
An Account of a Participation to the 2007 General Game Playing Competition

Jean Mehat and Tristan Cazenave
LIASD, Dept. Informatique, Université Paris 8
2 rue de la liberté, 93526, Saint-Denis, France

jm@ai.univ-paris8.fr
cazenave@ai.univ-paris8.fr

Abstract

We describe the participation of our program to the 2007 Gen-
eral Game Playing Tournament. It finished at the third place
of the qualifying tournament. After an informal description
of General Game Playing and of its Game Description Lan-
guage, we present in details the structure of our player as it
participated to the qualifying phase of the tournament. We
then present the context of this phase of the tournament and
analyze the performance of our program. Finally, we present
the way it was modified to participate in the final phase and
give a qualitative assessment of its playing strength.

Introduction
General Game Playing tries to address the shortcomings of
current specialized game playing programs that cannot adapt
to other domains than the game they were programmed for.
The goal is to find general algorithms for games, and to have
more general intelligence than game-specific programs.

This paper describes the participation of the general game
program Ary to the 2007 General Game Playing Tourna-
ment. The emphasis is on the participation to the com-
petition. We also advocate the use of Monte-Carlo meth-
ods. The second section is about the Game Description Lan-
guage. The third section details the structure of Ary. The
fourth section compares Ary to the other competitors. The
fifth section describes the tournament. The sixth section an-
alyzes the performances of Ary. The seventh section deals
with UCT.

The Game Description Language
The Game Description Language (GDL) is used to describe
a game. It is based on first order logic, hence missing arith-
metic. We describe it informally with a very simple exam-
ple. We are using the KIF notation of the GDL language,
that is reminiscent of the Lisp syntax.

The figure 1 contains a representation in GDL of a binary
version of the simultaneous play game My father has more
money than yours (Berlekamp, Conway, & Guy 1982)

The rules indicate that there are two players (left and right,
enumerates the legal moves (telling a figure), identify the
terminal nodes (after the first and only move) and the reward

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: The GDL representation of simultaneous play, bi-
nary version of the game My father has more money that
yours.
(ROLE left) (ROLE right) ; players
(LEGAL (DOES ?player (tell 0))); moves
(LEGAL (DOES ?player (tell 1)))
(<= (NEXT (value ?p ?x)) (DOES ?p (tell ?x)))
(<= TERMINAL (TRUE (value ?p ?x)))
(<= (other ?x ?y) (role ?x) (role ?y)

(DISTINCT ?x ?y))
(<= (GOAL ?p 0) (TRUE (value ?p 0))

(other ?p ?op) (TRUE (value ?op 1)))
(<= (GOAL ?p 50) (TRUE (value ?p ?x))

(other ?p ?op) (TRUE (value ?op ?x)))
(<= (GOAL ?p 100) (TRUE (value ?p 1))

(other ?p ?op) (TRUE (value ?op 0)))

for each player: 0 for the smaller figure, 100 for the greatest
and 50 in case of tie. The description of this game does not
need the INIT keyword, used to describe the initial state of
the board.

In the following, we designate the current situation of the
game as the board status, even for games that are not played
on a board like the one described in 1.

The structure of Ary
The version of Ary that participated in the qualifying phase
of the tournament is written in C. It consists in about 4300
lines of code, including comments and self-test support. It
uses a Prolog interpreter as an inference engine.

Data structures used in Ary
The final objects are atoms, used to represent all the con-
stituents of the game description: keywords of GDL, oper-
ators of the logic, predicates, names, integers and variables
used in the description of the game. On its creation, each
atom receives a random 64 bits hash key.

The final objects are combined in lists, represented with
Cons cell containing two pointers on the head and tail of the
list. Each Cons cell has also a hash code, obtained with a
combination of the hash codes of its head and tail, that is
used to compare quickly lists that differ (identical lists have



to be compared in the EQ sense of Lisp, as different lists
may have the same hash code) and find them in hash tables.
We did not implement garbage collection: the core of the
program identify lists that won’t be referenced and add them
explicitly to the free list.

