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Abstract—We investigate parallel optimization methods for di-
rect policy search, in the case of real-world problems originating
in games, using noisy game simulator, with noise originating in
the game design or in the multiplicity and randomization of
possible players. We consider optimistic, average and pessimistic
surrogates of the real fitness value, distinguishing exploration and
exploitation. We conclude that (i) population-control methods,
recently published in noisy optimization, perform greatly for
continuous parameters but deceptive noise models exist (ii)
uniform mixing of mutation rates combined with optimism in
front of uncertainty performs greatly in the case of categorical
unordered parameters or in front of those deceptive noise models
in continuous domains (iii) the method of seeds provides easy
significant improvements though, usually, it does not scale up
with the training computational power.
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I. INTRODUCTION

Given a game, let us have an algorithm (the game AI)
following a behavioral policy π, mapping states s to actions
a. We assume that the behavioral policy is represented by a
vector of parameters θ ∈ RN , and our goal is to find θ yielding
the highest winning rate for a game. The result (win/lose) is
observed long after the actions are taken, and in general it
is not possible to compute derivatives. Moreover, the games
we consider are not deterministic in general. Therefore, this
game AI tuning can be seen as an instance of noisy derivative-
free optimization: this is Direct Policy Search, with losing
rate as a loss function. The present paper is motivated by
the reproducibility crisis; and by the need for comparison
with the state of the art in recent innovative machine learning
papers using derivative-free optimization. Notably, several
recent papers [26], [20] use variants of evolution strategies (ES),
in particular in a noisy setting; we contribute to revisit this body
of work by including the ES with best known convergence rates
in the noisy setting [19]; by incorporating optimism in front of
uncertainty (OFU) [31]; and by taking into account the recent
progresses in terms of mutation rates in discrete settings [16],
[12]. We focus on numerically challenging cases, with a focus
on reproducibility: we open source our platform, compare with
many baselines, consider high dimension cases, work without
pixel-level inputs, with either expensive experiments (as for
Battleship with expensive maximum likelihood estimation) or
cases in which the signal over noise ratio is low due to highly

Fig. 1. Results on the game007 with simple linear controller, and neural
controller respectively. The dimension is moderate, resp. 12 and 21 - in
dimension 12 TBPSA fails (see Fig. 2 for more) and NoisyBandit is excellent.
We note the strong performance of Rotation-Invariant DE [23]. TBPSA
performed best for the neural net; this will be the case also for bigger nets
(Fig. 7).

stochastic games in which winning rates over a single game
are close to 50% (in GuessWho the dichotomy policy is a
strong baseline, in War picking up strong cards first is hard to
beat, in Flip the 1-ply search is almost optimal).

a) Contributions.: (i) For both continuous and discrete
cases, we combine optimism in front of uncertainty (OFU [22])
and evolution strategies (ES), and show that this combination
ES+OFU obtains superior results on a variety of games (see
Sec. III-B3 and Figs. 5 and 6). This ES+OFU approach was
never explored to the best of our knowledge. We incidentally
extend the FastGA algorithm introduced by [16] to the case
with domain {0, 1, 2, . . . , a− 1}N (compared to {0, 1}N ).

(ii) For continuous cases, we implement and test the
population control component introduced by [19]; we provide
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Fig. 2. How a dissymetric noise model can make TBPSA diverge. Left:
symmetric noise model, TBPSA wins easily; also against many optimizers
in [5], removed for clarity. Right: dissymetric noise model; TBPSA is
outperformed by the simple bandit. The noise model has variance Θ(1)
symmetric around the optimum in the former case; and with variance set to zero
when the first coordinate is < 0 (Θ(1)) otherwise) in the latter case. Dimension
1, sphere function, noise level 10. Details in the open source[5] (reproducible
by “python -m nevergrad.benchmark metanoise –plot –num workers 12” with
12 threads); experiments in higher dimension are similar.

an independent and real-world confirmation of its efficacy, in
particular where the parameterization of a game AI corresponds
to a neural network (see Sec. V-A and Figs. 1 and 7). We also
propose a minimal deceptive noise case reproducing a failure
mode of this approach (Fig 2); this failure was not apparent
in any of our neurocontrol experiments, but sometimes in test
cases involving less overparametrized control methods (Fig. 3,
5).

