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Abstract
In the field of General Game Playing (GGP) there
is much emphasis on the use of the Monte Carlo
playout as an evaluation function when searching
intractable game spaces. This facilitates the use of
statistical techniques like MCTS and UCT1, but it
requires significant processing overhead. We seek
to improve the quality of information extracted
from the Monte Carlo playout in three ways. Firstly
by nesting the evaluation function inside another
evaluation function, secondly by measuring and
utilizing the depth of the playout, and thirdly by
incorporating pruning strategies that eliminate un-
necessary searches and avoid traps2. We present a
formalism for a Nested Evaluation Function along
with a move selection strategy that incorporates a
form of discounting and pruning based on playout
depth. We show experimental data on a variety
of two-player games from past GGP competitions
and compare the performance of a Nested Player
against a standard, optimised UCT player.

1 Introduction
General Game Playing (GGP) is concerned with the design
of AI systems able to take the rules of any game described
in a formal language and to play that game efficiently and ef-
fectively [Genesereth et al., 2005]. This area of research is
growing with much emphasis on improving the AI systems
ability to play games with intractable search spaces by ex-
tracting as much ”insight” from the game as possible.

We focus our attention on the use of the Monte Carlo tech-
nique in GGP. This technique is domain independent, that is,
the player does not need to construct a different evaluation
function from each game. As such it provides a particularly
suitable foundation for GGP systems to play previously un-
known games without human intervention. The technique is
intuitive and simple to implement. Moreover, it can provide
an estimated probability distribution for the game outcomes

1Monte Carlo Tree Search and Upper Confidence bound applied
to Trees.

2Any move that looks promising but is not, especially when it
takes a long time to reveal the truth.

and hence form the basis of some more advanced statistical
techniques. But it also has limitations. The principle limita-
tions are that it has a high cost and the results derived from
Monte Carlo playouts3 are predicated on the assumption that
all of the roles in the real game select their move randomly.
They do not.

This raises a fundamental question: how do we take a sim-
ple random technique and improve the quality of the informa-
tion it produces without a similar increase in cost, specifically
in the context of GGP?

In this paper we offer a way to improve cost-effectiveness
by improving the quality of the information extracted from
the playouts. We achieve this by implementing three different
techniques in concert. Firstly we implement a nested playout
such that the higher level playouts are not random but heuris-
tically guided, thereby improving the quality of the terminal
value. Secondly we consider the depth of the playouts as a
measure of the ”value of information” in much the same way
as discounting is used in other forms of modeling. Thirdly
we prune the search to eliminate wasted effort, with special
emphasis on avoiding traps, ie. moves that look promising,
but eventually fail.

1.1 Clarification
We use several terms that seem similar, but are not. So we
offer these clarifications:

ä Nested Player - Any GGP player that uses another set of
players to calculate its move evaluation function;

ä Nested Playout - Any playout using a nested player(s);
and

ä Monte Carlo Playout - A playout where all move selec-
tions are made randomly.

We use the term ”search” to describe a special instance of
a ”tree search”. That is, a tree search limited to a depth of
one. In other words, we are choosing a move from the list
of legal moves without constructing a game tree. And so, all
of our playouts begin at depth = 1, with no expansion, no
exploration, and no exploitation4. This simple form of search
is shown in Figure 1.

3even UCT exploration uses decision values derived originally
from Monte Carlo playouts.

4each phases in various forms of Monte Carlo Tree Searches
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Figure 1: A search using playout terminal values to choose
the next legal move ai.

1.2 Background

The Nested Monte Carlo Search (NMCS) algorithm was pro-
posed as an alternative to single-player Monte Carlo Tree
Search (MCTS) for single-player games in [Cazenave, 2009].
NMCS lends itself to many optimizations and improvements,
and it has been successful in many single-agent problems
[Cazenave, 2010; Akiyama et al., 2010]. In particular, it lead
to a new record solution to the Morpion Solitaire mathemati-
cal puzzle.

