A Generalized Threats Search Algorithm

Tristan Cazenave

Labo TA, Université Paris 8, 2 rue de la Liberté, 93526, St-Denis, France
cazenave@ai.univ-paris8.fr

Abstract. A new algorithm based on threat analysis is proposed. It
can model existing related algorithms such as Lambda Search and Ab-
stract Proof Search. It solves 6x6 AtariGo much faster than previous
algorithms. It can be used in other games. Theoretical and experimental
comparisons with other related algorithms are given.

1 Introduction

A new search algorithm based on threats is presented. It is related to other threat
based search algorithms. Threat based search algorithm work well in games such
as the capture game of Go [1-3] or Go-Moku [4]. Generalized Threats Search
(GTS) is based on the notion of generalized threats. GTS is a generalization of
previously published algorithms. It is able to model the other existing threat
based algorithms. It also solves problems and games faster than the other threat
based algorithms when used with appropriate parameters. An analysis of the
well formed generalized threats that give good results is given. Experimental
comparisons of the different algorithms on the game of 6x6 AtariGo are detailed.
The algorithm can also be used to solve problems related to many other games.

The second section explains the game of AtariGo which has been used for the
experiments. The third section discusses some related threat search algorithms.
The fourth section defines generalized threats. The fifth section describes the
search algorithm based on generalised threats as well as how it can model Ab-
stract Proof Search and Lambda Search. The sixth section details experimental
results. The seventh section outlines future work and the eighth section con-
cludes.

2 AtariGo

AtariGo is used to teach beginners to play the game of Go. The goal is to be the
first player to capture a string. It can be played on any board size. It is usually
played on a small board so that games do not take too much time. Teachers
also often choose to start with a crosscut in the centre of the board to have
an unstable position. We have tested different algorithms on the version with a
crosscut in the centre of a 6x6 board.

The rules are similar to Go: Black begins, Black and White alternate playing
stones on the intersections of the board, strings of stones are stones of the same



color that are linked by a line on the board. The number of empty intersections
adjacent to the string is the number of liberties of the string. A string is captured
if it has no liberty. For example in the Figure 6, the two black strings each have
four liberties. A string that has only one liberty left is said to be in Atari and
can be captured by the other color in one move.

3 Related Work

Search algorithms that develop trees based on threats work well in games such
as Go-Moku [4], or the capture search in the game of Go [1-3].

In this section we give an overview of search algorithms based on threats. The
first subsection deals with Threat Space Search that has been used by V. Allis
to solve Go-Moku. The second subsection briefly summarizes Abstract Proof
Search (APS) which has been used to solve capturing problems in the game
of Go. The third subsection is about Lambda Search (LS) which deals with
similar problems. The fourth subsection exposes Iterative Widening (IW), an
improvement over APS. The fifth subsection describes Gradual Abstract Proof
Search (GAPS) which introduce some graduality in IW and APS.

3.1 Threat Space Search

Go-Moku has been solved by V. Allis and coworkers using a selective proof search
algorithm based on threats and proof number search for the main search when
no threats are available [4]. The threats are given names that correspond to
patterns: Four, Straight Four, Three, Five. APS, GAPS and lambda search are
a generalization of Threat Space Search. They are based on tree search to find
threats of increasing orders instead of fixed patterns.

3.2 Abstract Proof Search

Abstract Proof Search [3] is a very selective search algorithm that ensures that
winning moves are correct. It is much faster than brute force Alpha-Beta. It
consists in developing small search trees at the Min nodes of the main search in
order to select the interesting moves or to decide to stop search. Given that Left
plays at Max nodes, and Right at Min nodes, an Abstract Proof Search of order
one consists in verifying at each Min node if the Left player can win in one move.
If it is not the case, the search is stopped and the Min node is labeled as lost
for Left. Otherwise, if Left can win in one move, only the Right moves that can
prevent the win in one move are considered and tried at this node. The search
of order one consists in developing small ’trees’ consisting of only one Left move
at each Min node. A search of order N consists in developing trees with N Left
moves (depth 2N — 1 plies search trees) at each Min node.



3.3 Lambda Search

Lambda Search [1] is a search algorithm that has strong links with Abstract Proof
Search. It can be defined using lambda trees and lambda moves. A lambda tree
of order n is a search tree that contains lambda moves of order n. A lambda
move of order n for the attacker is a move that implies that there exist at least
one subsequent winning lambda tree of order strictly inferior to n. A lambda
move of order n for the defender is a move that implies that there is no winning
tree of order strictly inferior to n.