Most of the lists are stored in tables of list. The table
contains an array and a hash table. In the array, the elements
are stored sequentially, giving an easy way to iterate over all
the elements of the table. The hash table allows to quickly
verify if an element is already present in the table. When a
table is full, it is reallocated with a greater number of slots.

A node data structure was added for representing the
move tree built by the UCT algorithm. It contains a table de-
scribing the current board status, a table of legal moves for
each player, the current evaluation for each player, a marker
to identify terminal nodes and when useful an array of point-
ers to the children nodes.

Interface with Prolog
After trying without much success to implement in C a quick
pattern matcher that would be able to apply the rules of the
games, we made the choice to use a Prolog Interpreter as an
inference engine. We used SWI-Prolog because of its avail-
ability and good interface with the C language (Wielemaker
2003). We received a gentle help of the principal developer
of SWI-Prolog when we encountered problems with over-
flow in the Prolog stack.

When translating the game description into its internal
form, Ary makes a few transformations to ensure an easy
interface with Prolog: characters that are invalid in Prolog
names are replaced by something that the interpreter accepts,
provision is taken to avoid name clashes with predicates al-
ready defined in the interpreter. Clauses in the right part of
the theorems are re-ordinated to avoid problems encountered
on various games descriptions and to try to obtain better per-
formance: clauses without variables are made to come first,
and the DISTINCT clauses are pushed back after the first
clauses using its variables.

In certain game descriptions, there are predicates that are
not recognized as such by the Prolog interpreter; for exam-
ple, in our simple game, the predicate value, that is used
only after the first (and only) move. To avoid an error of Pro-
log in these cases, each functor (in the Prolog sense) used in
the game description is used to assert and then retract an ar-
bitrary assertion with the correct arity.

After loading the game, it is translated into the Prolog lan-
guage by a simple recursive descent that treats only specif-
ically the implication and distinct forms of the GDL de-
scription. All of the other forms of the description as (FOO
A B C) in internal form are simply rewritten in Prolog as
foo(a, b, c). Similarly, we have a function that is used
to translate back the answers of the Prolog interpreter to the
internal form.

The game description in Prolog is sent once for all to the
interpreter, with the initial board status. The Prolog inter-
preter is then used to identify terminated games, find the
scores of the players in these states, enumerate the legal
moves and the consequences of moves on the board status,
and to modify the image of the board status in the interpreter.

Terminated games are identified by making the Prolog
interpreter try to demonstrate terminal. Scores are cal-
culated by reading the answers to the goal(X, Score)
question for each player and consulting the value of the
Score variable.

Similarly, legal moves are enumerated by reading the an-
swers of the Prolog interpreter to does(X, Move) for
each player x and the new board status is found by assert-
ing the moves, reading the values of the variable X in the
answers to the next(X) question and retracting the moves.
For these two questions, given the GDL description, the Pro-
log interpreter may return an answer many times; the iden-
tification and elimination of these duplicate cases is done in
C.

The transition from one board status to another is done in-
crementally: Ary transmits to Prolog the retraction of what
is present only in the old state, and asserts only what ap-
pears only in the new state. Unmodified characteristics of
the board status do not incur exchange with the Prolog in-
terpreter. So in board games like Tic Tac Toe where a move
modifies the status of one cell described by one assertion
only, the transition from one board status to the next is done
with one retraction and one assertion.

Monte-Carlo implementation
The Monte-Carlo implementation is straightforward: until
the expiration of the thinking time, the current board status
is loaded into the interpreter, legal moves are generated, and
a random game is played until arriving in a terminal board
status. The score is asked to the interpreter and accumulated
in a counter associated with each of the first legal moves.

When the thinking time expires, the current game is
stopped and the move with the best mean for Ary is chosen.
Ignoring the scores of the other players has a clear advan-
tage in simplicity: it is not necessary to distinguish between
games that have one, two or more players; zero-sum games
and cooperative games are treated identically. Moreover, we
expected it to provide more interesting play, and it was in
agreement with our goal to have Ary plays its best moves.
Finally, the round-robin nature of the qualifying phase made
it uninteresting to try to limit the score of the opponent.

