge. When the
expert has discovered the knowledge that is misdng
to solve that particular problem, he tries to generali ze
it so that it can apply in many more situations. After
generalizing the knowledge, it transforms it into a
representation that can be dficiently used. Then it
adds the new knowledge to the machine knowledge,
and removes the knowledge that is no longer useful
due to the incorporation of new and more general
knowledge.

4 An implemented model of introspec-
tion

Figure 2 gives a general view of Introsped. When it

is compared to Figure 1, one @an notice that the hu-

man part of the process has been shifted to the ma-

chine. It is now the machine that is in charge to in-
trosped itself so as to improve itself. We will briefly

describe how it is done by succnctly explaining the
boxes and arrows of Figure 2.

Machine
Machine Problem Traceof
- ! Machine
Knowledge Solving Machine .
N - Reasoning
7y After the S(f)l uti (;n
After the
move
Go | move
Problem : Machine
Machine — Comparison
Problem Anticipated /‘
Solving [Machine I
New Knowledge| | Beforethe Solution Machine
move Focus of
Attention
| Machine Compila1i0n|
? l v
Machine Machine Machine_SeIf
Generalization Understanding [Observation
Figure 2

A Go problem is a Go baard asociated to a move. Go
problems comes from bodks, from recorded games
between people and from the games our system has
played. When given a Go problem, Introsped does
two things. First it deduces everything it can on the
board of the problem before the move, and find a lot
of anticipated machine solutions to all the problems
assciated to the board. Then it plays the move and
deduces the mnsequences of the moves, memorizing
its deductions into the trace of machine reasoning. It
also deduces everything he @an on the board after the
move. The board after the move is deduced of the
board before the move and of the move itself, using
the rules of the game of Go represented in first order
logic. So it finds a lot of solutions to the problems
asciated to the board after the move.

The system focuses its attention on the trace of its
reasoning when it has a surprise after a move. If it
did not succedl in solving a problem before the move
was played, and if it can solve it after the move was
played. Then the move enables to solve a problem,
and it did not seeit. So it has to focus its attention on
the processes that enabled it to solve the problem so
as to explain to itself why the move works.

The system observes its own reasoning if nothing
interesting was found before the move, and something
happened to be interesting and true after the move.
The system can deduce that it has failed to forecast
something interesting. It would be good for it to fore-
cast it in similar situations. So it observes its deduc-
tions 9 as to modify itself and be able to forecast it
next timein similar situations.

Machine understanding is the explanation the system
gives to itself of the reasons why the move works.
The system creates the explanation by going back-
wards in the dhain of deductions, replacing facts that
describe the board after the move by facts that de-
scribe the board before the move (the nonmonatonic-
ity of the domain due to the danges of the board
between each move is handled by having an explicit
representation of time: each move is associated to a
given time). Sometimes, multiple eplanations are
posdble to explain why a fact has been deduced. So

the explanation of the interest of the move is a tree
The system cuts the tree of explanations by eliminat-
ing the explanations that are subsumed by others at
the leaves of the tree An interesting fact can lead to
multiple explanations, and then to multiple rules to
add to the system knowledge. Machine generalization
is made by replacing some onstants in the explana-
tions by variables. The mnstants to generalize are
appropriately chosen by using the rules of the game
represented in first order logic. Machine cmpil ation
is the automatic ordering of the anditions of the
rules © as to minimize the time to match them [Ca-
zenave 1996q)].

After machine compil ation; some new knowledge is
available. This new knowledge is added to the sys-
tem's knowledge. The system is also able to forget
previously learned knowledge if it becmes useless
and harmful because it takes time to unify the corre-
sponding rules when their conclusions are already
deduced by other rules. It verifies that the new rules
added is more general than some of the previously
learned rules (It does it using unifications between
first order rules), if it is the case, it destroys the old
spedfic rules. This is the way it forgets the useless
and memory consuming old knowledge. Another
forgetting mechanism is a filter that is applied before
integration of rules to the system's knowledge. This
filter is used to avoid the utility problem of learned
rules [Minton 1988. The filter consists in metarules
that tells which rules are harmful. For example, it
systematically forgets the rules that conclude on a set
of forced moves which has a cardinality greater than
five. This is because forced moves are used at AND
nodes in the proof trees developed duing games, a
AND node with more than 5 branches has good
chances to fail. The other reasons is that the bigger
the list, the more wnditions are to be fulfilled, so
these rules are the ones that are the most likely to fail
and to add match time without being applied. This is
why it forgets them.