Abstract Proof Search imposes limits on the depth and the order of the trees
developed at each node, whereas Lambda Search imposes limits on the order of
these trees. Abstract Proof Search relies more on abstract properties of the game
to select a few interesting moves and reduce the number of moves to look at for
each order. Apart from these distinctions, they are based on similar ideas.

3.4 Iterative Widening

The Iterative Widening algorithm [2] consists in performing a full Abstract Proof
Search at a given order, before increasing the order of the search. It has been
successfully tested on the capture game in the game of Go. Practically, it consists
in trying an order one Abstract Proof Search, and if it fails in trying an order
two search, and if it fails in trying an order three search. And so on until the
time alloted for the search is elapsed. It gives a speed-up of two for the capture
game of the game of Go.

3.5 Gradual Abstract Proof Search

Gradual Abstract Proof Search (GAPS) [5] is based on gradual games. A gradual
game is defined as the shape of a search tree. Gradual games can be deeper for
a lower order than the games used in APS. They can also be more shallow for a
higher order than the A-trees used in LS. GAPS consists in iteratively widening
the scope of the gradual games, instead of widening the games based on the
depth of the games as in [2]. It is a generalization of Iterative Widening.

GAPS mixes the good properties of APS and LS. Instead of only selecting
moves mainly based on the depth as in APS, or based on the order as in LS, it
selects the moves using these two criteria. Therefore it enables more control on
the search behavior than APS and LS. It can also easily use abstract properties
of a game in order to be very selective on the moves to try as in APS.

4 Generalized Threats

GTS is based on the idea of generalized threats. In the first subsection, gen-
eralized threats are defined. The second subsection is about the comparison of
generalized threats. The third subsection gives the composition operator that
enables to build all the relevant generalized threats. The last subsection gives
information on the matching of generalized threats.



4.1 Definition of Generalized Threats

A move of order n is a move that wins if it is followed by n-1 moves in a row by
the same player. Each move in a game can be associated to an order. The order
of a move M is noted w(M). The last move of a game directly wins the game, it
is always a move of order one.

A generalized tree represents search trees where the players have the possibil-
ity to play multiple moves in a row. The two players are named Left and Right.
A branch that goes on the left represents some Left moves, and a branch that
goes on the right represents some Right moves. A generalized tree is a binary
tree. The usual MiniMax algorithm can be represented by a simple generalized
tree as the first tree of the Figure 1 which represents a depth 7 usual MiniMax
tree. A Null-move Minimax with a reduction factor of 2 stops searching when the
result of a search tree of a depth equal to the depth of the current node minus
2, starting with another move of the same color, does not have an evaluation
greater than beta at a max node, and less than alpha at a min node. The second
generalized tree of the Figure 1 give the tree developed with a depth 5 Null-
Move Minimax with a reduction factor of 2. Null-move search speeds up Alpha
Beta search but does not preserves the correctness of the results of a search.
Whereas Generalized Threats Search is even faster, and moreover preserves the
correctness.

S
< >

Fig. 1. Generalized trees for a depth 7 MiniMax and a depth 5 Null-Move Minimax.

A node of order n in a generalized tree is a node where the number of left
branches in a row after the node is n. For example the root node of the (1,0)
generalized threat in the figure 2 is of order one. The root node of the (6,3,2,0)
generalized threat is of order 3.

A generalized threat is a set of generalized trees that have some special
properties. It is represented by a vector of integers. The first element of the
vector is the number of order one nodes that are allowed in the verification of



the threat. The second element is the number of allowed order two nodes, and
the nth element gives the maximum number of order n nodes that can be used
to verify the threat.

A generalized threat is defined as g = (01,02, -..,0,,0) where o; is the maxi-
mum number of order i nodes that can be visited during the verification of the
threat. It always ends with a zero. For example, in order to verify that a winning
move is available, the threat (1,0) has to be verified.

In order for a generalized tree to be a generalized threat, it has to fulfill a
special property: at each node of the tree that has a left and a right branch, the
left subtree has to be included in the left subtree following the right branch.

/S

(1,0) ¢
(2,:.[,0) >

(42,10

(5:4,0) (6,3,2,0)
Fig. 2. Some trees representing generalized threats.

