Automatically Improving Agents Behaviorsin an Urban Simulation

TristanCazenave
LIP6
Tour 46-00 2émétage
Université Pierre et Marie Curie
4, placelussieu, 75252 Par@edex 05, France
e-mail: Tristan.Cazenave@poleia.lip6.fr

Abstract

Our goal is to crede redigtic urban simulations invalving pedestrians, cars, pedestrians crossngs and
many ahers urban agents. These simulations help architedural designers in choasing architecural
configurations. A problem related to this Smulation is to crede agents that have redistic behaviors and
that are dso efficient (a simulation may manage thousands of agents at the same time, so modeling an
agent's behavior has to be rapid). Therefore, we have developed a program that automaticaly improves
the agents behaviors given (1) some smple situations to avoid (a ca that run ower a pedestrian, or a
pedestrian that tries to walk on ancther one) and (2) the rules of the simulation. The rules that describes
the world and the rules describing the situations to avoid are written using predicae logic. The program
that automaticaly writes the agents is written using metapredicates that manipulates the predicae logic
rules describing the simulation. The alvantage of creaing the agents automaticdly is to have alot of
reliable, efficient and quickly designed rules.

Keywords
Automatic Program Synthesidulti Agents Urban Simulation.
1 Introduction

Our goal is to crede redigtic urban simulations invalving pedestrians, cars, pedestrians crossngs and
many ahers urban agents. These simulations help architedural designers in choasing architecural
configurations. A problem related to this Smulation is to crede agents that have redistic behaviors and
that are dso efficient (a simulation may manage thousands of agents at the same time, so modeling an
agent's behavior has to be rapid). Creaing a redistic agent's behavior manually is hard becaise of the
grea number of cases and interadions that can take place Two programmers have worked on
programming manually agents behaviors during two mornths, but some of the agents gill had urredistic
behaviors, leading to urredistic smulations. Moreover, the model was very sensitive to changes in an
agent: alittle and apparently unimportant change in an agent could transform a working simulation into an
unredi stic one. Therefore, we have developed a program that automaticaly improves the agents behaviors
given (1) some simple situations to avoid (a ca that run ower a pedestrian, or a pedestrian that tries to
walk on anacther one) and (2) the rules of the simulation. The rules that describes the world and the rules
describing the situations to avoid are written using predicate logic. The program that automaticaly writes
the agents is written using metapredicates that manipulates the predicate logic rules describing the

simulation. The metarules are in charge of writing all the passble rules that can lead to a situation to
avoid in the next steps of the simulation. This enables the aents using these rulesto be morereditic. The
advantage of creding them automaticdly isto have alot of reliable, efficient and quickly designed rules.
The aedion d al the rules is made by repladng some predicates in the rules that describe the situations
to avoid, with their definitions contained in the rules of the smulation. Our approach to automatic agent
improvement is efficient and can be used in other contexts.

In afirst part, | describe how programs are automaticaly written by my system. In a second part, | explain
the gplicaion to the urban simulation. Some ealier work onthis /stem can be foundin [1]. This type of
automatic program improvement has been first formalized in [2,5]. It was latter empiricdly tested in [3,4].
Our main danain o reseach is metaknowledge [6], and espedally the automatic areaion d efficient and
reliable programs from a simple and declarative description.

2 Automatic Program Synthesis

In this ®dion, we begin with the inpu and ouput of the system. Then we describe how the output is
calculated given the input.

2.1 Input of the system

The system that creaes the ayentsis given four types of rules. rules describing the simulation, rules about
the godls to adiieve, metarules abou the monowauation d some predicates, metarules abou the
impossibility of some other rules.

All these rules are expressed in predicate logic. Metarules use some metapredicates © as to crede,
transform and celete other rules and aher predicaes. For the sake of simplicity, we give the rulesin a
Prolog like formalism even if this is not exactly the way they are represented in our system.

Example of a rule describing the simulation:

Vision_angle (?n 1) :- Position_pedestrian (?nl ?x ?yDx_angle (?n@&) ,Dy_angle (?n@&y),
equal (?x1 add (dR)), equal (?yl add (?¢y)),
Identification_case (?n2 ?x1 ?ylniat_equal (?n2 -1)not_equal (?nl ?n2).

Thisrule means that the emplacanent that is one step ahead of the pedestrian with angle t*PI/10 canna
be occupied by the pedestrian (Vision_angle (”n 1)). This is due to the fad that the position d the
pedestrian number Pnlisat locaion ?x,?y (symbds with question marks are variables), and that a step in
the diredion d angle *PI/10 would make him move & ?x+7dx,?y+?dy. Unfortunately, the number (?n2)
of the eamplacemnent at ?x+?dx,?y+2dy is nat empty (nat equal to -1) and nd aready occupied by the
pedestrian (not equal to ?nl).

There ae sixty rules that cdculate dl the predicates related to the choice of the orientation d the
pedestrian in the simulation.

Example of a rule about the goal to achieve:

Delta_end (@x Ay) :- Vision_angle (?n 0)All_smaller_angles_impossible (?n),
greater_than (?n -1 preater_than (10 ?n)Dy_angle (?n@y) ,
Dx_angle (?n@x).

Delta_end (?dx ?dy) is the final move that is chosen by the pedestrian. This final move @rresponds to
the angle h*PI/10if al angles snaller than ?n*Pl/10 lead to imposgble moves and if ?n is between -1

and 10 The goal of the method that our system optimizes is to find the move of ead pedestrian in the
simulation. It is called very often and it is a time consuming method.