Introsped is able to anticipate the consequences of
moves on some goals, to reason about its own knowl-
edge and to bodstrap: it uses the knowledge it learns
to learn other knowledge. The expansion is dopped
by using metarules that enables it to forget rules of
low utility. The trace of machine reasoning is
equivalent to short term memorization. Our model is
consistent with the suggestion of [Minsky 1987, in
his chapter on consciousness and memory, he states
that self-consciousness concerns our thinking about
our recent thoughts. Introsped is equivalent to the
"meta-management” layer of the overall architedure
for conscious g/stems described in [Sloman 1997q].
In sedion 6, when explaining why unconsciousness
can be useful, we will briefly describe the equivalent
of the deli berative and reactive systems in Gogol (The
Go program written by Introspea).

5 A language and a metalanguage for
machine Introspection

Following the review paper by Barklund [Barklund
1994], a metalanguage is a language that can repre-
sent another language, called an objed language.
Introsped uses a completely dedarative logic lan-
guage. The order in which the rules of the programs
are fired does not change the final result of the pro-
gram. Introsped uses true negation, but not negation
as failure in its domain theory. Meanwhile, it uses
negation as fail ure to know that some sentence is not
a consequence of some knowledge [Konolidge 198§.
An interesting property of our metalanguage is that it
can represent itself, thisis quite important if a system
wants to reason at different metalevels. Self-reference
has been studied extensively by [Perlis 1985198§.
Other logic programming language such as Godel
[Hill & Lloyd 1994 have representations of them-
selves. A posdble extension of such types of self-
representable languages is to have a theory that rep-
resents itself, such autoepistemic theories are inter-
esting for formali zing agents upon their knowledge or
deductive cpabilities [Konolidge 1988. A lot of
examples of self references can be found in [Hofstad-
ter 1979. Autoepistemic theories are not yet used by
Introsped.

As example of some possghilities of Introsped, we
give arule and a metarule taken from our application
to the multi-agents smulation. Here is a rule de-
scribing the evolution o the simulation:

Vision_angle (?2n 1) :- Position_pedestrian (2n1 ?x
?y), Dx_angle (?n ?dx), Dy_angle (?n 2dy) , equal
(?x1add (?x 2dx)), equal (?yl add (?y 2dy)),
Identification_case (7n2 ?x1 ?y1), not_equal (?n2 -
1), not_equal (?7n1?n2).

Thisrule means that the emplacement that is one step
ahead of the pedestrian with angle T*PI/10 canna
be occupied by the pedestrian (Vision_angle (?n 1)).
This is due to the fad that the paosition o the pedes-
trian number ?nl is at location ?x,?y (symbols with
question marks are variables), and that a step in the
diredion o angle *h*PI/10 would make him move &
x+2dx,?y+2dy. Unfortunately, the number (?n2) of
the emplacament at ?x+?dx,?y+2dy is not empty (not
equal to -1) and nd already occupied by the pedes-
trian (not equal to ?nl).

There ae sixty rules that caculate dl the predicates
related to the choice of the orientation o the pedes-
trian in the simulation.

Example of a metarule eébou the monovaluation o a
predicate:

replace variable (r ?varl vard) :- rule (?r),
condtion (?r Identificaion_case (?varl var2 ?var3
)), condtion (?r ldentification_case (?var4 ?var2
wvar3)), not_the same (varl ?var4).

This rule means that there is only one posdble value
for eadh emplacament in the simulation. If the sys-

tem creaes a rule that contains two different vari-
ables for the same emplacement, then it replaces one
of the variables by the other one (?r is a variable
containing a rule, 2var is a metavariable containing
ancther variable, the metapredicate ‘condtion’' looks
for all the condtionsin rule % that match the given
predicate).

Metaprogramming in logic is a very useful tool for
program manipulation, but also for controlling logic
programs, for reasoning about knowledge, reasoning
about reasoning. All these abilities are very useful
when writing an introspedive symbaolic program that
improves itself by reasoning onits behavior.