(iii) For categorical unordered cases, we implement and test
the hash-seed method introduced in [9], employed to win the
world bridge competition [30]; this method optimizes the seeds
of randomized subcomponents of a game AI. We experimentally
show that this method is effective in the case of partially-
observable games, with surprisingly good performance with
low budget but not that much improvement for larger training
budgets; and less convincing results in fully-observable games
for which existing methods are probably more suitable (See
Sec. II-B and Fig. 4).

II. NOISY DERIVATIVE FREE OPTIMIZATION

A. Different features of optimization problems

The tuning problem is defined by an AI with parameters, and
a loss function measuring the performance. We here assume a
fixed opponent or a fixed distribution of opponents, and the loss
function is the proportion of lost games. The following features
of Direct Policy Search problems are discussed in the present
paper and correspond to different cases. Categorical unordered
vs continuous: whether the expected loss function, as a function
of each parameter separately, is reasonably smooth. When the
problem is categorical unordered, similar parameters can lead
to very different loss values, and in this case we are basically
solving a discrete optimization problem. This is the case, for
example, when we use the hash-seed method (Section II-B); we
get unordered variables with a huge alphabet. Noise: whether
the objective function is noisy, and presents non-negligible
variance even when approaching the optimum. This is the
case when the game has a non-deterministic nature, or optimal
policies are stochastic. Inoculation: when there is a baseline

that we can reproduce with a specific value of the parameter
vector. Without loss of generality, we then adapt (by translation)
the behavioral policy such that θ = 0RN corresponds to this
baseline, and we use it as a starting point for direct policy
search.

B. Hash-openings with random seeds

In this section we describe the hash-seeds method of
[9] that allows building easily an adequate parameterized
policy function π: let us consider an algorithm based on a
randomized subcomponent following a random seed, such as
Monte Carlo Tree Search (MCTS) or Monte Carlo (MC, e.g.
for defogization). We can define a SeedAI(π) as in Algorithm 1.
This approach is successful and allows designing better game
AIs [8], notably winning the bridge world competition [30].
We note that in this case, optimizing SeedAI is a problem with
categorical unordered variables. The policies for several games
are implemented using this approach, for our experiments in
Section V. We will observe in the experiments (Sec V-D, Fig. 4)
that optimizing the random seed in MC(TS)-based approaches
leads to significant improvements in many cases, within a few
hundreds games of trainings, though unfortunately the method
often plateaus and does not scale up to dozens of thousands
of games.

III. ALGORITHMS

Our algorithms are presented in Table I.They are defined
by an exploration method (providing the next points at
which the objective function has to be evaluated), and by
a recommendation method, specifying what is the approximate
optimum as provided by the optimization algorithm when the
budget of exploration points is elapsed.

A. Continuous and Discrete (1 + 1) evolution strategy

A (1 + 1) evolutionary search is defined as follows in the
continuous case [27]. θ0 ∈ RN is the initial parameter vector,
σ0 is the initial step-size in R, and at each iteration we define
θ′n = θn + σnNd with Nd a standard Gaussian in dimension
d. Then θ′n is evaluated; θn+1 is the best among θn and θ′n; if
θn loses we decrease the step-size by setting σn+1 = 2−

