Procealingsde IPMU’98

Speadup Mechanismsfor Large L earning Systems

Tristan Cazenave
LIP6, case 169 UPMC, 4, placeJusseu
75252PARIS CEDEX 05, FRANCE
Tristan.Cazenave@li p6.fr

Abstract

Eliminating combinatorics from the match in
production systems is important for expert
systems, red-time performance machine
leaning, paralled implementation and
cogritive modeling. We describe away of
managing the tradeoff between generdlity
and efficiency in knawvledge representation
for large leaning systems. We propcse an
architedure that enables to combine
efficiency in problem solving to generality in
leaning. Our architedure @mbines
generdity and efficiency by wing two
problem solvers. The first one is interpreted
and wses a general knowledge representation.
It enables the system to lean general rules.
The seoond ore is compiled and wes a
speddized knowledge representation. It
enables the system to solve problems rapidly
and to detead when leaning can occur in
order to dedde to cdl the first problem
solver. To speadup rules, we use two
medanisms which do na affed the
generadity of leaned rules and three
mechanisms that alter the learning abiliti es of
the system and that are only used in the
seond goblem solver. This approach has
shown its efficiency in its applicaion to the
game of Go. The game of Go is the most
complex two person complete information
game.

1 Introduction

Solving a problem in order to lean to solve similar
problems faster is different from solving a problem
in order to solve it quickly. As already pdnted ou
in [36] and in [7], generdity in knowledge
representation is often oppmed to efficiency of
leaned rules. In this paper, we propcse a system
architedure that enables the system to combine
generdity of leaning and efficiency of problem

solving We dso propose different speed-up
mechanisms that are used succesdully in this
architedure.

Explanation-Based Generdizaion [27] and
Explanationtrbased Leaning [8] are powerful
leaning methods for domains with an undlying
theory. The use of similar methods to lean in well -
defined damains can be traced bad to [31] and [21].
Well-known planning and leaning systems as Soar
[18], Prodigy [22] and Theo [28] use these methodk.
Unfortunately, leaned knownvledge can hut
performance [22], this is known as the utility
problem. Some reports dowed that in some
systems, leaning degrades problem solving
performance[10,35).

One gproach to this problem isto use some form of
seledive leaning a forgetting. [20] provides a
general framework for andyzing this approac.
Examples include discarding leaned rules if they
turn ou to cause overall system sowdown [22],
disabling the leaning comporent after some desired
or pek peformance level has been readed [16],
leaning orly cetain types of rules (hon reaursive)
that are expeded to have low match cost [12], and
employing statisticd approadches to ensure that only
rules that improve performance ae alded to the
knowledge base [14,15].

Unfortunately, this approach done is inadequate
becaise it enforces the system to lean ony a few
number of rules and reduces the gain o leaning.
However, it can be mplemented by ancther
approach to reducing match cost, enabling the
system to lean more rules before reading its
maximum. Many techniques have been developed
for that. [36] and [37] prevent the formation d
expensive rules that have acombinatorial match cost
by restricting the representation a system uses.
Prodigy reduces match cost by simplifying the
condtions of leaned rules using a mpresson
modde [22]. Static [11] and Dynamic [30] andyze
the structure of a problem spaceto buld simpler
rules with lower match cost than Prodigy/EBL. [7]
generalizes or spedalizes the wndtions of seach

control rules 0 as to reduce their match cost. [19]
uses datisticd information on program runs to
dynamicdly unfold and reorder clauses of a logic
program. Reseachers in production systems have
aso devised methods to efficiently match
production rules. [17] uses ome heuristic rules to
order the @ndtions of rules. Rete networks [13]
have been enhanced by [9] to suppat large
production systems. In [29], a production system
leans parameters to be more dficient. [9] also naes
that the estimation d the utility of aleaning system
is highly dependent on the dficiency of its
matching part.

Our leaning system is composed of two problem
solvers. Thefirst oneisused to lean new rules, it is
interpreted and composed o genera rules. The
second oreis used to solve problems using limited
time resources, and to dedde when to lean new
rules. It is compiled and compased of spedfic and
efficient rules but it has the same knowledge & the
first problem solver.

The generdlity of leaning associated to the
efficiency of spealed-up leaned rules has lead ou
system to cregde aGo program that is better than
most of the hand-coded Go programs.

&8

A

19
Figure 1

For the sake of simplicity, we will adopg a
smplified representation d rules, so as to make it
easy for the reader to understand them. Moreover,
we will give examples using the grid task described
in [36]. The grid task consists in finding a path of
length four between pant A and pant B in the
figure 1. This task is easier to understand than the
game of Go which is our principal applicaion. A
Go baad is dso a grid, and al the medanisms
described in this paper aso apply to the rules
leaned in the gplicaion d our leaning system to
the game of Go.

The speedup mechanisms used in ou leaning
system can be divided into two caegories. The
mechanisms of the first category do nat modify the
generdity of leaned rules, and those of the second
cadegoy trade generdity against efficiency. In
Sedion 2 we begin with a description d two

speadup mechanisms which do na modify the
generdity of leaned rules. In Sedion 3 we foll ow
with three other medanisms which ater generality
and the aility of the system to olserve itself. Then
we give the achitedure of our leaning system, this
architedure enables us to combine generality and
efficiency in the same system. The Sedion 4
describes the main applicdion d our system, the
game of Go.