Due to lack of time, we did not make Ary use the initial
thinking time to start the Monte-Carlo exploration to make
a better choice on the first move.

Comparison with other competitors
On the eight other competitors, two have been described in
published articles we are aware of.

Clune Player, developped by James Clune, won the 2005
tournament. It uses a classical alpha-beta search with trans-
position table. Its main innovation is to identify important
features of the board state, like mobility of pieces, that are
used to direct the search (Clune 2007)

Flux Player is developped primarily by Stephan Schiffe
Michael Thielscher (Schiffel & Thielscher 2007). It is also
based on alpha-beta search, and is primarily implemented
in Prolog. We think that its most interesting in that, from
the description of the rules, it computes a distance between



the current board status and those of terminal states where
the reward can be computed; this distance is used to obtain
intermediate evaluations. FluxPlayer won the 2006 tourna-
ment.

From a private communication at the AAAI 2007, we
know that CadiaPlayer, developped by Hilmar Finnsson and
Yngvi Björnsson is based on UCT, like the version of Ary
we prepared for the final phase of the competition, but little
is known on the details of its architecture. CadiaPlayer is the
winner of the 2007 competition.

The GGP AAAI 07 tournament
We describe in this section lessons learned from our partici-
pation to the 2007 tournament.

Communication with the organization
Before the tournament, the organizers gave access to a server
where it was possible to load rules for various games and
replay matches, including ones played in the preceding tour-
naments. It was also possible to set up games refereed by
the official Game Master, but the lack of communication be-
tween competitors made it only possible to have Ary play
single-player games or games against itself. The server in-
cludes a forum, but is not very active: at the beginning of
January 2008, its last post was a question we asked in May
2007 that is still awaiting its answer.

Communication with the organizers was done primarily
via a mailing list, used for general announcement. Every
other playing day, the organizers posted a summary of the
games played with the pairings and the score of the players.

Questions regarding particular situations went through
personal mails. In the few situations of erroneous game
rules, the problem were quickly identified, the games
aborted, the rules corrected and the games restarted.

During the match, a special site was open, where it was
possible to follow the games as they were played, repre-
sented with an intuitive graphic representation. It would
have been a good idea to keep a copy of these clear represen-
tation of the matches with a pointer on the log files generated
by Ary to facilitate post-tournament analysis.

Playing schedule and pairing
The qualifying tournament was played on four weeks of
June, with two playing days per week.

The playing day started around 8pm CET, and lasted for
6 to ten hours, with each program playing about ten matches
per day.

Each day included various games with varying initial and
playing times, between 10 seconds and 10 minutes.

In two players games, each program usually played two
games, both with the same opponent: one as first player and
the other one as second player. This made it possible, once a
game identified from its obfuscated form, to identify the op-
ponent from the weekly summary that included the pairings
for each game. When necessary for three and four players
games, the organizers used random players for parity.

Obfuscation of the rules
The rules of the games were transmitted in an obfuscated
form: the atoms, except the keywords, were replaced by ar-
bitrary strings. For example instead of the theorem for in-
crementing a variable, usually noted as:

(<= (NEXT (step ?x))
(TRUE (step ?y))
(succ ?y ?x))

the players may receive:

(<= (NEXT (THISHAND ?YOUBTFAINKS))
(TRUE (THISHAND ?THASTABOLAN))
(POSEEP ?THASTABOLAN ?YOUBTFAINKS))

The obfuscation of the game was only partial: the inte-
gers, when used, were not obfuscated and the replacement of
strings was done globally on every occurrence in the rules.

The non-obfuscation of integers means that the predicates
referring to board cells could be identified at first sight from
their description in the initial state in the many games where
board cells are noted with integers. Would the integer have
been obfuscated, the integers could still have been recog-
nized using the successor relation with its well established
pattern, but it would have been an heavier task. For games
like Chinese checkers, were the board cells were named in
the rules as a1 or f5, it was more difficult to recognize cells
at first sight as they were obfuscated.