The Figure 2 gives some examples of generalized trees representing different
generalized threats. Left tries to win the game and Right tries to prevent Left
from winning. Left branches are associated with winning moves for Left, and
right branches are associated to the complete set of Right moves that can possibly
prevent the win of the corresponding left branch (the left branch directly at the
left of the right one with the same parent). All the leaves of the trees are positions
won for Left. In order for the threat to be verified, all Left moves have to be
winning moves, and all Right moves have to be refuted by Left.

In these trees, the number of leaves is the number of order one threats, as
each leaf is a won position for Left. The number of order two nodes is the number
of Left branches that are followed by an order one node for Left. More generally,
the number of order n nodes is the number of Left branches that are followed
by an order n-1 node for Left.



Generalized threats are a generalization of the gradual games used in GAPS
[5]. In GAPS, the representation of the gradual games is less general. A general-
ized threat can represent multiple GAPS trees. Moreover, programming gener-
alized threats is easier than programming gradual games as they have a simple
definition and nice properties as we will see in the following subsections.

Each order n+1 node is followed by at least one order n node. It is easy to see
that Vi : 0; < 0;41. Therefore all the values after a zero in a vector representing
a threat are also zero. This is why only the first zero of the vector is written in
the vector representing a threat.

4.2 Comparison of Generalized Threats

Let g be a generalized game, w(g) is the value of the first null element of the vector
representing g. For example, we have w(1,0) = 2, w(2,1,0) = 3 and w(6,3,2,0) =
4. w(g) is the value of the maximum order node of the threat plus one.

Let gr = (0k,1,0k,2) s Ok,n, 0). We have g, < gp if w(ga) < w(gp) and Vi <
w(gs) : Oai < Op,i-

The Figure 3 gives different possible generalized threats. An arrow between
two threats means that the pointed threat is less than the other threat. Some of
the threats are incomparable.

(1,0) =— (210 =— (4210) =— (84,21,0)

P

(3.20) (53,1,00 =<— (6,3,2,0)
(4,3,0) }/(6,4,1,0) - (8,4,3,0)
(5,4,0)

Fig. 3. Order between some generalized threats.

When a generalized threat is greater than another one, it means that all the
generalized trees that can be built with the lowest one can also be built with the
greatest one. This partial order between threats is particularly useful for building
and verifying threats, because the generalized threat following a Right move is
always greater than the generalized threat the Right move tries to prevent.



4.3 Composition of Generalized Threats

The basic threat is (1,0). All other threats can be built from this (1,0) threat
using a composition operator. Let’s name T the operator used to compose two
generalized threats.

Let g; and g, be two games with g; < g.. We can define the T operator as:
9t = 9iTg, and Vk # w(g;) : o1,k = 01, + Or and for k = w(g;) : 0pp = 0rp + 1.

(2,1,0

Fig. 4. Composition of the two most simple generalized threats gives (2,1,0).

For example, we have (1,0) T (1,0) = (2,1,0) as explained graphically in the
Figure 4. Another example is given in the Figure 5 with the operation (2,1,0) T
(4727170) = (6737270)'

(4,2,1,0)

/!

(6,3,2,0)

Fig. 5. Composition of (2,1,0) and (4,2,1,0) gives (6,3,2,0).



The T operator ensures by construction that for all the nodes in a tree
representing a generalized threat, if the node has a left and a right branch, then
the left subtree is always smaller than the subtree at the left of its right branch.
This property is very important for finding forced moves and for finding won
states even if Right is to play. The right branch represents the set of Right
moves that can possibly prevent a Left threat. Because we expect Left to have
a harder job winning after a Right move than before, the right branch has to
be followed by a generalized tree greater than the Left threat tree in order to
ensure that all the Right moves fail.

4.4 Verification of Generalized Threats

Verifying a generalized threat consists in verifying that for each left branch,
there is a winning Left move, and that for each right branch, there are no Right
moves that prevent Left from winning. It is possible to verify threats without
optimizations. However, we use several optimizations that are described in this
subsection.

An optimization used to verify generalized threats is iterative widening on
the maximum order of the threat at nodes that have only one left branch. At
these nodes, the program starts with trying an order one move. If it does not
work, it tries an order 2 moves, decrements the number of order 2 nodes in the
threat at hand, update the threat at hand so that every value in the threat vector
is less or equal than the following value, and tries to verify the updated threat.
If the threat is not verified, it continues to increase the order of the threat until
a threat is verified or the maximal order of the threat at hand is reached.