1
4σn;

otherwise we increase it by setting σn+1 = 2σn.
A (1 + 1) evolutionary search is defined as follows in the

discrete case [15]. Let θ0 ∈ RN be the initial parameter vector
of our policy π. Let f : RN → R be a loss function. For each
time step t, we define θt+1 as follows: (i) choose a mutation
rate pt (see below). (ii) randomly mutate each coordinate θt,i
with probability pt, obtain candidate parameter vector c (in the
present paper, given that we have many possible values per
categorical unordered variable, mutated coordinates are just
uniformly independently randomly drawn). (iii) if f(c) < f(θt),
set θt+1 = c, otherwise θt+1 = θt. This procedure allows
optimizing an individual vector θ according to the loss criterion
f . This procedure is often extended to a population of λ
individuals, to evolve many vectors θ simultaneously in parallel.
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Fig. 3. Flip game. No algorithms managed to outperform the baseline, but all algorithms which do not diverge far from it are based on evolutionary
programming + OFU. Surprising results for TBPSA here (converging very decently and then diverging) inspired the deceptive function used in Fig. 2.

Game Winning Cherry-picked and
rate verified win rate

Partially observable games
Battleship 56% ± 2% 57 %

Battleship2 54% ± 2% 57 %
Phantomgo 52 % ± 2% 59 %
Phantomgo9 53 % ± 2% 55 %

Golois 70 % ± 1%
Metawar 57 % ± 1%

Fully observable games
Knightthrough 52 % ± 2% 53 %

Atarigo 53 % ± 1%
Nogo 52 % ± 1%

Breakthrough 51 % ± 1%
Domineering 50 % ± 1%

MisereBreakthrough 49% ± 1%
MisereDomineering 50% ± 1%

MisereKnightthrough 53% ± 1%

Fig. 4. Performance obtained by the hash-seed method with budget 300
(except Metawar:1000). In all these games the optimization algorithm had
little impact on the result; we present the average result for the maximum
budget we ran, except for games for which there was a big gap, in which case
we cherry-picked and verified the performance of the best. Improvements are
negligible for fully observable games, but interesting in partially observable
games for which learning is by nature hard.

1) Mutation rates selection methods: Portfolios of mutation
rates and FastGA.: The mutation rate selection procedure can
have a substantial impact on the success of evolution-based
algorithms. danglehre investigated pt uniformly drawn in a
portfolio {1/N, . . . , (N − 1)/N} of mutation rates. This is
termed PortfolioDiscrete(1 + 1). fastga mathematically advo-
cated FastGA, a mutation rate randomly drawn in {1/N, . . . , 12}
according to a power law; we extend it to randomly drawn in
{ 1
N ,

2
N , . . . ,

N−1
N } with a power law; this extension is natural

in the context of switching from {0, 1}d to {0, 1, 2, . . . , a−1}d.
This algorithm is termed DoubleFastGADiscrete(1 + 1).

B. Algorithms for noise management

1) Non-adaptive resampling: If the loss function f is noisy,
then comparing two points may not be reliable. Various papers

Fig. 5. Results on the Guesswho game (standard case, with 24 characters).
We display a subset of the methods from [5] that we applied. Non presented
results on the 96 characters are somehow similar: all strong methods use
a noisy adaptation of ES; in this low dimensional noisy context, the best
methods treat variables as if they were unordered and even bandits (which
do not use any structure of the problem) perform reasonably well. TBPSA
performs surprisingly poorly, as in Fig. 3; these results inspired the deceptive
model in Fig. 2.

Fig. 6. Game of War: methods based on discrete ES + OFU dominate, in
particular with portfolios of mutation rates, except the great score of the
simple bandit method (which is basically random search + OFU). We also
experimented the variant Batawaf with similar results though NoisyBandit was
less impressive.

advocate resampling and averaging [28], [10] for reducing the
noise around the optimum; we implement the O101 heuristic
of [10] (resampling 1.01n times for the nth explored point)
as well as many other algorithms all available open source
in nevergrad. We do not provide further details as these methods



4

Fig. 7. Results on the game007 with neural controller with 2 hidden layers; unpresented experiments with 3 hidden layers (39 parameters) are similar and not
presented. The number of weights is moderate, respectively 30 and 39. TBPSA performed best.