The global replacement of strings means that the names of
the variable could be used to facilitate the interpretation of
predicates. In the original rules, variables are usually named
after the type of data they contain. Once it is recognized,
from a particular predicate that the variables ?TERFERVIR
and ?ITHICHANG refer to the coordinates of a cell, they
can be replaced by ?line and ?row in all of the rules,
facilitating the interpretation of the other rules.

Ary did not make any use of these features of the obfus-
cation process, but they were very helpful when we had to
analyze its comportment in post-game analysis, as it is usu-
ally easier for us to examine non-obfuscated games.

Program crashes and network lags
In case of failure of a player to give legal moves in the spec-
ified time, the Game Master played a random move for it.
In the qualifying phase, the game was nonetheless scored as
usual, while in the final phase, a player scored no point if the
player missed more that one move.

The rationale behind this choice is that the opponent of a
crashing program has to furnish some work to score points,
but its side effect is that two programs crashing before the
first move of Tic Tac Toe match would have scored identi-
cally as two programs playing perfectly. The decision for
the final phase to let a program score only if it played until
the end of the match seems more reasonable.

It is to be noted that the random moves played by the
Game Master in place of a deficient program seem to ac-
tually have been the first one, in the order they were gener-
ated by our Prolog interpreter. Ary did not exploit this, but a
program playing only to win could use this predictability to
maximize its score.



Being situated in Europe, we had provided for net lags,
in keeping a margin of one second before the falling of the
clock to send the chosen move. From the presentation of the
matches on the server, we think that the Game Master had
itself a tolerance for networks lags by its side, but no detail
was published on this point.

Communications between the player and the game
master
The players communicate only with the Game Master, and
the communication is reduced to the minimum: the first
message contains only the rules of the game, the role of the
player and the two values for the initial and playing time.
Then each message contains only the moves of the players.

The post analysis of the matches would be easier if the
Game Master transmitted, after the end of the match, the
identity of the opponents. The name of the game in clear,
the score for all the players and the moves where the Game
Master supplied to deficiencies of the players would also be
helpful.

Performance during the qualifying phase
Due to the terse nature of the Game Master, the analysis of
the matches played by Ary presented here is entirely based
on its log files, and may be incomplete or inaccurate. For
example, the score obtained was not logged during the first
day and we had to replay the moves played to deduce the
score obtained.

During the whole qualifying phase, Ary ran on a PC with
a 32 bits dual core 3GHz processor and 1 Gb of central
memory. As allowed by the rules, the program was con-
stantly modified during the competition: deficiencies were
corrected as soon as possible.

On the following, we express the results of the games as
in the competition with a number between 0 (lost) and 100
(win).

First week
The first day, the program played simple games. Ary failed
only on the 3 × 3 puzzle, that it was not able to solve and
got only 90 on beatmania. On two games players, it got 50
(a tie) on its four games of Tic Tac Toe, playing on one or
two grids; the 2 players chinese checkers also lead to a tie,
while it won the four players chinese checkers game. It lost
its two games of blocker, as first and second player.

On the second day, Ary succeeded in not crashing its
space ship, scoring 50 for the single player game of the day;
as could be expected, the variation of the initial time be-
tween 10 and 60 seconds made no difference, as this time
was not used.

The other games of the day were of the cat and mouse
type, played on 8 × 8 grids with obstacles; in one of those
ary won as the cat (maybe with the help of a crash of the
other player at move 20) but lost as the mouse; in the other it
won as the mouse and made a tie as the cat. In the simplified
version of pacman, it won when playing as one of the ghost
and escaped them in the other match, getting 74.

At the end of the first week, Ary was the third out of nine
participants. That was quite a good surpise, as our partic-
ipation was primarily intented to gain experience in future
tournaments.