At nodes that contain both a left and a right branch, we can make another
nice optimization. We know that the left threat is lower than the threat at the
left of the right branch. Therefore, as we know the threat that has to be verified
at the current node, we can define a new threat which is the current threat
divided by two (dividing by two all the integers in the vector representing the
current threat). This new threat is the maximum threat that has to be verified
for the left subtree. For example, if the program has to verify a (4,2,1,0) threat,
it will only try the (2,1,0) threat for the left subtree. Because the right subtree is
greater than the left subtree, therefore the left subtree is at most the half of the
overall tree (this is why all the integers representing the overall tree are divided
by two in order to find the maximum left subtree).

At every node of the tree, the verified threat can be smaller than the maximal
threat that was to be verified. The program always memorizes the verified threat.
At nodes that contains a left and a right branch, it computes the maximal right
threat that has to be tried as the substraction of the vector of the threat to
verify minus the vector of the verified left threat.

Another optimization which gives very good results is to use sets of abstract
moves as they are defined in [3] during the verification of the search. For example,
an order 2 search is bound to fail in AtariGo if all the Right strings have strictly
more than 2 liberties. In this case and in similar cases, the search returns fail
without even being tried.



5 Generalized Threats Search

This section starts with giving the optimizations used in the Alpha-Beta algo-
rithm for solving AtariGo, which are the same as the optimizations used in the
main Alpha-Beta used to perform a GTS. Then the second subsection describes
how to select the moves at the Min nodes of the Alpha-Beta so as to perform a
GTS. The third subsection is about the selection of moves at the Max nodes of
the Alpha-Beta in order to perform a GTS. The fourth subsection shows that
it is possible to model the Abstract Proof Search and the Iterative Widening
algorithms with the Generalized Threats Search algorithm. The fifth subsection
shows how to model Lambda Search with Generalized Threats.

5.1 Alpha-Beta

An optimized Alpha-Beta is used as the core algorithm of GTS. Generalized
threats are used in different ways at Max and at Min nodes of the Alpha-Beta.
At Max nodes, generalized threats are used to find Left moves that prevent Left
from losing if Right plays first, and if no threat is verified, all relevant moves
are tried. At Min nodes, generalized threats are used to find Right moves that
prevent Left from winning if Left plays first, and if no threat is verified, the node
is cut.

The optimizations used are the use of transposition tables, containing the
score and the best move. The memorization and use of two killer moves after
the transposition move. The history heuristic with a weight of 2P¢Pt". An incre-
mental evaluation function which computes the difference between the number
of liberties of the black string that has the least liberties and the number of
liberties of the white string that has the least liberties. The number of liberties
of strings are updated incrementally too.

These optimizations are similar to the optimizations used in [6] to solve
AtariGo with Alpha-Beta.

5.2 Forced moves for Right

Right is the player that tries to prevent Left from winning. Right moves take
place at the Min nodes of the Alpha-Beta.

When the generalized threat is not verified for Left at a node of the Alpha-
Beta where Right is to move, a cut is performed, Right has prevented Left from
winning with this threat.

If the generalized threat is verified, all the right moves that may prevent the
threat are tried.

For example, the White move number 2 at E4 in the Figure 6 is found by a
(4,3,0) generalized threat (the principal variation of the threat is B(E4), W(D5),
B(E5), W(D6), B(D6), W(C6), B(B6) captures the white string). Once this
threat is verified, all the relevant White moves are tried, and after each White
move, the same threat is checked (in this case the (4,3,0) threat). The only White
moves that are kept are the moves that prevent the threat to be verified.



5.3 Forced moves for Left

Left moves take place at the Max nodes of the Alpha-Beta.

In some positions, Left has a limited number of moves if he does not want
to lose the game. The generalized threat is tried for Right at each node of the
Alpha-Beta where Left is to play. If the generalized threat is verified for Right,
the only moves to be tried for Left are the forced moves of the threat.

In positions where there are no forced moves for Left, all the possible moves
for Left are tried.

For example, the move number 5 at D2 in the Figure 6 is a forced move for
Left (=Black). If Left does not play at move 5, Right can win with a (3,2,0)
generalized threat for White (the principal variation for this threat is W(D2),
B(F3), W(F4), B(F2), W(F1) capturing a black string).

