Combining tactical search and deep learning in the game of Go

Tristan Cazenave
PSL-Université Paris-Dauphine, LAMSADE CNRS UMR 7243, Paris, France
Tristan.Cazenave @dauphine.fr

Abstract

In this paper we experiment with a Deep Convo-
lutional Neural Network for the game of Go. We
show that even if it leads to strong play, it has
weaknesses at tactical search. We propose to com-
bine tactical search with Deep Learning to improve
Golois, the resulting Go program. A related work
is AlphaGo, it combines tactical search with Deep
Learning giving as input to the network the results
of ladders. We propose to extend this further to
other kind of tactical search such as life and death
search.

1 Introduction

Deep Learning has been recently used with a lot of success
in multiple different artificial intelligence tasks. The range of
applications go from image classification [Krizhevsky et al.,
2012] where deep convolutional neural networks have better
results than specialized image vision algorithms with a more
simple algorithm, to writing stories with recurrent neural net-
works [Roemmele, 2016].

Deep Learning for the game of Go with convolutional neu-
ral networks has been addressed first by Clark and Storkey
[Clark and Storkey, 2015]. It has been further improved by
using larger networks [Maddison et al., 2014]. Learning mul-
tiple moves in a row instead of only one move has also been
shown to improve the playing strength of Go playing pro-
grams that choose moves according to a deep neural network
[Tian and Zhu, 2015].

Deep neural networks are good at recognizing shapes in the
game of Go. However they have weaknesses at tactical search
such as ladders and life and death. The way it is handled in
AlphaGo [Silver et al., 2016] is to give as input to the net-
work the results of ladders. Reading ladders is not enough
to understand more complex problems that require search.
So AlphaGo combines deep networks with Monte Carlo Tree
Search [Coulom, 2006]. It learns a value network with rein-
forcement learning to learn to evaluate positions. When play-
ing, it combines the evaluation of a leaf of the Monte Carlo
tree by the value network with the result of the playout that
starts at this leaf. The value network is an important innova-
tion due to AlphaGo. It has helped improving a lot the level
of play.

Elaborated search algorithms have been developed to solve
tactical problems in the game of Go such as capture problems
[Cazenave, 2003] or life and death problems [Kishimoto and
Miiller, 2005]. In this paper we propose to combine tactical
search algorithms with deep learning.

Other recent works combine symbolic and deep learn-
ing approaches. For example in image surveillance systems
[Maynord et al., 2016] or in systems that combine reasoning
with visual processing [Aditya et al., 2015].

The next section presents our deep learning architecture.
The third section presents tactical search in the game of Go.
The fourth section details experimental results.

2 Deep Learning

In the design of our network we follow previous work [Mad-
dison et al., 2014; Tian and Zhu, 2015]. Our network is fully
convolutional. It has twelve convolutional layers each fol-
lowed by a rectified linear unit (ReLU) layer [Nair and Hin-
ton, 2010] except for the last one. It uses eleven binary 19x 19
input planes: three planes for the colors of the intersections,
six planes for the liberties of the friend and of the enemy col-
ors (1, 2, > 3 liberties), two planes for the last moves of
the friend and of the enemy: as in darkforest [Tian and Zhu,
2015] the value decreases exponentially with the recency of
the last moves. The last move gets e %! for the first input
plane, the penultimate move gets e~ for the second input
plane, the move before that gets e =3 for the first input plane
and so on.

Each convolutional layer has 256 feature planes. The size
of the filter for the first layer is 5 x 5 and the following layers
use 3 x 3 filters. Figure 1 gives the architecture of the network.

On the contrary of previous work we have found that learn-
ing was faster when not using a softmax layer as a final layer.
We also do not use a minibatch. We just use SGD on one
example at a time.

We also believe that learning ko threats disturbs the learn-
ing algorithm. Ko threats are often moves that do not work
in normal play, so in order to simplify learning we set them
apart. In our learning and test sets we do not include moves
from positions containing a ko.