The NMCS technique inspired the Nested Rollout Policy
Adaptation algorithm which enabled further record establish-
ing performances in similar domains [Rosin, 2011]. [Méhat
and Cazenave, 2010] compare NMCS and UCT for single
player games with mixed results, they explore variants of
UCT and NMCS and conclude that neither one is a clear win-
ner.

[Pepels et al., 2014] have shown in the context of MCTS
that more information than a binary outcome could be ex-
tracted from a random playout, even when very little domain
knowledge is available. In particular, the outcome of a short
playout might be more informative than that of a longer one
because fewer random actions have taken place.

The idea of nesting searches of a certain type has been used
to distribute the Proof Number Search algorithm over a clus-
ter [Saffidine et al., 2011].

[Chaslot et al., 2009] took advantage of the nesting concept
in their Meta-MCTS approach to opening book generation.
The book was built through MCTS using self-play games by
standard MCTS players in terms of playouts.

Yet another type of nesting was explored for the RecPIMC
(Recursive Perfect Information Monte Carlo) search as a way
to alleviate the strategy fusion and non-local dependencies
problems exhibited by PIMC in imperfect information games
[Furtak and Buro, 2013].

Finally we have the [Baier and Winands, 2013] work com-
bining or ”nesting” a MiniMax subsearch inside an MCTS
with the intent of avoiding traps in tactical situations5. They
offer three ways to augment the MCTS process with localised
MiniMax searches specifically designed to minimise wasted
effort.

5as distinct from strategic traps, see [Ramanujan et al., 2010]

1.3 Contribution
The NMCS algorithm has been used in a variety of single
agent domains and the concepts of discounting and pruning
are not new.

We extend the use of NMCS to the general case, imple-
menting it with two-player turn-taking games with win/lose
outcomes, and implementing discounting and pruning in a
practical way. In this paper, we describe how NMCS can be
adapted for these games and propose heuristics that improve
its performance.

Our main contributions are as follows:
ä A framework for implementing a Nested Playout in two-

player win/lose games;
ä An improvement to the quality of information produced

by the Nested Playout via a discounting heuristic;
ä Pruning techniques that improve the cost-effectiveness

of the Nested Playout;
ä Implementation of a Player using Nested Playouts; and
ä Experimental data evaluating a Nested Player for com-

monly played two-player, win/lose games.

The resulting player will compete favourably with a UCT
player that has been optimised for best performance6. Experi-
mental results show when the Nested Player is superior to the
standard UCT Player and offer insights into why this is so.

2 Nested Playouts
We create a nested playout by wrapping one player around
another, simpler, version of itself. At its core we still use a
random move selection policy7. The level of nesting can be
increased by wrapping yet another version around the outside.
The only limitation is that the computational costs increase
exponentially as the level of nesting increases, the benefit is
that the quality of the information from the terminal value of
the nested playout also improves.

2.1 Formalism
In our formalism for the Nested Playout we start by adopting
a notation for finite games in extensive form by extending the
definitions given in [Thielscher, 2011] following the style set
out in [Schofield and Thielscher, 2015].

The Game
Let G = 〈S,R,A, v, δ〉 be a game determined by a GDL
description:

• S is a set of states and R is a set of roles in the game,
additionally we use s0 ∈ S for the initial state, T for
terminal states, and D = S\T for decision states;

• A is a set of moves in the game, andA(s, r) ⊆ A is a set
of legal moves, for role r ∈ R in state s ∈ S;

• v : T × R → R is the payoff function on termination;
and

• δ : D ×A|R| → S is the joint move successor function.

6Optimised for each different game tested so as to play that game
as well as it could

7based on traditional Monte Carlo playouts
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Move Selection Policy
In order for a game to be played out to termination we require
a move selection policy π for each role, being an element of
the set of all move selection policies Π:
• π ∈ Π : D × R → φ(A) is a move selection policy

expressed as a probability distribution across A;
• ~π : 〈π1, . . . , π|R|〉 is a move selection policy tuple; and8

• play : D×Π|R| → T is the playout of a game to termi-
nation according to the given move selection policies.