Second week
The third day of competition, the games were variations of
the games of the first week, doubled in a parallel of serial
way. For example, in parallel Tic Tac Toe, there are two
boards and the program play one move on each of the grids,
squaring the number of possible moves; in serial Tic Tac
Toe, a match is played on one grid and when finished, an-
other match is played on another grid. The final reward is
the mean of the results of the two matches. Ary did pretty
well, except on asteroids and on one of the variations of the
Block World where it crashed while reading the rules be-
cause of an obscure bug in the parser.

On the fourth day, Ary did not perform as well as in the
preceding days. The programs played stress tests presented
as single player games. In one group, the player can always
give up or continue, but the amount of efforts to prove it is
legal to continue grows with game length (linearly, quadrat-
ically or exponentially). In the second group, the move tree
has a large number of nodes (103, 106 or 109) that are mostly
duplicates. In the last group, the programs had to search into
a large tree (103, 106 or 109 nodes).

Ary crashed at the beginning of three of these games for
stupid reasons: one of the set of rules was larger (about 85
kilo-bytes) that the maximum we had anticipated, and some
predicates had more than 26 arguments. On the other games,
it did not perform well. We think that the absence of trans-
position tables was costly.

After this second week, Ary was at the 5th place. We
easily solved the error limiting the number of arguments of
a predicate and we replaced nearly all statically allocated
arrays by dynamical ones, reallocated when necessary.

Third week
On the fifth day, the programs played normal and suicide
versions of games. In the suicide version, the rules are the
same but the goals are inverted. For example, in Tic Tac
Toe, the program aligning three marks looses the game. The
playing time was 30 seconds and Ary was able to play about
100 games per second when choosing the first move. It did
well, except on Connect Four Suicide were it lost its two
games against ClunePlayer.

At the end of the day, the organizers sent a non-obfuscated
game, and Ary crashed because we had not anticipated that
atoms could contain the + character.

On the sixth day, the programs played board games, in-
cluding Blocker, used in the first GGP tournament and the
classic Othello. In this last game, Ary made only 15 play-
outs in 30 seconds at the beginning of the game.

Fourth week
On the seventh day and eigth day, the programs played two
single player games were the player must attain a target
while eliminating or avoiding opponents. All other games



were variations on classical games: Pentago, Amazon, Skir-
mish (a game played with chess pieces where the reward is
propotionnal to the number of enemy pieces captured), and
Checkers (without multiple captures and reward proportion-
nal to the number of captured pieces). On checkers, Ary
made about 13 playout per seconds. The playing time for
the games was usually 30 seconds.

At the end of the eigth day, which closed the qualifying
phase Ary was back at the third place.

Discussion
The precise interpretation of the results of Ary during the
tournament is a difficult task: games played in different
matches differ vastly in complexity; bugs were corrected in
Ary and probably in the other players as well; we know the
moves of the other players only in the matches they played
against Ary.

The absence of transposition tables was costly in some
simple games: the 3×3 puzzle was unsolvable without them.
Given the initial reflexion time of 10 seconds and the num-
ber of playout per second at the beginning of match, trans-
position tables would probably not be sufficient to solve the
puzzle in the minimum number of moves. It is unclear if
their use would have been sufficient to solve the puzzle at
all.

The principal lessons that can be gained from the partici-
pation of Ary to the 2007 tournament is that Monte-Carlo is
competitive; it gives decent results, even in games where the
number of playout at the beginning of a match is so low that
the choice of the first moves is actually nearly random. As
the game progress to its conclusion, the number of playout
increases and the move selection becomes better, compen-
sating for the deficiencies at the beginning.

Replacing Pure Monte-Carlo by UCT
After the qualifying phase of the competition, we decided
to replace the Pure Monte-Carlo algorithm used at the core
of Ary move selection by an algorithm that is known to
give good results for difficult games: the Upper Confidence
bounds applied to Trees, usually named UCT (Kocsis &
Szepesvàri 2006).