Algorithm 1 SeedAI: Game AI using hash-opening method.

Input: a state s
Parameters: hash function H , list of N seeds θ, a randomized
policy π so that action = π(state, random seed)
r̂ ← H(s) % N
â← π(s, r̂)
return â

Note: π might be a policy based on MC or MCTS or any stochastic
decision method. θ is the N -dimensional parameter that will have to
be optimized by Direct Policy Search.

were not the best performers in our experiments.
2) TBPSA (continuous case): Another approach is to

evaluate points further away (stronger mutation rate) and
perform small steps in the best direction, relying on the
longer-range trends of the objective landscape. Several papers,
in the continuous setting, have followed this “mutate large,
inherit small” principle (MLIS [3]), consistently with theoretical
results in [1], [13], leading to fast convergence rates [19]
- not that far from concepts in [17]. In the following, we
describe two methods that we study experimentally in Section
V. Such an approach is implemented in pc-CMSA-ES [19].
Besides other traditional features of evolutionary algorithms
with covariance matrix, the method features a population
control (PC) component, regularly adjusting the size of the
population with a statistical test. In addition, it provides, as a
recommendation, the center of the current distribution estimate,
rather than the individual that got the best objective value. We
implement in our platform a similar version of this component
(Alg. 3); this method outperforms SPSA [24] on noisy sphere
functions testbeds [5].

TBPSA, as well as pc-CMSA-ES and consistently with
MLIS, uses the center of the current Gaussian as a recommenda-
tion. Another version, NaiveTBPSA, designed for rugged noise-

TABLE I
OUR OPTIMIZATION ALGORITHMS. IMPLEMENTATIONS AVAILABLE IN [5].

Algorithms, variants and references
Continuous (1 + 1)-Evolution Strategy:

• Original: [27], [25], [14]
• Naturally adapted to (1, λ) by the ask and tell interface [4]
• Noisy variants (Section III-B3)
• Step-size self-adaptive ES (SSSAES [4])

Discrete (1 + 1)-Evolution Strategy:
• Original: [25]
• Portfolio / uniform mixing of mutation rates [12]
• FastGA [16]
• Noisy / optimistic variants (Section III-B3, Table 3)

TBPSA (Test-Based Population Size Adaptation):
• Original: [19]: population control, center of Gaussian as a

recommendation policy.
• Naive variant: best-so-far recommendation policy.

NoisyBandit:
• Original: UCB [2].
• Progressive Widening [11], [31] (note: PW is used in all our

experiments).

Differential Evolution (DE):
• Original: [29]
• Rotationally Invariant (RotInvDE): [23]

Particle Swarm Optimization (PSO):
• Original: [21]

free cases, uses the best point so far rather than the Gaussian
center; NaiveTBPSA keeps the PC mechanism. Experiments
show consistently high performance for TBPSA in continuous
noisy cases (Sec. V-A, Fig. 7), in particular in high dimension
when everything else fails. However, after initial convergence,
TBPSA sometimes diverges (Fig. 3); an outcome of the present
paper is the understanding of this phenomenon, as shown in
Fig. 2.
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Algorithm 2 Test-based population size adaptation. Adapted
from [19].

Input: population size λ, loss function f
P1 := losses of the 20% oldest of the last 5λ points
P5 := losses of the 20% most recent of the last 5λ points
mean(P1)-mean(P5) >

2
√

var(P1)
λ−1

+ var(P2)
λ−1

λ← 2λ

λ← max(4d, 2−
1
4 λ) where d is the dimensionality

Note: the minimal population size is equal to 4d where d is the
dimensionality of the parameter θ.

Algorithm 3 OptimisticNoisy (resp. Noisy) algorithm based
on an existing algorithm A.