Move Evaluation Function
Move selection requires an evaluation function eval(). We
play out the game according to a move selection policy and
use the terminal value as a measure of utility:
• 〈~a−r, ar〉 = 〈a1 . . . ar . . . a|R|〉 is a move vector con-

taining a specific move ar for role r ∈ R9;

• eval : D ×Π|R| ×R× N→ R;
• eval(d, ~π, r, n) = 1

n

∑n
1 v(play(d, ~π), r) evaluates the

node d ∈ D using the policies in ~π and n playouts;
• eval(δ(d, 〈~a−r, ari〉), ~π, r, n) is the evaluation of move
ari ∈ A(d, r) by role r; and
• ar = argmaxari

[eval(δ(d, 〈~a−r, ari〉), ~π, r, n)] is the
selection process for making a choice.

Nested Evaluation
From the definitions above we take the move selection policy
π : D×R→ φ(A) of the parent player as the maximisation
of the evaluation function eval() using move selection poli-
cies of the child player. This is the basis for a nested playout.
Definition 1. Let the move selection policy for a nested eval-
uation be defined as:
• π′ : ar = argmaxari [eval(δ(d, 〈~a−r, ari〉), ~π, r, n)] ;

and
• π′′ : ar = argmaxari

[eval(δ(d, 〈~a−r, ari〉), ~π′, r, n)].
Note that if π were the random move policy, then π′ would
be a simple Monte Carlo playout; therefore we adopt the fol-
lowing nomenclature for our players:
• NMC(0) is the random player;
• NMC(1) is a simple Monte Carlo player with its move

policy based on Monte Carlo playouts; and
• NMC(2) is a nested player using NMC(1) playouts to set

its move selection policy, etc..
For example; an NMC(2) player would evaluate each of the

22 opening moves in Breakthrough by playing out a full game
using an NMC(1) player for each roles. The two NMC(1)
players would, in their turn, use Monte Carlo playouts for
each move choice for the length of the game. It is easy to see
how the computational cost grows exponential.

8we could also say ~πr is the policy tuple used by role r to model
all roles behaviour. Our treatment does not use this refinement as all
role models are the same, so it is omitted.

9this is simplified as we are evaluating turn taking games and the
other moves are noop.

3 Heuristic Improvements
The challenge is to improve the cost-effectiveness of the
nested playout, and playouts in general. We use the following
logic to achieve this;

ä A nested playout improves the quality of the evaluation
function, but increases the computational cost;

ä Using the playout depth for discounting improves the
evaluation function quality without increasing cost;

ä Using the playout depth facilitates the use of search
pruning; and

ä Search pruning reduces the cost of the evaluation func-
tion without reducing its quality.

3.1 Discounting
When using Monte Carlo playouts, it is common practice to
consider only the terminal value v(t, r), from the playout.
Here we follow the lead of [Finnsson and Björnsson, 2008]
and also consider n, the depth to termination.

Using The Playout Depth
Let G = 〈S,R,A, v, do〉 be a GDL game described in the
previous section, then:

• Without loss of generality, we set the range of the termi-
nal values to −1 ≤ v(t, r) ≤ 1;

• With no prior knowledge, the expected value for ari is
E(ari) = e, ie. all moves have the same expected value;

• Let the estimated branching factor for the sampled
branch be bf ≥ 1, and the estimated depth (number of
moves) of the branch be n and |T | = bfn;

• After a single playout revealing a terminal value v(t, r)
the expected value of making the same move is
E(ari) = [(bfn − 1)× e+ v(t, r)]/bfn; and

• The increment is δE(ari) = (1/bf)n × (v(t, r)− e);

In many games the branching factor bf may be high, say 30,
but as we repeatedly playout out a game there are only a few
moves in each round that offer a realistic chance of victory.

In these informed playouts the effective branching factor
becomes small, say 2, and the term (1/bf)n begins to look
like a discount factor. Hence we use the term Discounting
when considering the depth n of the playout.