We will use abstract move tree to name the complete
move tree as defined by the rules of the game and the current
board status. In contrast, the move tree without qualification
will denote the subset of the abstract move tree that the ex-
ploration algorithm has constructed.

The UCT algorithm
The basic idea of UCT is to add to Monte-Carlo explorations
of the abstract move tree an informed way to choose the
branches that will be explored. A move tree is constructed
incrementally, with a new node added for each Monte-Carlo
exploration. On the next exploration, a path is chosen in the
already built move tree by choosing the branch whose gain is
maximum, as estimated by the Monte-Carlo algorithm plus
confidence in the estimation, calculated by a function of the
number of explorations of the node t and of the number of
exploration of the branch s as

√
log(t)/s. When arriving

Figure 1: A simple move tree for a single player game that
PMC won’t solve.

a

b
c

d e
0 0

f
100

50

at a leaf node of the move tree, if it is not a terminal situ-
ation (i.e. it is not a leaf of the abstract move tree), then a
new node is added to the tree and a Monte-Carlo simulation
is started to obtain an evaluation of this node, also used to
update the evaluation of the parent nodes.

UCT has been applied with success to Monte-Carlo Go
in the program MOGO (Gelly et al. 2006; Gelly & Silver
2007) among many others. UCT and its variations are very
successful in the game of Go, and the current best Go pro-
grams use UCT.

We were particularly interested in the UCT algorithm be-
cause of its way to adapt itself to the state of exploration
of the abstract tree: when little is known about the abstract
move tree, UCT will choose unexplored branches. When
all the branches from a node have been explored, UCT will
tend to re-explore the most promising ones: this tendency is
controlled by a constant C, that is used to multiply the con-
fidence upper bound

√
log(t)/s. At the limit, when all the

nodes of the abstract tree have been explored, UCT is favor-
ing the better branches and will converge to the same choice
as a mini-max exploration.

The next sub-section presents a very simple game where
Pure Monte-Carlo will make a bad choice while UCT will
find the good move.

A game that PMC won’t solve and UCT will
Imagine a one player game where the player descends into a
tree until a leaf where it finds its reward. The abstract move
tree is represented in the figure 1; each node of the tree is
named by a letter for reference and the gain for the player is
indicated by a number between 0 and 100 in the leaf nodes.
The game can be represented in GDL with the rule of the
table 2

It is clear that the best sequence of moves for this game
is to descend into the b and d nodes to find a reward of 100
but Pure Monte-Carlo is not able to discover this strategy:
the descendants of b are explored about the same number of
times, so the mean gain for b is estimated as 33.3, the mean
of the rewards of the nodes d, e and f . It is the c node whose
reward is 50 that is chosen.

In contrast, UCT will favor the exploration of the branch
b→ d over b→ e and b→ f . As the number of explorations
of this branch augments the estimated reward of b will tend
to 100 and UCT will choose the winning move. The exact
number of explorations necessary for UCT to make the cor-
rect choice depends of the exact value of the constant.



Table 2: A GDL representation of the game that PMC can’t
solve.
(ROLE player)
; representation of the tree
(edge a b) (edge a c) (edge b d) (edge b e)
(edge b f)
; rewards in leaf nodes
(leaf c 50) (leaf d 100) (leaf e 0)
(leaf f 0)
; starting situation
(INIT (current a))
; theorems
(<= (LEGAL (DOES player (goto ?y)))

(TRUE (current ?x)) (edge ?x ?y))
(<= (NEXT (current ?x))

(TRUE (DOES PLAYER (goto ?x)))
(<= TERMINAL (current ?x) (leaf ?x ?n))
(<= (GOAL player ?n)

(TRUE (current ?x)) (leaf ?x ?n))

Discussion

Adding the UCT algorithm to Ary was relatively straightfor-
ward: it represented less than 1000 lines of C. Informal tests,
done between the qualifying phase and the final competition
let us think that it provides a significant advantage over the
PMC algorithm used by Ary in the qualifying phase of the
competition.