6 Unconsciousness can be useful

Introsped memorizes its mental actions © as to be
able to olserve itself after. It can transform itself into
an unconscious program by compiling itself. The
benefit of being unconscious is that it is faster be-
cause it does not have to interpret and memorize its
behavior. The drawback is that it cannot introsped
itself anymore. The unconscious program written by
Introsped is named Gogol and consists of 1 000000
lines of C++.

When working in the unconscious mode, Gogol can
noticethat he fail ed to solve a problem, but he cannot
explain to itself why a move succeealed in solving the
problem. However Gogol can use this information to
automatically create new interesting problems for
Introsped (The knowledge of Gogol is the uncon-
scious equivalent of the knowledge of Introsped, so
the same moves aurprise both of them).

Gogol is not completely unconscious, he uses sme
self monitoring during his tree searches. He devel ops
AND/OR tree searches ®© as to solve problems in
games. While developing the search trees, he dy-
namically looks at the shape of the tree so as to
choase the leaf to develop. He chooses the leaf of the
tree that will prove the problem with the least work,
based on the number of leavesin his subtreethat still
have to be proved, this is based on Proof Number
search algorithm [Allis 1994.

In Gogol, there is a deliberative level that contains
knowledge on search and on strategic dedsion. There
is also a reactive level that use compiled knowledge
telling what moves to consider to solve a problem.
And finally, the meta-management level is very small
and consists in rule that tells which moves are sur-
prising, this level isthe one that enables to call Intro-
sped when appropriate and use a much larger meta-
management level. But Introsped is not used when
Gogol plays in competitions because Gogol has to
answer moves of the opponentsin 10 seconds.

7 Results

7.1 The tactical part of a Go program

Introsped has written the tactical part of the Gogol
Go program. The tactical part of the program is the
most important one. The program written by Intro-

sped enables Gogol to seled between 0 and 5 moves
that can achieve a spedfic goal. The mean number of
legal moves is 250 on a Go baard, it isimpossble to
search by looking at all the moves. So proving that
out of these 250 legal moves, only between 0 and 5
are useful dramatically reduces the complexity of the
search. When searching at depth n, instead of having
250" boards to evaluate, there are only a" baards to
evaluate with O<a<5. In the game of Go, n is often as
high as forty. The cmpilation in C++ enables the
program to run 60 times faster than the logic pro-
gram. The Go program plays a move in 10 seconds on
a Pentium 133 MHz, for each move it proves about
450 tactical theorems, each theorem requires between
4 and 600nodes in a search treeto be proved, at each
node of each treg the C++ program written by Intro-
sped is call ed to find the useful moves to try.

Gogol competed in the international computer Go
tournament held duing IJCAI97 together with 40
other participants. It finished as the best program
based on academic research, playing better that the
other programs diredly written by Artificial Intelli-
gence researchers and Go profesdonals. It has out-
performed commercial systems that have required
more than 10 person*years of work.

7.2 Modelization of pedestrian in a real-
istic multi-agent simulation

Introsped has also been used to rewrite the dedsion
part of a pedestrian in a commercial urban simula-
tion. It has written a C++ program that is 5 to 10
times faster than the original C++ program written by
the authors of the simulation.

Our goal is to credae redistic urban simulations in-
volving pedestrians, cars, pedestrians crossings and
many others urban agents. These simulations help
architedural designers in choasing architectural con-
figurations. A problem related to this dmulationisto
crede gents that have redistic behaviors and that
are dso efficient (a simulation may manage thou-
sands of agents at the same time, so modeling an
agent's behavior has to be rapid). Credaing a redistic
agent's behavior manually is hard becaise of the
grea number of cases and interadions that can take
place Some programmers have worked on pogram-
ming manually agents behaviors during months, but
some of the aents gill had urredistic behaviors,
leading to urredistic simulations. Moreover, the
model was very sensitive to changes in an agent: a
littl e and apparently unimportant change in an agent
could transform a working simulation into an urred-
istic one. Therefore, we have developed a program
that automaticaly improves the aents behaviors
given (1) some simple situations to avoid (a ca that
run ower a pedestrian, or a pedestrian that tries to
walk on another one) and (2) the rules of the simula-
tion. The rules that describes the world and the rules
describing the situations to avoid are written using
predicate logic. The program that automaticaly
writes the agents is written using metapredicates that
manipulates the predicate logic rules describing the

simulation. The metarules are in charge of writing all
the posgble rules that can lead to a situation to avoid
in the next steps of the simulation. This enables the
agents using these rules to be more redistic. The
advantage of creaing them automaticdly isto have a
lot of reliable, efficient and quickly designed rules.
The aedion d all the rules is made by repladng
some predicates in the rules that describe the situa-
tions to avoid, with their definitions contained in the
rules of the simulation. Our approach to automatic
agent improvement is efficient and can be used in
other contexts.