Our training set consists of games played on the KGS Go
server by players being 6d or more between 2000 and 2014.
We exclude handicap games. Each position is rotated and
mirrored to its eight possible symmetric positions. It results



Feature  Feature  Feature  Feature  Feature
Inputs maps maps maps maps maps
11 256 256 256 256 256

Feature  Feature Feature  Feature  Feature  Feature
maps

maps maps maps maps maps

256 256 256 258 256 1

Conv Conv Conv Conv Conv
S5x5 3x3 3x3 3x3 3x3

Conv

Conv Conv
3x3 3x3 3x3 3x3 3x3

Figure 1: Architecture of the network.

in 160 000 000 positions in the learning set. The test set con-
tains the games played in 2015. The positions in the test set
are not mirrored and there are 100 000 different positions in
the test set.

3 Tactical Search

We made our DCNN play the game of Go on the KGS Go
server. The following examples are taken from games played
against human players. Let first define some important Go
terms. A string is a set of stones of the same colors that are
connected together. An important concept in the game of Go
is the number of liberties of s string. The number of liberties
is the number of empty intersections next to the stones. A par-
ticular kind of useful tactical search in the game of Go is lad-
ders. A ladder is a consecutive serie of ataris that results in the
capture of a string. In figure 2, Golois is Black and it fails to
see a ladder that captures five black stones and makes White
alive. The sequence of moves is obvious (W[C9], B[D8g],
WI[BS], B[D7], W[D6], B[E7], W[F6]). However Golois fails
to see it. These types of errors can cause Golois to lose a game
it would otherwise win.

Another unlikely behavior of Golois is given in figure 3.
We can see that it pushes through a lost ladder, giving Black
some free points. We also want to prevent such bad behavior.

Besides from ladders, DCNN also have weaknesses for life
and death problems. A string is alive if it cannot be captured.
A string is dead if it cannot avoid being captured. Figure 4
shows a White move by Golois that fails to make an important
group alive even though the living move is obvious. Such bad
behavior could be avoided with a simple life and death search.

Other more complicated problems such as Seki are also out
of scope of the DCNN as can be seen in figure 5. A move at
J1 would have given White life by Seki, and it could easily
have been found with a life and death search algorithm.

Another kind of life and death problems that are difficult to
handle even with Monte Carlo Tree Search are problems in-
volving double kos. In the last November 2015 Mylin Valley
computer Go tournament, Dolbaram the winner of the tour-
nament failed to understand a life and death fight involving a
double ko when playing an exhibition match against a strong

19

18

17

16

15

14

13

12

1

10

Figure 2: An unseen ladder.

professional player. This kind of problem can be solved by a
life and death search algorithm.

The life and death problem is not specific to Golois. For ex-
ample Darkforest, the Facebook AI Research bot also played
a lot of games on KGS with a deep neural network. In many
games it lost the game due to the inability to handle well a
simple life and death problem. Other deep learning Go pro-
grams could be improved by incorporating simple life and
death knowledge and search.

The ladder algorithms we use are given in algorithms 1 and
2.

The captureLadder algorithm searches for the capturing
moves. The inter variable is the intersection of a stone of
the string to capture. The depth variable is the depth of the
search, it is initially called with a zero value. If the string of
the stone is captured the algorithm sends back true as it suc-



Figure 3: A lost ladder.

ceeded. if the string gets more than two liberties, then it is
considered saved. The algorithm could be extended to han-
dle more complex captures of strings that have more than two
liberties by modifying this threshold.

The isCapturedLadder algorithm verifies that all possible
moves that can save a string do not work and that the string
is captured. It is called by the captureLadder algorithm and it
also recursively calls the captureLadder algorithm.

The way we integrate ladders with the neural network is
that we modify the result of the output of the network accord-
ing to ladders. If a move is in a ladder and results in more than
four stones, its value is decreased by the number of stones. If
a move captures strictly more than four stones in a ladder,
its value is increased by the number of captured stones. If a
move saves strictly more than four stones in a ladder, its value
is increased by the number of saved stones. Using these sim-
ple rules occasionally wastes a move as it is not always the
best move to play in a ladder even if it has move than four
stones. However it often saves a game when the DCNN fails
to see a ladder.