As a bonus, the use of UCT permitted to make useful
computation during the opponent thinking time: Ary sys-
tematically explores the tree after each move is played, even
when it has only one legal move. When the next moves of
all the players are sent by the Game Master, they are used
to choose a branch, whose node is set as the new root of
the move tree. Ary thus re-use the accumulated information
gathered in this sub-tree during the preceding explorations.
Similarly, the initial thinking time is used to start building
the game tree.

We tried to adjust the constant C used in UCT to multi-
ply the interval of confidence on the basis of tests on simple
games. As might be expected, the results were very depen-
dent on the nature of the game: simple games whose whole
move tree can be explored versus long games where it is
only possible to explore a small part of the game. The num-
ber of calls to Monte-Carlo tends to diminish as the tree is
explored, but tentatives to modify dynamically the constant
during the game on this basis did not give good results and
we finally used a constant of 50, as the reward varies be-
tween 0 and 100.

We had to adapt UCT to games with simultaneous play. A
sound adaptation would have been to compute for each node
a gain matrix from the mean of the previous explorations of
that branch, to adjust the values of this gain matrix with the
upper confidence bound and use it to select the branch to ex-
plore. We choosed a simpler solution, reminiscent of what
had worked well in the qualifications for PMC: the moves
are chosen independently for each player and these indepen-
dent moves are combined to choose the next branch.

Participation in the final phase
Due to a combination of a crash of its usual machine and of
our inability to properly read a schedule, Ary did not show
up on the field for the first match of the final phase and thus
was eliminated from the competition.

Conclusion
We have presented Ary, a program for General Game Play-
ing based on Monte-Carlo, that participated in the qualifying
phase of the 2007 General Game Playing tournament where
it ranked third.

Future work with Ary go in three directions: make a bet-
ter use of UCT, explore a bigger part of the move tree and
symbolic manipulations on the rules of the game.

The algorithm UCT proved itself as a good algorithm for
General Game Playing, but questions are still unsolved: it
is inappropriate in the situations where the number of play-
outs is low. Preliminary explorations of variants mathods to
choose the moves in these situations like All Moves As First
did not give good results, but a finer adaptation may attain
better results.

The constant used in UCT to balance between exploration
and exploitation is, for the time being, fixed for the dura-
tion of the game. We intend to search criteria to adapt this
constant to the portion of the move tree that is effectively
explored.

We do not expect the correct adaptation of UCT to simul-
taneous games to bring a significant improvement over the
games used in the 2007 competition, but this adaptation is
nonetheless necessary as it is easy to design a game where
the current simplification used in Ary induces poor play.

To have better results from UCT, it is necessary to maxi-
mize the number of playouts. This result with be obtained by
a diminution of the time spent in the interface between the
core of Ary and the Prolog interpreter, either by letting the
interpreter play the whole playout or by replacing the Prolog
interpreter by an ad’hoc inference engine. We also intend to
add transposition tables and consider parallelizing the move
tree explorations.

At last, there are manipulation on the rules that can be
adapted to be of use without modifying the structure of the
program, like the recognition and exploitation of the existing
board symmetries.

References
Berlekamp, E.; Conway, J. H.; and Guy, R. K. 1982. Win-
ning Ways. Academic Press.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In AAAI, 1134–1139.
Gelly, S., and Silver, D. 2007. Combining online and of-
fline knowledge in UCT. In ICML, 273–280.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006.
Modification of UCT with patterns in monte-carlo go.
Technical Report 6062, INRIA.
Kocsis, L., and Szepesvàri, C. 2006. Bandit based monte-
carlo planning. In ECML, volume 4212 of Lecture Notes
in Computer Science, 282–293. Springer.



Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In AAAI, 1191–1196.
Wielemaker, J. 2003. An overview of the SWI-Prolog pro-
gramming environment. In Mesnard, F., and Serebenik, A.,
eds., Proceedings of the 13th International Workshop on
Logic Programming Environments, 1–16. Heverlee, Bel-
gium: Katholieke Universiteit Leuven. CW 371.