There are two rules about the goal to achieve in the urban simulation application.
Example of anetarule about theonovaluation of a predicate:
replace_variable (?r ?varl ?var4) :- rule (?r),
condition (?ridentification_case (?varl ?var2 ?var3)),
condition (?ddentification_case (?var4 ?var2 ?var3)),
not_the_same (?varl ?var4).
Thisrule means that there is only one possble value for eady emplacement in the simulation. If the system
credes a rule that contains two dfferent variables for the same eanplacement, then it replaces one of the
variables by the other one (7r is a variable mntaining a rule, var is a metavariable containing another
variable, the metapredicate ‘condtion looks for all the mndtions in rule 7 that match the given
predicate).
There are nine rules about ttnovaluation of a predicate.

Example of anetarule about the impossibility of another rule:

remove_rule (?r) :- rule (?r), condition (?r equal Y& ?varl)), constant y&r) ,
constant (?varl)not_the_same (var ?varl).

This rule means that if two constants must be equal and are not the same, then the rule ca rever be
applied. So the system removes it.

There are five rules about the impossibility of other rules.

2.2 Output of the system

A smplified ouput of the system is the following C++ methodthat tell s if a pedestrian can make amove,
and where he will be located at the end of the mdXeahddY are the pedestrian's move coordinates).

int Pedestrian::Evite () {

reel=dX;

reell=dY;

n=Id; reel2=X; reel3=Y;

reeld4 = (((reell) * (0.951057)) - ((reel) * (0.309017)));
reel5 = (reel3 + reeld);

reel6 = (((reel) * (0.951057)) + ((reell) * (0.309017)));
reel7 = (reel2 + reel6);

nl=Identification_case (reel7,reel5);

if (n1 ==n) || (n1 == -1)) { dX=reel6; dY=reel4; return 1; }
return 0; }

The functionreturns 1 if the pedestrian can move, 0 else. The red C++ function creaed by ou system is
much longer than the one above. Note that 0.951057=cos (P1/10) and that 0.309017=sin (P1/10).

2.3 Program Synthesis

A program takes the rules defining the goals and repeds the spedalization d the rules until no more
specialization can be made. This formalized in the following pseudo-code algorithm:

while (some rules to specialize) {
r = rule to be specialized
set_of rules = replace a predicate in r by its definitions, creating a new rule for each definition
match themetarules aboutonovaluation orset_of rules
match thenetarules about impossible rulessat_of rules
remove r from the set of rules to specialize
addset_of_rules to the set of rules to specialize }

After all the spedalized rules have been creded, they are put together into atree Thistreeis the compil ed
into a C++ program that can be included as a part of the overall simulation.

3 Application to the improvement of an urban simulation

Our program synthesis g/stem has been applied to the improvement of an urban simulation invalving
pedestrians. We first describe the @m of the tod for urban simulation and the problems encourtered when

developing it. Then we show how we overcome this problems using an automatic agent synthesis method.

3.1 Urban Simulation

The simulation tod that is optimized by ou system has been used to chocse the configuration o the
'Grand Stade de France that is built for the next World Socca Cup in France. It has also been used to test
various urban configurations such as Rail Stations or Roads Corfigurations in a dty. A problem
encourtered in these simulation is that smulating redistic agents behaviors is time cnsuming, espedally
in smulations containing thousands of agents. Another problem is that making agents more complicaed
and more redi stic makes the maintaining o the program harder, and also make dhanges in the program
difficult to handle.

The solution we foundto overcome these two problems is to automaticaly creae dficient and redistic
agents from a declarative description of their behaviors.

3.2 Agents Synthesis

The goal of the method that our system optimizesis to find the move of ead pedestrian in the smulation.
Itis called very often and it is a time consuming method.

Given the rules presented in subsedion 21, our system wrote a5 Kilo Octets C++ method that is much
faster than the original and equivalent hand coded C++ method.

The rapidity of the synthesized program is one alvantage over the traditional programming approach.
Another advantage is that it is easier to modify the behavior of an agent when it iswritten in a dedarative
logic language than when it is directly written in C++.

4 Conclusion
| have described a methodto automaticdly crede dficient programs given a dedarative representation o

adomain. This method has been succesgully applied to automaticdly improve some agents behaviorsin
an urban simulation.

The C++ program written by our system is 10 times faster than the original hand-coded C++ program
written by pofessonal programmers. The main reason for the successof this approach is that hand-coded
programs have to be maintainable and simple so that the programmer can understand them, whereas our
system does not have this limitation. The darity of an hand-made program is metime & the price of its
efficiency. Our system writes long and urclea programs, but they are faster than hand-coded programs
because all the calculation that can be made at compilation time have been made.

Meanwhil e, the ggents can be modified more eaily than in an hand-coded C++ program, because they are
representedeclaratively in a logic program.

Thus, our approach enables to write faster agents smulations, and also enables to modify agents behaviors
in an easier way than by directly modifying the C++ code of the agent.

The method has a wide range of applicaions, espedally in ogimizing some time consuming simulations.

In the nea future, we plan to apply our system to ather domains where time optimizetion leads to better
results.

References

[1] Cazeave T. (1996. Learning to Manage a Firm. First International Conference on Industrial
Engineering Applications and Practice, San Diego, 1996.

[2] Dgjong G., Moorey R. (1986. Explanaion Based Learning : an dternative vew. Machine Leaning
2, 1986.

[3] S. Minton, J. Carborell, C. Knolock, D. Kuokka, O. Etzioni, Y. Gil (1989. Explandion-Based
Learning : A Problem Solving Perspectivatificial Intelligence 40, 1989.

[4] S. Minton (1990. Quartitative Results Concerning the Utility of Explanaion-Based Learning.
Artificial Intelligence 42, 1990.

[5] Mitchell T. M., Keller R. M., Kedar-Kabelli S. T. (1986. Explanaionbased Generalization : A
unifying view Machine Learning 1 (1), 1986.

[6] Pitrat J. (1990)Métaconnaissancesiermes, 1990.