Input: loss function f , budget (max. num. evaluations of f ).
Initialize at the empty set an archive of npoints vectors (θ)i; npoints
:= 0.
nask := 0
nask < budget
nask < n3

points

launch one more evaluation of the best optimistic point
(resp. of a random (θ)i in the archive)
increment nask
nask ≥ n3

points

Take care that A sees pessimistic bounds as objective values in its
archive.
Use A for choosing a new point θ for evaluation.
add θ to the archive, increment npoints by 1.
return as a recommendation the best pessimistic point θ∗

3) Adaptive resampling: progressive widening and optimism
in front of uncertainty: Methods presented here can be applied
for adapting evolution strategies, both in discrete and in
continuous domains, to cases with stochastic objective values.
Given the archive (θi)0≤i≤npoints

of all points at which the
objective function has been evaluated at least once, we consider
statistics over the loss evaluations f(θi), where θi has been
evaluated nevals,i times and an estimate of the standard
deviation is σi: (i) the optimistic bound µi − σi√

nevals,i−1
, (ii)

the pessimistic bound µi + σi√
nevals,i−1

. This lets us augment

an existing algorithm A to its “OptimisticNoisy” or “Noisy”
counterpart (Alg. 3). Both use progressive widening as in [11],
[31]; the “Noisy” counterpart uses, for exploration, a uniform
allocation among visited points whereas the “OptimisticNoisy”
counterpart uses upper confidence bounds for distributing
allocation. The way new arms are pulled depends on the original
algorithm, but using the pessimistic bounds as objective values
when a concept of best so far is needed. As pointed out in
[6], the superiority of the optimistic counterpart is not obvious
given the asymptotic optimality of uniform allocation for pure
exploration bandits; however, consistently with the experiments
in [6], Optimism is validated in our experiments.

Using such optimistic and pessimistic bounds is inspired
by the Upper Confidence Bound [2] method; increasing

the size of the pool when nask > n3points follows the
Progressive Widening method [11], [31]. With these
modifications, the method PortfolioDiscrete(1 + 1)
becomes PortfolioOptimisticNoisyDiscrete(1 + 1)
and DoubleFastGADiscrete(1 + 1) becomes
DoubleFastGAOptimisticNoisyDiscrete(1 + 1). We observe
in the experiments (Sec V-A, Fig.5) that these algorithms
perform well in continuous noisy cases, in particular in the
inoculated cases.

C. Adaptation of Differential Evolution: discrete case, noisy
case, genetic crossover, and inoculation

We use Differential evolution (DE, by de) in its curr-to-
best form: for a current individual i, we define a donor i +
F1(a− b) +F2(best− i) with a and b randomly drawn, with
best the current best individual, and with F1 = F2 = 0.8;
then, each parameter is mutated to the value of the donor with
independent probability CR = 1

2 , producing a candidate. (a−b)
preserves diversity in the population, while (best− i) improves
the objective values of the population. DE is frequently a
component of winning methods in derivative-free optimization
competitions. Rotationally invariant versions are based on crde;
the exactly rotationally invariant form uses CR = 1 but then
all candidates lie in the vector space generated by the initial
population; this can be mitigated by using a big population (BP
suffix), i.e. for us 7 times the dimension; or by using CR = 0.9
(almost rotationally invariant DE), which performed quite well
in many cases. We designed adaptations of DE for the discrete
case and we included genetic crossovers in DE, as well as
specific initialization schemes and inoculation methods; results
were reasonably good but no game changer for problems as in
the present paper so that details are reported in [5].

IV. GAMES AND BASELINES

AtariGo is a variant of Go in which the first capture wins.
PhantomGo is another variant, with partial observation. Golois
is a strong implementation of PhantomGo. Knightthrough,
Breakthrough and Domineering are classical board games from
computer game competitions; their Misere versions correspond
to “who lost for the classical version wins for the Misere
version”. War is a card game in which the only action consists
in choosing the order in which cards are picked up when a ply
is won. Batawaf is a variant of the War game, usually played
by small kids for learning elementary mathematics. Flip is
another card game, in which players must get rid of their cards
first; the traditional version is not turn-based but our version
is. Game007 is sometimes known as “standoff James Bond”;
we consider the variant in which blocking 5 times in a row is
forbidden.