4 Experimental Results

Tables 1 and table 2 give the learning curve of the DCNN. The
last column gives the percentage of move prediction on the
test set. These moves are the ones played by players ranked
better than 6d on KGS, so these are the kind of moves we
want the network to replicate. As we use SGD with no mini-
batch we could use high learning rates such as 0.2 to start
with. Then in the end the network was fine tune with a 0.025
learning rate. We get 55.56% on the test set which is compa-
rable to other approaches. AlphaGo gets 57.0% on the test set
for its policy network. When all the examples in the training
set have been used, the learning algorithm starts again from
the first examples.

Algorithm 1 The capture ladder algorithm.

captureLadder (inter, depth)
if depth > 100 then
return false
end if
nbNodesLadder++
if nbNodesLadder > 1000 then
return false
end if
if board [inter] == Empty then
return true
end if
n = nbLiberties (inter, liberties, stones)
if n > 2 then
return false
end if
if n == 1 then
if capture on liberty is legal then
return true
end if
end if
res = false
if n == 2 then
for m in liberties do
if m is legal then
play (m)
if isCapturedLadder (inter, depth + 1) then
res = true
end if
undo (m)
if res == true then
return true
end if
end if
end for
end if
return res




Algorithm 2 The captured ladder algorithm.

isCapturedLadder (inter, depth)
if depth > 100 then
return false
end if
nbNodesLadder++
if nbNodesLadder > 1000 then
return false
end if
if board [inter] == Empty then
return true
end if
n = nbLiberties (inter, liberties, stones)
if n == 0 then
return true
end if
if n > 1 then
return false
end if
res = true
if n == 1 then
for m in strings adjacent to inter do
if the adjacent string has one liberty then
if the liberty is a legal move then
play (liberty)

if not captureLadder (inter, depth + 1) then

res = false
end if
undo (liberty)
end if
end if
end for
for m in liberties do
if m is legal then
play (m)
if not captureLadder (inter, depth + 1) then
res = false
end if
undo (m)
end if
end for
end if
return res

19

18

17

16

15

14

13

12

1

10

R B e AL s

8

el LTI R AR A

Figure 4: Missing the living move.

A simple improvement that improves the prediction accu-
racy is to use bagging with the same network applied to the
eight possible symmetries of a Go board. For each move, the
value of a move is the sum of the values of the symmetric
move on the reflected boards. Bagging enables to improve
the prediction accuracy from 55.809% to 56.398% for four
symmetries, and to 56.513% for eight symmetries.

Golois played a lot of games on the KGS Go server. Its
level of play is currently first kyu. It occasionally wins games
against 2d and loses some games to 2k but rarely to play-
ers less than 2k. Games against other first kyu are balanced.
Reaching the first kyu level for a deep network which is not
combined with Monte Carlo Tree Search is a nice achieve-
ment and it competes well with the other best programs using
a similar architecture. Moreover it plays moves very fast for
a first kyu program.

5 Conclusion

We have presented a combination of tactical search and deep
learning for the game of Go. Deep convolutional neural net-
works have difficulties at tactical search. Combining them
with specialized tactical searches such as capture search or
life and death search improves their level of play.

The combination with tactical search results in improved
policy network that can also be used for programs that com-
bine Monte Carlo Tree Search and Deep Learning.

Future work will be to use more elaborate tactical search
algorithms for capture and life and death.

Our current use of the results of tactical searches is rather
crude since it consists in always following the tactical move
if it is considered important by an heuristic. In future work
we will use the results of tactical search on more complex
capture and life and death as inputs to the neural network.



Figure 5: Missing the seki move.

Acknowledgments

This work was granted access to the HPC resources of
MesoPSL financed by the Region Ile de France and the
project Equip@Meso (reference ANR-10-EQPX-29-01) of
the programme Investissements d’Avenir supervised by the
Agence Nationale pour la Recherche

References

[Aditya et al., 2015] S. Aditya, Y. Yang, C. Baral, C. Fer-
muller, and Y. Aloimonos. Visual common-sense for
scene understanding using perception, semantic parsing
and reasoning. In L. Morgenstern, T. Patkos, and R. Sloan
(Eds.) Logical Formalizations of Commonsense Reasoning
(Technical Report SS-15-04). Stanford, CA: AAAI Press,
2015.