Simulating redistic agents behaviors is time on-
suming, espedally in simulations containing thou-
sands of agents. Another problem is that making
agents more complicated and more redistic makes
the maintaining o the program harder, and also
makes changes in the program difficult to handle.
The solution we found to overcome these two prob-
lems is to automaticaly creae dficient and redistic
agents from a dedarative description o their behav-
iors. The goal of the method that our system opti-
mizes is to find the move of eadt pedestrian in the
simulation. It is cdled very often and it is a time
consuming method.

Given the rules presented, our system wrote a C++
method that is much faster than the original method.
The rapidity of the synthesized program is one a-
vantage over the traditional programming approach.
Ancther advantage is that it is easier to modify the
behavior of an agent when it is written in a dedara-
tive logic language than when it is diredly written in
C++. The main reason for the success of this ap-
proach is that hand-coded programs have to be
maintainable and simple so that the programmer can
understand them, whereas our system does not have
this limitation. The darity of an hand-made program
is ometime & the price of its efficiency. Our system
writes long and urclea (for humans) programs, but
they are faster than hand-coded programs because dl
the specializations that can be made have been made.
Thus, our approach enables to write faster agents
simulations, and also enables to modify agents be-
haviors in an easier way than by dredly modifying
the C++ code of the agent. It would be interesting to
link this application to other work on synthesis of
agents [Petta & al. 1997 [Sloman 1997§.

7.3 A model with a lot of applications

Introsped has been used in many domains (games,
pedestrian simulation and management) and has dis-
covered, by introspedion, knowledge that is more
efficient than the knowledge given by experts. The
methods used in Introsped, creating efficient pro-
gram by self-observation can be applied in many
different domains.

8 Future work

Applying the system to itself has partially being done
and has given encouraging results. Learning to learn
[Schmidhuber 1994 and its parallel in our system:

being conscious of its own consciousnessis an excit-
ing area of development of our approach. Our current
research is about spedalizing and changing the rep-
resentation of the rules of the game by refleding on
the dficiency of its introspedive learning.

In [Trappl & al. 1997, inductive machine learning
and Case-based Reasoning are onsidered for pre-
venting the outbreak of wars or for ending them. We
believe that negotiations and compromises between
countries can be modeled as an abstract game. Using
our learning system for this game seems a promising
application. Our system is a kind of deductive learn-
ing system, so it would complete well the scope of
machine learning methods used on this problem. We
want to generalize our approach by applying it to
many other domains. The prevention of war domain,
and the synthetic agent domain sean to be promising
domains of application of introspedive learning
methods.

In [Sloman 1997a], some daracteristics that con-
scious g/stems dhould have are described, we tried to
analyze Introsped using these daracteristics. What
Introsped does : learn things, takes dedsions, make
plans, consider options, compare things, makes infer-
ences, notice proceses and relationships, classfy
things, forget things, feds puzzled, switching atten-
tion, can get happy/unhappy or envious (when play-
ing Go). What Introsped does not (yet): having new
sensory experiences, becoming angry or relieved,
rehearsing arguments, reminiscing, forming attach-
ment, acquire new tastes, having a new impulse to act
or think in a certain way.

9 Conclusion

Introsped is a (meta)system that builds better than
human systems in complex and well defined domains.
Introsped is a first step in the diredion of having a
more general model of consciousnessand learning. It
has the merit of being a running system that demon-
strate the usefulness and feasibility of a kind of ma-
chine self-consciousness Its great success is to be
able to create by introspedion, and given the rules of
the game, a Go program that is better than some
commercial Go program that have required more than
10 person*years of human consciousness and work.
Moreover, it is a general system that has given simi-
lar results in other domains. Creating implemented
models of consciousnessis a promising way of rap-
idly increasing the intelligence of machines. This
work is also a step towards integrating phil osophical
concepts and Al programs [Sloman 1995.