Definition 2. Let the move selection policy for our Nested
Playout be defined by maximising the increment in the ex-
pected value δE(ari) = (1/bf)n × (v(t, r)− e).

In operation this is simplified to:

• Maximise v(t, r);

• Settling ties;

– Case: max(v(t, r)) < e, Maximise n;
– Case: max(v(t, r)) = e, Do nothing;
– Case: max(v(t, r)) > e, Minimise n;

• Settle all ties randomly.

Note: In the uninformed case e = 0; ie. a drawn game.
The discounting heuristics turns a win/loss game into a

game with a wide range of outcomes by having the Max
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Figure 2: A decision where different heuristics lead different
choices, CoW chooses early and prunes aDisc.

player preferring short wins to long wins, and long losses to
short losses. The intuition here is to win as quickly as pos-
sible so as to minimize our opponent’s chance of finding an
escape, and to lose as slowly as possible so as to maximize
our chance of finding an escape.

A convenient implementation trick is to set a value of
score = v(t, r)/n so that a win in depth n moves is 1/n and
a loss in n moves is −1/n. This way, the ordering between
game outcomes corresponds exactly to the ordering between
the scores considered as real numbers.

Note that our discounting heuristic should not be con-
fused with Steinhauer’s discount rate proposed for MCTS
[Steinhauer, 2010]. We discount on the length of the play-
out whereas the latter discounts on how long ago it was per-
formed.

3.2 Pruning
From the classical alpha-beta search [Knuth and Moore,
1975] to the more recent Score-Bounded MCTS adaptation
[Cazenave and Saffidine, 2010], two-player games usually
lend themselves quite well to pruning strategies. Adapting
Nested Playouts to two-player games also gives pruning op-
portunities that were absent in the single-player case.

Cut on Win
The first pruning strategy, Cut on Win (CoW), hangs on two
features of two-player win/loss games. First, we know the
precise value of the best outcome of the game. Second, these
values are reached regularly in playouts.

The CoW strategy consists of evaluating the moves ran-
domly and selecting the first move that returns the maximum
value from its evaluation(s), thus:

• The set of move is evaluated randomly; and
• When eval() returns the maximum value then a choice

is made and the remaining evaluations abandoned.

Proposition 1. Assume that whenever a state is evaluated
using a nested playout, move choices are randomly presented
in the same order.

Then NMC(n) with no discounting and no pruning returns
the same move as NMC(n) with no discounting and CoW.

Note that when discounting is used, NMC(n) with CoW
is not guaranteed to pick the same move as NMC(n). As

a counter-example, Figure 2 presents a decision in which
NMC(n) with CoW and discounted NMC(n) would select dif-
ferent moves.

Pruning on Depth
The second pruning strategy, Prune on Depth (POD) exploits
the use of discounting and the richer outcome structure. Re-
member the convenient trick of using score = v(t, r)/n to
evaluate the game outcomes. With Pruning on Depth we max-
imise v(t, r) then minimise n thus:

• The set of move is evaluated randomly;
• n is the playout depth;
• nmin = min(n) is the minimum depth of any playout

to return the maximum score; and
• When depth(eval()) = nmin the playout is terminated,

returning the goal value of −1.

Put simply, we prune states deeper than the shallowest win.
Proposition 2. Assume that whenever a state is evaluated
using a nested playout, move choices are randomly presented
in the same order.

Then NMC(n) with discounting and no pruning search re-
turns the same move as NMC(n) with discounting and PoD.

Cascade Pruning
The PoD heuristic is like shallow pruning in the alpha-beta
algorithm. We now propose a third pruning strategy which is
like deep alpha-beta pruning, Cascade Pruning.

Whereas in PoD the playout length would only be com-
pared to the length of sibling playouts, in cascade pruning the
bound on the length is shared between the parents and the
children. That is, the pruning information is cascaded down-
ward from one nesting level to the next. This provides for
additional pruning opportunities compared to PoD, but the
safety with respect to discounted searches is lost.