In Battleship, the 20 first parameters are seeds for randomly
drawing a position; a policy is made stochastic by using a
randomly drawn seed among these 20 seeds. The next 20
parameters are also seeds, for the randomized shooting part: the
shootings are chosen by sampling, randomly, several possible
hidden states (defogized states) and picking up one of the
positions with maximum frequency of being a hit over the
defogized states. Battleship2 uses a bigger board (10x10 instead
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TABLE II
PARAMETRIZATION OF OUR AIS.

Golois seeds for Monte Carlo for time step i for i ∈ {0, 1, 2, . . . , 9}
Atarigo Seeds for Monte Carlo Tree Search:

(Misere-)Breakthrough one seed for each of the 50000 possible
(Misere-)Domineering values of hash(state) modulo 50000

(Misere-)Knightthrough
Nogo

Battleship 20 seeds corresponding to 20
Battleship2 different pure policies for choosing positions

and 20 seeds corresponding to the
stochastic defogization for shooting

War Seed for each of 3380 randomly drawn permutations
Batawaf (resp. 1080 for Batawaf) used for choosing the order (see text)

depending on 3380 distinct contexts.
Game007 12 parameters of a linear mapping building logit for 3 actions

using 4 descriptors (my munitions, your munitions, my number
of successive protections, your number of successive protections)

Game007NN 21 parameters of a 1-layer neural net with same inputs/outputs
Game007DoubleNN 30 parameters of a 2-layers (...)
Game007TripleNN 39 parameters of a 3-layers (...)

Flip 3249 parameters of a quadratic value function used in 1-ply search

of 7x7), more boats (sizes 2, 3, 3, 4, 5 instead of 4, 5); it is
the most classical version of Battleship. “Meta” versions of
games correspond to cases in which the reward is averaged
over 5000 games, i.e. the noise is almost cancelled. In War
or Batawaf, each parameter is a seed, used for generating a
permutation, corresponding to one category of states; there
are 3380 categories of states 1. The permutation is the order
in which cards are picked up when we win a ply; zero
corresponds to pick up best cards first when winning a ply,
which is a strong baseline[7]. The parametrizations of our
algorithms are presented in Table II. For several games
(AtariGo, Breakthrough, Domineering, Golois, and Misere
variants thereof) the default policy is to use a randomized
seed for launching the MCTS: the parameters are the seeds
for each bucket of hash codes as detailed in Section II-B. The
baseline for Game007 is to randomly uniformly draw a legal
non-stupid action;for Battleship and PhantomGo, the baseline
uses a true random seed in the Monte Carlo defogization.

V. EXPERIMENTAL RESULTS

Unless stated otherwise, all experiments are performed with
population-size 30. For this we use the ask-and-tell interface
of our open source platform[5], which naturally extends
algorithms to the parallel case; for example, even the (1 + 1)
evolution strategy becomes population-based and is actually a
(1, λ) asynchronous evolution strategy (see terminology of
evolution strategies in Beyer:bookES). We do not discuss
MetaGuesswho and MetabigGuesswho, which are continuous,
low dimensional and noise-free and for which many methods
reach the same performance, namely 38% and 40% losing rate
respectively, incidentally confirming that the dichotomy policy
is suboptimal.

A. Continuous and noisy, with/without inoculation

Our first experiment is on the Shotgun007 game (see Figs.
1 and 7), where the parameters correspond to the weights of a
neural network, initialized randomly (no inoculation); in this
case, we observe that TBPSA is among the best-performing
algorithms. We note that RotInvDE can also be excellent in

1States correspond to the ply and the number of remaining cards; 3380 =
10 × 26 × 13, 10 possible values for the number of remaining cards in
{0, 1, . . . , 8,≥ 9}, 26 possible values for the (even) number of cards in the
ply, 13 possible values for the best card in the ply.