References

[Allis1994 - L. V. Allis. Searching for Sdutions in
Games and Artificial Intelligence, Ph.D. Thesis,
Vrije Universitat Amsterdam, Maastricht, 1994

[Barklund 1994 - J. Barklund. Metaprogramming in
Logic. Encyclopedia of Computer Science and
Tedhnology, eds. Allen Kent & James G. Willi ams,
Marcdl Dekker, New York, 1994

[Bouzy 19995 - B. Bouzy. Modélisation Cogntive du
Joueur de Go. Ph.D. Thesis, Université Pierre &
Marie Curie, Paris 6, 1995

[Cazenave 1996 - T. Cazenave. Automatic Ordering
of Predicates by Metarules. Metareasoning and
Metaprogramming in Logic Workshop, Bonn, 1996

[Cazenave 19960] - T. Cazenave. Systéeme d'Appren-
tissage par Auto-Observation. Application au Jeu
de Go. Ph.D. Thesis, Université Pierre & Marie Cu-
rie, Paris 6, 1996

[Dennett 19917 - D. C. Dennett. Consciousness ex-
plained. Penguin Press Allen Lane, 1991

[Hill and Lloyd 1994 - P. M. Hill, J. W. Lloyd. The
GOdel Programming Languag. MIT Press Cam-
bridge, Mass, 1994

[Hosdtadter 1979 - D. Hofstadter. Godel, Escher,
Bach : an Eternal Golden Braid. The Harvester
Press Hassocks, 1979

[Konolidge 1989 - K. Konolidge. Reasoning by In-
trospedion. in: P. Maes and D. Nardi (eds.), Meta-
Level Architedures and Refledion, North-Holl and,
Amsterdam, 1988

[McCarthy 1994 - J. McCarthy. Making Robats Con-
scious of their Mental States, in Mugdeton S.,
editor, Machine Intelligence 15, Oxford University
Press 1996

[Minton 198§ - S. Minton. Quartitative results con-
cerning the utility of Explanaion-Based Learning,
AAA188, p. 564-569, 1988

[Minsky 1987 - M. L. Minsky. The Saciety of Mind,
Willi am Heinemann Ltd., London, 1987.

[Perlis. 1989 - D. Perlis. Languags with Self-
References I: Foundaions, Artificial Intelligence,
25:301-322, 1985

[Perlis. 1989 - D. Perlis. Languags with Self-
References II: Knowledge, Belief and Modadity,
Artificial Intelligence 34:179-212, 1988

[Petta & al. 1997 - P. Petta, R. Trappl. Why to Cre-
ate Persondities for Synthetic Actors, in: Trappl
R., Petta P. (eds) Creating Personalities for Syn-
thetic Actors, 1997.

[Pitrat 1997 - J. Pitrat. Métaconnassance, Editions
Hermes, Paris 1990

[Robson 1983 - J. M. Robson. The Complexty of Go
- Procedlings IFIP - pp. 413-417- 1983

[Schmidhuber 1994 - J. Schmidhuber . On Learning
how to Learn Learning Srategies, TR FKI-19894,
Tedhnische Universitdt Minchen, 1994

[Sloman 1995 - A. Sloman. A Philosophical En-
courter, 1IJCAl 1995 Montreal, 1995

[Sloman 1999 - A. Sloman. Functiondism, News-
group sci.psychol ogy.consciousness 22 Feb. 1996

[Sloman 1997a] - A. Sloman. The Evolution o
What?, http://www.cs.bham.ac.uk/~axs, 1997.

[Sloman 1997] - A. Sloman. What sort of Control
System is Able to Have a Persondity ?, in : Trappl
R., Petta P. (eds) Creating Personalities for Syn-
thetic Actors, 1997.

[Trappl & al. 1997 - R. Trappl, J. Furnkranz, J.
Petrak, J. Bercovitch. Machine Learning andCase-
based Reasoning: Their Potential Role in Pre-
venting the Outbreaks of Wars or in Ending Them,
OEFAI-TR-97-10, 1997