The loss of safety can be illustrated in the Breakthrough
Challenge in Figure 4. A Monte Carlo playout will often ar-
rive at a favorable outcome via a less than optimal path. For
example; Black can counter b6-a7 with b8-a7, but a Monte
Carlo playout might make some trivial moves first. If Cas-
cade Pruning is implemented those trivial moves can cause
an early termination of the playout returning a loss instead of
a safe defense. This impacts the choices made by the higher
level player.

3.3 The Trade-off of Unsafe Pruning
Unlike the classical alpha-beta pruning algorithm, the CoW
and Cascade Pruning techniques described previously are un-
safe when using discounting: they may lead to a better move
being overlooked.

Unsafe pruning methods are common in the game search
community, for instance null move and forward prun-
ing [Smith and Nau, 1994], and the attractiveness of a new
method depends on the speed versus accuracy trade-off.

The quality of the choices made by the NMC(3) player is
built on both the quality of the choices made by the embedded
NMC(2) player and the number of sub-searches that can be
performed in a given amount of time. Both aspects can be
affected by the pruning policy.
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3.4 Embedded MiniMax Search

A close examination of an NMC(n) playout reveals a depth
limited MiniMax search being conducted at every step of the
playout, very similar to the MCTS-MR proposed by [Baier
and Winands, 2013].

Consider an NMC(3) playout being used in a game of
Breakthrough for the initial move. The game is at the ini-
tial state, n = 0. The NMC(3) playouts start at each of the
games states of n = 1; the embedded NMC(2) playouts start
at each of the game states of n = 2; and all of the embedded
NMC(1) playouts start at each of the game states of n = 3.

A similar phenomenon occurs at the bottom of the playout.
A depth limited MiniMax at the termination ensures the most
correct terminal value is being returned.

4 Experimental Results

4.1 Discounting in TicTacToe

To illustrate discounting we look at the game of TicTacToe
in Figure 3. The X player has an opportunity to make the
decisive move a3 = (does x (mark 3 1)).

Figure 3: A partially played game of TicTacToe where the X
player has the decisive move a3.

We show the move selection choices made by the NMC(3)
player for a 1000 game sample. Terminal values are in the
range −1 ≤ v(t, r) ≤ 1 and the values in brackets are
(min,max) values.

No Discounting Discounting
ai v(t, x) Freq
a0 (0, 0) 0
a1 (0, 1) 176
a2 (0, 1) 123
a3 (1, 1) 575
a4 (0, 1) 126

ai v(t, x) n Freq
a0 (0, 0) (4, 4) 0
a1 (0, 0) (4, 4) 0
a2 (0, 1) (4, 4) 0
a3 (1, 1) (2, 2) 1000
a4 (0, 1) (4, 4) 0

Table 1: Results from 1000 games played by a NMC(3)
player illustrating the effect that Discounting on depth n has
on the frequency of each choice.

Note that, without discounting, moves a1, a2 and a4 are se-
lected occasionally in a tie break. Whereas, with discounting
the value of depth = n decides equal values of v(t, x). Also,
the embedded NMC(2,Disc) selecting moves for the O player
is forcing a draw after move a1.

Figure 4: Partially played game of breakthrough. White has a
winning move, a5-a6, but also has two incorrect moves b6-a7,
b6-c7. The challenge is to avoid the incorrect moves.

4.2 Breakthrough Challenge
As an illustrative example, we look at the game of Break-
through being played in Figure 4 [Gudmundsson and
Björnsson, 2013].10 This position was used as a test case ex-
hibiting a trap that is difficult to avoid for a plain UCT player.
The correct move for White is a5-a6, however b6-a7 and b6-
c7 initially look strong.

To better understand the effect of the various heuristics de-
scribed in the previous sections, we run multiple NMC(3)
searches with different parameter settings, starting from the
position displayed in Figure 4. For each parameter setting,
we record the number of states visited during the search and
the likelihood of selecting the correct initial move and present
the results in Table 2.