TABLE III
GAMES USED IN THE PRESENT PAPER. COMPUTATION TIMES VARY FROM

SECONDS (MOST GAMES) TO MINUTES (PHANTOMGO) AND HOURS
(BATTLESHIP). ALL GAMES WHICH ARE TUNED WITH MORE THAN 10000

PARAMETERS, AS WELL AS BATTLESHIP GAMES, CORRESPOND TO THE
HASH SEED METHOD. FOR BATTLESHIP VARIANTS, THE SEEDS

CORRESPOND TO SEVERAL PURE POLICIES USED IN A COMBINED MANNER,
SO THAT WE OPTIMIZE A MIXED POLICY. FOR GOLOIS, WE USE ONE SEED
FOR EACH TIME STEP OVER THE 10 FIRST TIME STEPS, INDEPENDENTLY OF

THE STATE (IN MANY CASES THE STATE CONTAINS NO INFORMATION
DURING THE FIRST TIME STEPS IN PHANTOMGO); WE USE A FAST SETTING

WITH TIGHT TIME CONSTRAINTS.

Game Dimension Is scrambled 0 is great Noisy Section Figure
flip 3249 False True True V-A 3

GuessWho 4 False True True V-A 5
BigGuessWho 4 False True True V-A 5

MetaGuessWho 4 False True False V
MetaBigGuessWho 4 False True False V

Game007 12 False False True V-A 1
Game007nn 21 False False True V-A 1

Game007doublenn 30 False False True V-A 7
Game007triplenn 39 False False True V-A 7

Battleship 40 True False A bit V-D 4
Battleship2 40 True False A bit V-D 4
phantomgo 20000 True False A bit V-D 4
phantomgo9 20000 True False A bit V-D 4

batawaf 1080 True True True V-B 6
war 3380 True True True V-B 6

metawar (5000) 3380 True True False V-C 4
atarigo 50000 True False True V-D 4

breakthrough 50000 True False True V-D 4
domineering 50000 True False True V-D 4

knightthrough 50000 True False True V-D 4
misereBreakthrough 50000 True False True V-D 4
misereDomineering 50000 True False True V-D 4

misereKnightthrough 50000 True False True V-D 4
nogo 50000 True False True V-D 4
golois 10 True False True V-D 4

spite of not being designed for noise; this is a surprise for
future investigation. Our experiment on the Flip game (see Fig.
3), where the (1-ply-search baseline) inoculation is strong -
possibly optimal - shows that our ES+OFU algorithms are stable
and do not diverge when initialized with a good starting point,
as they do not discard this inoculation during optimization.
Similarly, our experiment on GuessWho (see Fig. 5), where
the (dichotomy baseline) inoculation is good but not optimal
also shows the performance and stability of ES+OFU.

B. Categorical unordered with high noise and inoculation

A problem with several categorical unordered variables is
not the same as a bandit (fully unstructured) problem; we still
have some structure in the combination between variables, i.e.
the problem might be fully or partially separable [18]. We
now consider the game of War and its variant Batawaf (Fig.
6); there is inoculation because 0 is the known policy [7]
consisting in making best cards more frequent by picking up
the best cards first when winning a ply. Our variants of DE
aimed at dealing with noise (details in [5]) did not perform
well, methods from [5] using resampling also failed; TBPSA,
which is by nature designed for continuous ordered variables
does not make any sense. Again, the best methods for this
game are ES (FastGA and Portfolio) augmented with OFU.
We observed that optimism generally improved noisy methods.



7

TABLE IV
CONCLUSIONS.