[Cazenave, 2003] Tristan Cazenave. A generalized threats
search algorithm. In Computers and Games, volume
2883 of Lecture Notes in Computer Science, pages 75-87.
Springer, 2003.

[Clark and Storkey, 2015] Christopher Clark and Amos
Storkey. Training deep convolutional neural networks
to play go. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages
1766-1774, 2015.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in Monte-Carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. Donkers,
editors, Computers and Games, 5th International Confer-
ence, CG 2006, Turin, Italy, May 29-31, 2006. Revised Pa-
pers, volume 4630 of Lecture Notes in Computer Science,
pages 72-83. Springer, 2006.

[Kishimoto and Miiller, 2005] Akihiro Kishimoto and Mar-
tin Miiller. Search versus knowledge for solving life and
death problems in go. In AAAI, pages 1374-1379, 2005.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., pages 1106-1114, 2012.

[Maddison et al., 2014] Chris J Maddison, Aja Huang, Ilya
Sutskever, and David Silver. Move evaluation in go us-
ing deep convolutional neural networks. arXiv preprint
arXiv:1412.6564, 2014.

[Maynord et al., 2016] M. Maynord, S. Bhattacharya, and
D. W. Aha. Image surveillance assistant. In Computer Vi-
sion Applications in Surveillance and Transportation: Pa-
pers from the WACV-16 Workshop. Lake Placid, NY, 2016.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, pages 807-814, 2010.

[Roemmele, 2016] Melissa Roemmele. Writing stories with
help from recurrent neural networks. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages
43114342, 2016.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Mad-
dison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

[Tian and Zhu, 2015] Yuandong Tian and Yan Zhu. Better
computer go player with neural network and long-term
prediction. arXiv preprint arXiv:1511.06410, 2015.



Table 1: Evolution of the score on the test set with learning.
Examples learned Learning rate  Test set percentage

5 000 000 0.2 44.033
10 000 000 0.2 46.548
15 000 000 0.2 48.2
20 000 000 0.2 48.851
25000000 0.2 49.084 Table 2: Evolution of the score on the test set with learning.
30 000 000 0.2 49.595 .
Examples learned Learning rate  Test set percentage
35 000 000 0.2 50.042
200 000 000 0.025 55.228
40 000 000 0.2 50.457
205 000 000 0.025 55.059
45 000 000 0.2 50.734
210 000 000 0.025 55.155
50 000 000 0.2 50.994
215 000 000 0.025 55.15
55 000 000 0.2 51.183
220 000 000 0.025 55.177
60 000 000 0.2 51.34
225 000 000 0.025 55.159
65 000 000 0.2 51.59
230 000 000 0.025 55.21
70 000 000 0.2 51.817
235 000 000 0.025 55.276
75 000 000 0.2 52.05
240 000 000 0.025 55.285
80 000 000 0.2 52.098
245 000 000 0.025 55.283
85 000 000 0.2 52.218
250 000 000 0.025 55.282
90 000 000 0.2 52.407
255 000 000 0.025 55.17
95 000 000 0.2 52.762
260 000 000 0.025 55.149
100 000 000 0.2 52.807
265 000 000 0.025 55.139
105 000 000 0.2 52.516
270 000 000 0.025 55.217
110 000 000 0.2 52.919
275 000 000 0.025 55.187
115 000 000 0.2 53.278
280 000 000 0.025 55.12
120 000 000 0.2 53.076
285 000 000 0.025 55.282
125 000 000 0.2 53.182
290 000 000 0.025 55.549
130 000 000 0.1 53.673
295 000 000 0.025 55.449
135 000 000 0.1 53.834
300 000 000 0.025 55.579
140 000 000 0.1 53.918
305 000 000 0.025 55.532
145 000 000 0.1 54.114
310 000 000 0.025 55.749
150 000 000 0.1 54.41
315 000 000 0.025 55.692
155 000 000 0.1 54.636
320 000 000 0.025 55.784
160000 000 0.1 24.604 325 000 000 0.025 55.809
165 000 000 0.1 54.748
170 000 000 0.1 54.838
175 000 000 0.1 55.062
180 000 000 0.05 55.037
185 000 000 0.05 54.85
190 000 000 0.05 55.036

195 000 000 0.05 55.56