Each entry in the table was an average of 900 games, and
the 95% confidence interval on standard error of the mean is
reported for each entry. A setting of the type CoW(1) is to be
understood as Cut on Win pruning heuristic was activated at
nesting level 1 but not at any higher level.

A number of facts can be observed in Table 2:
ä If the discounting heuristic is disabled, then the best

move is selected with probability around 0.11, but it
is identified with probability around 0.63 whenever the
discounting heuristic is enabled;

ä Both CoW and PoD significantly reduce the number of
states explored in a search, and CoW provides more re-
duction;

ä The performance of a non-discounted search is not sig-
nificantly affected by CoW, as predicted by Proposi-
tion 1;

10Knowing the rules of Breakthrough is not essential to follow our
analysis. However, the reader can find a description of the rules in
[Saffidine et al., 2011; Gudmundsson and Björnsson, 2013].

GIGA'15 Procededings 35



Discounting Pruning States Visited(k) Freq(%)

No None 4, 459± 27 11.9± 2.2
No CoW(1) 1, 084± 8 12.3± 2.6
No CoW(1, 2) 214± 2 10.9± 2.0
No CoW(1, 2, 3) 25± 1 9.8± 2.0

Yes None 2, 775± 26 64.1± 3.4
Yes PoD(1) 1, 924± 20 64.7± 3.5
Yes PoD(1, 2) 1, 463± 16 58.6± 3.5
Yes PoD(1, 2, 3) 627± 19 62.4± 3.3
Yes Cascade 322± 16 64.6± 2.4

Table 2: Results from 900 games played using a variety of
options; showing discounting options, pruning options, the
number of states visited and the correct move frequency.

ä Similarly the performance of a discounted search is not
significantly affected by PoD, as predicted by Proposi-
tion 2; and

ä Also note that PoD(1,2,3) is 25 times more expensive
than CoW(1,2,3), but much more accurate.

If we take a look inside the Nested Playout and examine
the quality of the choices being made by the NMC(3), we see
that they are built on the quality of the choices being made by
the embedded NMC(2) player for both Black and White roles.
We can measure this quality by considering Black’s response
to White’s move does(white move b6 a7). Remember that
this is a trap for White as it eventually fails, but the Black
NMC(2) player must spring the trap for the White NMC(3)
playout to ”get it right”.

Black must respond with does(black move b8 a7), other-
wise White has a certain win. The experimental results, using
similar pruning options, were:

ä Base Case, does(black move b8 a7) = 15%;
ä CoW, does(black move b8 a7) = 15%;
ä Discounting, does(black move b8 a7) = 100%; and
ä Disc. and PoD, does(black move b8 a7) = 100%.

4.3 GGP Games
We use 9 two-player games drawn from games commonly
played in GGP competitions, each played on a 5× 5 board.

Breakthrough and Knightthrough are racing games where
each player is trying to get one their piece across the board,
these two games are popular as benchmarks in the GGP com-
munity.

Domineering and NoGo are mathematical games in which
players gradually fill a board until one of them has no legal
moves remaining and is declared loser, these two games are
popular in the Combinatorial Game Theory community.

For each of these domain, we construct a misere version,
which has exactly the same rules but with reverse winning
condition. For instance, a player wins misere Breakthrough if
they force their opponent to cross the board. To this list, we
add AtariGo, a capturing game in which each player tries to
surround the opponent’s pieces.

AtariGo is popular as a pedagogical tool when teaching the
game of Go.

4.4 Performance of the playout engine
It is well known in the games community that increasing
the strength of a playout policy may not always result in a
strength increase for the wrapping search [Silver and Tesauro,
2009]. Still, it often is the case in practice, and determining
whether some of our heuristics improve the strength of the
corresponding policy may prove informative. It is also im-
portant to know how fast playouts can be performed as it will
directly influence how large the MCTS can grow in a given
time budget.