Settings, and recommended method
Categorical unordered noisy optimization, or
Continuous noisy with dissymetric noise (Fig. 2), or
Continuous noisy optimization with strong inoculation:

• Use uniform mixing of mutation rates [12] and optimism in
front of uncertainty ([31], Sect. III-B3).

Policy based on a randomized subcomponent such as MC or MCTS:
• Use random seed optimization with the hash-opening method

of [9], and optimize as above.

Continuous noisy optimization without too much noise disymetries
(incl. overparametrized neurocontrol):

• Use population-control as in [19].

C. Categorical unordered noise-free with inoculation

Compared to the original War game, we here consider
Metawar, i.e. the game of War averaged over 5000 games
(Fig. 4), so that noise is considerably reduced. In this reduced
noise setting, methods which fight noise perform poorly as they
use the computational budget for dealing with non-existent
noise. All other methods perform nearly equivalently.

D. Categorical unordered without inoculation

We here refer to Battleship, Phantomgo, Golois, Atarigo,
Nogo, Breakthrough, Knightthrough, and misere variants.
We observed that the hash-seed method provides significant
improvements especially in partially-observable games, but less
so in fully-observable games (Fig. 4).

VI. CONCLUSION

A short version of the conclusion is in Table IV.
a) Merging ES and OFU.: Our simple methods for adding

noise management into ES are surprisingly powerful and
compatible with both discrete and continuous settings. Our
“optimisticnoisydiscrete1+1” performs well on a wide range of
problems. This is just a resampling rule (namely, “resample
the current point with best optimistic bound if the number of
distinct points is more than the cubic root of the number of
ask”) plus “use the best point from a pessimistic bound point of
view for operating the mutations” and “use the best point from
a pessimistic bound point of view for the recommendation”- a
fairly simple modification of the classical evolution strategy.
The portfolio version (corresponding to the mixing in [12])
performs great overall. This is particularly visible in Fig. 5
and 6 (all algorithms with this add-on perform well and almost
only them). All algorithms based on non-adaptive repetitions in
[5] were outperformed in nearly all cases. ES with OFU were
even the best methods in some continuous cases, namely when
the noise model makes TBPSA unreliable - which happened
in real world cases first and was then explained by a deceptive
function as in Fig. 2.

b) Population control for noisy continuous optimization.:
Test-based population-size adaptation (TBPSA in the present
paper), directly inspired from [19], performs well for contin-
uous noisy optimization when the variance at the optimum
is significant and there is no strong inoculation; in artificial
experiments[5], but also real-world experiments in Fig. 3, 1,
7. There are however cases in which TBPSA diverges after
coming close to the optimum, presumably due to “domain
dissymetry” of the noise (Fig. 3, 5). Importantly, most artificial
functions used in optimization papers have (almost) symmetric
noise models (i.e. same noise for candidates on the left of
the optimum and on the right of the optimum, with left/right
corresponding to the first axis); from a detailed investigation
of our experimental results, we managed to build a simple
deceptive function for population-control ES (Fig. 2). Other
methods for noise in continuous domains: We point out a
few great results of rotationally invariant DE (RotInvDE), with
CR = 1; this surprising result (no reason for this algorithm to
converge in the noisy setting) is left for further investigation.
Bandits methods[31], in spite of their incredible simplicity and
their ignorance of the domain structure, were sometimes not
that bad.

c) The simplicity and effectiveness of hash-based meth-
ods.: The seed method (Table 1) is surprisingly effective for
learning a policy when the problem is untractable otherwise.
Significant and sometimes strong benefits are obtained with a
few lines of code. For example, we get significant improvements
in Fig. 6 and 4 (game of war and variants, in which the baseline
is an almost optimal policy; Battleship game, in which the
baseline already uses a defogization method for choosing where
to shoot); Fig. 5 for which the baseline is the usual dichotomy
policy; also a few other fully and partially observable games
in Fig. 4. The method failed in rare cases. With the game of
War, we have an application of the seeds method which does
not involve MC or MCTS.
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