5.4 Modeling Abstract Proof Search and Iterative Widening

It is possible to model Abstract Proof Search (APS) with GTS. We have ipl
= (1,0), ip2 = (2,1,0), ip3 = (4,2,1,0), ip4 = (8,4,2,1,0), and so on. An APS of
order one is a GTS with the (1,0) generalized threat. An APS of order three as
described in [3] is a GTS with the (4,2,1,0) generalized threat.

The Iterative Widening algorithm [2] consists in performing a GTS (1,0), and
if it fails to perform a GTS (2,1,0), and if it fails a GTS (4,2,1,0) and so on...

5.5 Modeling Lambda Search

A-search can be modeled with generalized threats. For example, developing a
Al-tree is equivalent to verifying a (00,00,0) generalized threat. The different
A-trees can be modeled as follow: Al-tree = (00,00,0). A\2-tree = (00,00,00,0).
A3-tree = (00,00,00,00,0), M-tree = (00,00,00,00,00,0).

6 Experimental results

The computer used for these experiments is a 600 MHz Pentium IIT with 256
MB of RAM running Linux. We have tested four different algorithms.

Alpha-Beta solves 6x6 Atari-Go at Depth 14 in 2793s, results are in the Table
1. All the optimizations described in the Alpha-Beta subsection are used.

Gradual Abstract Proof Search solves 6x6 AtariGo in 62s at depth 10 with
the ip4221 gradual game, results are in the Table 2. The Alpha-Beta used in
the GAPS is the same as the Alpha-Beta used for the experiments in the Table
1. At each node of the Alpha-Beta, all the gradual ip games are tested and the
set of forced moves is the intersection of all the sets of moves sent back by the
gradual games.

Lambda Search solves 6x6 AtariGo in 3555s at depth 15 and order 3, results
are in the Table 3. We did not use the optimization of Alpha-Beta in LS, we have
simply reused the code given by Thomas Thomsen on his web page associated



Table 1. Solving 6x6 Atari-Go with Alpha-Beta.

Depth Value Move Time Nodes
D5 0.00 33

1

2 0 D5 0.00 143
3 1 D5 0.01 1234
4 0 Cs5  0.01 3177
5 1 C5 0.09 25662
6 0 C5 029 71265
7 1 Ch  2.04 563k
8 0 C5 249 604k
9 1 C5  27.91 7442k
10 0 C5 44.04 10375k
11 1 C5 168.06 43034k
12 0 C5 303.21 69300k
13 1 C5 2094.46 518016k
14 500 C5 150.39 34178k

Total 2793.00

Table 2. Solving 6x6 Atari-Go with GAPS.

Depth Value Move Time Nodes

D5 0.00 33
D5 1.84 47
D5 233 235
E3 472 325
E3 5.76 594
E3 11.52 861
E3 11.98 2557
E3 20.58 1982
E3 2.78 1838
E3 046 53
Total 61.97

S © 00U WN R
o
O - OO O
S




Table 3. Solving 6x6 Atari-Go with Lambda Search.

Depth Res Orderl Res Order2 Res Order3
3 0 0.01 0 0.00 0 0.01

5 0 000 0 003 0 013
7 0 000 0 010 0 129
9 0 000 0 096 0 1234
1 0 000 0 613 0 106.38
13 0 000 0 4129 0 1521.08
15 0 000 0 108.10 500 1914.07
Total 0.01 156.61 3555.30

Table 4. Solving 6x6 Atari-Go with Generalized Threats Search.

Depth R (1,0) R (2,1,0) R (5,4,0) R (4,2,1,0) R (6,3,2,0)
1 1 000 1 000 1 000 1 000 1 000
2 0 000 0 000 O 002 0 001 0 014
3 1 000 1 000 1 002 1 012 2 023
4 -1 000 -1 001 0 005 0 007 0 030
5 0 000 0 000 1 002 1 017 1 056
6 -500 0.00 -500 0.00 -1 009 -1 017 0  1.00
7 0 011 0 035 1 156
8 -1 020 -1 069 1  4.69
9 0 006 0 051 2 127
10 -1 008 -1 0.4 500 0.08
1 0 004 0 013
12 -1 008 -1 1.29
13 0 004 -500 0.01
14 -500 0.09

Total 0.00 0.01 0.90 3.66 9.83




Fig. 6. The solution to 6x6 Atari-Go found by GTS(6,3,2,0).



to his paper. In order to have a better basis for comparison between the relative
merits of LS and GTS, we turned off the Alpha-Beta optimizations in GTS. GTS
only takes 115s to solve 6x6 AtariGo when all the Alpha-Beta optimizations are
turned off, using the (6,3,2,0) generalized threat. GTS also solves 6x6 AtariGo in
57s without Alpha-Beta optimizations, using the (12,6,4,0) generalized threat.