Table 3 addresses these two concerns. For each of the nine
games of interest, we are provided with the raw speed of the
engine in thousands of playouts per second, as well as the
scores of a discounted nested player against a nested player
without discounting for different levels of nesting. 500 games
were run per match, 250 with each color.

k.Playouts Nesting Level

per second 0 1 2

Breakthrough 1641 79.6 99.6 99.4
MisereBreakthrough 1369 42.4 80.8 90.0
Knightthrough 1632 78.6 100.0 100.0
MisereKnightthrough 1337 46.0 83.2 85.8
Domineering 1406 71.2 77.0 83.8
MisereDomineering 1419 43.4 63.2 68.4
NoGo 397 62.8 76.4 83.4
MisereNoGo 409 53.2 65.6 67.2
AtariGo 123 69.6 97.2 100.0

Table 3: Performance of the playout engine: Implementa-
tion speed and win rate of NMC(n) with discounting against
NMC(n) without discounting for various nesting level.

4.5 Win Rate Performance
We want to determine whether using nested rather than plain
Monte Carlo playouts could improve the performance of a
UCT player in two-player games in a more systematic way.
We also want to measure the effect of some of the proposed
heuristics, discounting together with PoD as well as CoW.

We therefore played a parameterised UCT(NMC(n)) player
against an optimized standard UCT opponent in a variety
of games. Both players are allocated the same thinking
time, ranging from 10ms per move to 320ms per move11.
For each game, each parameter setting, and each time con-
straint, we run a 500 games match where UCT(NMC(n))
plays as first player 250 times and we record how frequently
UCT(NMC(n)) wins. The experiments were run on a 3.0 GHz
PC under Linux. The results are presented in Table 4.

The first point to make is that the win/loss ratio must be
taken in context. For example 50/50 might mean that each
player is playing at optimal performance, or it might mean
they are both playing badly.

We can notice in Table 4 that PoD and CoW improve the
performance of the search over a basic UCT player. We can

11the experimental setup uses hard-coded games, not GDL, so is
significantly faster than a GGP.
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Game n C
oW

Po
D

10ms 20ms 40ms 80ms 160ms 320ms

B
re

ak
th

ro
ug

h

1 3.2 6.0 12.0 11.6 7.8 6.4
1 4 27.6 22.6 16.8 21.6 15.4 20.4
1 4 22.6 25.2 30.4 34.6 35.2 39.6
2 4 4.6 2.0 2.4 1.4 2.4 3.8

m
is

er
e 1 85.4 83.4 70.2 60.8 57.0 56.4

1 4 91.4 95.6 97.0 97.8 98.8 98.8
1 4 95.2 95.2 98.0 99.0 99.8 99.8
2 4 1.0 27.6 43.6 87.0 93.2 95.6

K
ni

gh
tth

ro
ug

h

1 42.2 57.2 9.8 49.4 50.2 50.0
1 4 68.6 50.2 42.4 42.4 46.4 44.6
1 4 27.2 25.4 28.0 43.4 49.2 49.6
2 4 20.0 16.4 5.8 1.8 29.2 38.2

m
is

er
e 1 43.0 31.6 20.0 15.4 11.2 12.6

1 4 54.6 72.2 80.6 88.4 94.2 98.4
1 4 77.8 82.2 88.8 94.4 98.2 98.6
2 4 20.8 18.6 32.2 42.2 54.0 67.0

D
om

in
ee

ri
ng

1 13.4 8.6 8.6 6.0 14.2 28.0
1 4 40.8 34.4 37.4 48.4 50.0 50.0
1 4 44.4 38.6 40.6 49.4 50.0 50.0
2 4 11.2 14.4 20.2 25.2 32.2 45.4

m
is

er
e 1 33.4 25.2 20.0 18.8 13.2 12.2

1 4 45.4 47.2 56.8 60.2 62.8 54.2
1 4 69.4 66.6 71.6 70.4 68.4 58.6
2 4 37.0 45.2 45.6 51.0 57.8 53.6

N
oG

o

1 5.8 3.0 2.6 3.0 0.6 0.8
1 4 7.2 16.0 31.8 35.2 35.4 40.6
1 4 37.6 39.2 38.4 40.8 47.8 48.0
2 4 0.4 2.8 5.4 15.0 20.6 17.0

m
is

er
e 1 14.6 6.6 5.2 3.0 2.4 1.8

1 4 17.2 25.0 38.8 51.2 48.2 48.8
1 4 55.4 56.6 57.0 57.6 54.6 60.8
2 4 5.2 10.6 19.4 35.6 37.2 47.8

A
ta

ri
-

G
o

1 0.6 2.2 4.6 5.4 6.8 7.6
1 4 0.2 19.2 42.0 42.0 55.4 67.2
1 4 42.0 59.0 60.2 71.0 71.2 77.2
2 4 0.2 0.0 0.6 7.4 8.6 4.8

Table 4: Win percentages for a UCT(NMC(n)) player against
an optimized UCT player for various settings and thinking
times: “PoD” stands for Discounting+Pruning on Depth and
“CoW” for Cut on Win.

also observe that for this range of computational resources,
using a nested search with CoW at both levels does not seem
as effective as CoW for level 1 only.

Where the statistic move towards the 50% mark we can
infer that games are being played perfectly by both the ref-
erence UCT player, and by the Nested Player. Domineering,
especially, appears to be an easy task for the algorithms at
hand, and Knightthrough might be quite close to solved. On
the other hand, the large proportion of games lost by the refer-
ence UCT player independent of the side played demonstrate

that some games are far from being solved by this algorithm,
for instance misere Breakthrough, misere Knightthrough, or
Atari-Go are dominated by UCT. This shows that although we
have used 9 games all played on boards of the same 5×5 size,
the underlying decision problems were of varying difficulty.

The performance improvement on the misere version of
some the games seems to be much larger than on the original
versions. A tentative explanation for this phenomenon which
would be consistent with a similar intuition in single-agent
domains is that Nested Player is particularly good at games
where the very last moves are crucial to the final score. Since
the last moves made in a level n playout are based on a search
of an important fraction of the subtree, comparatively fewer
mistakes are made at this stage of the game than a plain Monte
Carlo playout. Therefore, the estimates of a position’s value
are particularly more accurate for the Nested Playout than for
plain Monte Carlo Playout. This is consistent with the idea12

that the Nested Playout is performing a Depth Limited Mini-
Max search at the terminus of the playout.

5 Conclusion
In this paper, we have examined the adaptation of the NMCS
algorithm from single-agent problems to two-outcome two-
player games.

We have proposed three types heuristic improvements to
the algorithm and have shown that these suggestions indeed
lead to better performance than that of the naive adaptation.
In particular, discounting the reward based on the playout
length increases the accuracy of the nested searches, and the
various pruning strategies allow to discard very large parts of
the search trees.

Together these ideas contribute to creating a new type of
domain agnostic search-based artificial player which appears
to be much better than a classic UCT player on some games.
In particular, in the games misere Breakthrough and misere
Knightthrough the new approach wins close to 99% of the
games against the best known domain independent algorithm
for these games.

Some important improvements to the original single-player
NMCS algorithm such as memorization of the best sequence
[Cazenave, 2009] cannot be adapted to the two-player set-
ting because of the alternation between maximizing and min-
imizing steps. Still, nothing prevents attempting to generalize
some of the other heuristics such as All-Moves-As-First idea
[Akiyama et al., 2010] and the Nested Rollout Policy Adap-
tation [Rosin, 2011] in future work. Future work could also
examine how to further generalize NMCS to multi-outcome
games.

While we built our Nested Player around a purely ran-
dom policy as is most common in the GGP community, our
technique could also build on the alternative domain-specific
pseudo-random policies developed in the Computer Go com-
munity [Silver and Tesauro, 2009; Browne et al., 2012]. The
interplay between such smart elementary playouts and our
nesting construction and heuristics could provide a fruitful
avenue for an experimentally oriented study.

12in section 3.4
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