Another experiment was run with all Alpha-Beta optimizations turned off,
and with all the abstract knowledge removed in order to have an algorithm that
is even less optimized than Lambda Search (all the forced moves are computed in
the threats in GTS even if they do not need to be, whereas Lambda Search stops
after the first working forced move without looking for the others). To compare
it to LS, we have summed the times used at even depth for this algorithm
less optimized than LS, and it solve 6x6 AtariGo in 1731s with the (6,3,2,0)
generalized threat. Therefore even with less optimizations than LS, generalized
threats still solve 6x6 AtariGo twice as fast.

Another thing that can be noted about LS, is that in T. Thomsen code,
the iterative deepening LS is called with orders ranging from 1 to (depth-1)/2.
We did not use these settings because for AtariGo it would spend a very long
time trying to solve order 4 and higher order Lambda Search unsuccessfully. We
have voluntarily restricted LS to the order 3 which is the order needed to solve
AtariGo.

From a more general point of view, we think it is better to be more cautious
about the increasing of order in LS. An heuristic such as Iterative Widening [2]
is more appropriate for LS: start with fully searching at order 1, and if it does
not work, search at order 2 and so on.

Using the Alpha-Beta optimizations, Generalized Threats Search solves 6x6
AtariGo in 10s at depth 10 with the (6,3,2,0) generalized threat. The results
are in the Table 4. The columns with an R are the result of the GTS. The
following columns give the time used to search each depth. The solution found
by GTS(6,3,2,0) is given in the Figure 6.

7 Future Work

GTS works for AtariGo. It has good chances to work in other games. We plan
to test it for capture, connection and life and death in the game of Go, Lines of
Action, Phutball, Hex, Shogi and Chess.

A special attention has to be given to the order in which the generalized
threats have to be tried. We only have a partial order between generalized
threats, so there is room for choice in the order in which generalized threats
can be tried. This might be game dependent. However some heuristics on the
order of the threats are also probably game independent. It might be possible
to find a good game independent order between generalized threats.

An optimization used in LS and not yet used in GTS is to incrementally find
the forced moves. GTS searches for all the forced moves before trying them in
the Alpha-Beta. It would improve the response time to incrementally search for
the forced moves and to stop as soon as one of them prevents the win.



Using transposition tables and killer moves for the verification of the gener-
alized threats could certainly speed up GTS. These optimizations are currently
only used in the main Alpha-Beta search. There are opportunities to integrate
more closely Alpha-Beta and GTS.

8 Conclusion

We have described GTS, a search algorithm based on the notion of generalized
threats. We have given a constructive definition of generalized threats, and we
have unveiled some properties of generalized threats that enable to optimize their
verification. We have also defined a partial order between generalized threats.
Generalized threats can easily be inserted in an existing Alpha-Beta to speed it
up, as it is described in the GTS section. We have also shown that GTS is a
generalization of previous related algorithms such as Abstract Proof Search and
Lambda Search. Experimental results for solving the game of 6x6 AtariGo show
that it solves the game faster than other related search algorithms. Some further
optimizations are still possible, and the algorithm can be used in other games.

References

1. Thomsen, T.: Lambda-search in game trees - with application to go. ICGA Journal
23(4) (2000) 203-217

2. Cazenave, T.: Iterative widening. In: Proceedings of IJCAI-01, Vol. 1, Seattle (2001)
523-528

3. Cazenave, T.: Abstract proof search. In Marsland, T.A., Frank, I., eds.: Computers
and Games. Volume 2063 of Lecture Notes in Computer Science., Springer (2002)
39-54

4. Allis, L.V., van den Herik, H.J., Huntjens, M.P.H.: Go-moku solved by new search
techniques. Computational Intelligence 12 (1996) 7-23

5. Cazenave, T.: La recherche abstraite graduelle de preuves. In: Proceedings of RFTA
02, Angers, France (2002)

6. van der Werf, E.: Message to the computer go mailing list. (2002)