2 Speedup medanisms not
Learning

modifying

In this dion, we present two mecdhanisms used to
speadup poblem solving. The first one is the
reordering o the mndtions of a rule. The second
oneisthe deletion d some uselesscondtions of the
leaned rules. These two medhanisms do nd modify
the generdity of leaning. They are @plied to
modify the rules of our two problem solvers.

2.1 Reordering conditions

In [19], statistics on severa runs of a program are
used to reorder and to urfold clauses of this
program. [17] also dyramicdly uses sme simple
heuristics to find agood adering d condtions for a
production system. Our approach is mewhat
different, it takes examples of working memories to
crede metarules that will be used to reorder the
clauses. A metaprogram is automaticdly creded to
reorder the dauses, we do nd dynamicdly reorder
condtions of the rules. One alvantage is that we can
crede this metaprogram independently. Moreover,
once the metaprogram is creaed, runnng it to
reorder leaned rules is faster than dyramicdly
optimizing the leaned rules. This fedure is
important for systems like Introsped [4] that lean a
large number of rules. The aedion d the
metaprogram is also fast.

We rely on the asaumption that domain-dependent
information can enhance problem solving [25]. This
asumption is given experimenta evidence in [26].
On the ontrary of Minton, we do nd spedalize
heuristics on spedfic problems instances, we rather
cregde metaprograms acording to spedfic
distributions of working memories.

Reordering condtions is important for the
performance of leaned rules. A simple example that
shows this importance is the two following clauses

that give the same results but that do nd have the
same dficiency :

ador (X) :- brother (X, X1), minister_of (X,
DOMAIN).

ador (X) :- minister_of (X, DOMAIN), brother (X,
X1).

Reordering besed oy on the number of
instanciated variables in a predicae does nat work
for the &owve rule. In the nstrant domain
literature, constraints are reordered acording to two
heuristics concerning the variables to instanciate
[26] : the range of values of the variables and the
number of other variables it is linked to. These
heuristics dynamicdly choose the order of
constraints. But to do so, they have to kee the
number of passble instanciations for eat variable,
and to lose time when dyramicdly chocsing the
variable. These lost of time is justified in the
domain of constraints lving kecaise the range of
values of avariable, affeds alot the dficiency, and
can change alot from one problem to ancther. It is
naot justified in some other domains where the range
of values a variable can take is more stable. We
have dosen to do the dwoices dgaticdly by
reordering orcefor al and nd dynamicdly at eah
match becaise it saves more time in the domains in
which we have tested ou approacd.

To reorder condtionsin ou leaned rules, we use a
smple and efficient algorithm. It is based on the
estimated number of following nods the firing d a
condtionwill cregein the semi-unificaiontree An
example of metaruleis givenin Figure 2.

branching (R, neighba (V, V1), 3.76) :-
rue(R),
condtion_to_arder (R, conrected (V, V1)),
instanciated (V),
not_instanciated (V1).

Figure 2

A metarule evaluates the branching fador of a
condtion hesed on the estimated mean number of
fads correspondng to the mndtion in the working
memory. Metarules are fired eat time the system
has to gve a branching estimation for all the
condtions | eft to be ordered. When reordering arule
containing N condtions, the metarule will be fired
N times: the first time to choose the mndtionto pu
a first in the rule, and at time number T to choose
the condtion to pu in the T" place The first

condtion ‘rule (R)" instanciates in the variable R all
the rules of the set of learned rules to reorder. The
seond condtion, ‘condtion_to_oarder (R,
Conreded (V, V1)), instanciates the metavariables
V and V1 ontwo variables of type intersedion. The
metavariables are instantiated in al the rules that
contain a ondtion matching ‘neighba (V, V1), if
this condtion hes not been ordered yet. The third
condtion ‘instanciated (V), verifies that the
variable contained in V has been instanciated in the
previous condtions of the rule R. The fourth
condtion ‘nat_instanciated (V1), verifies that the
variable contained in V1 has not been instanciated in
the previous condtions of the rule R. The
instanciations of the variable @ntained in V1 is
therefore a potential cause of branching. In
conclusion, the metarule estimates the branching
fador to be 3.76 (this is the mean number of
neighba intersedions of an intersedion ona 19*19
grid, this number can vary from 2 to 4).

The branching fadors of al the cndtions to reorder
are ompared and the ndtion with the lowest
branching fador is chosen. The dgorithm is very
efficient, it orders rules better than hunans do and it
runs fast even for rules containing more than 200
condtions. More examples of condtions reordering
by hand-coded metaprograms are givenin [2].

preferpath (X, Y) :-

currentstate (X) 1
color (X, +) 1
color (Y, +) 81
connected (X, Y) 4
desired (Y).

Figure 3

preferpath (X, Y) :-
currentstate (X)
color (X, +)
connected (X, Y)
color (Y, +)
desired (Y).

N NG

Figure 4

Figure 3 and 4 gve an example of the differencein
the number of instanciations and tests between a bad
ordered rule aad a well ordered rule. The rule
ordered with naive mnstraints on the number of
variables makes 87 instanciations and tests whereas
the reordered rule only makes 10 instanciations and
tests. For large rules (some of our leaned rules for
the game of Go contain more than 200 condtions),

the right ordering d condtions by metarules leals
to much greder spealups.

2.2 Deletion of usdessconditions

The system sometimes leans me rules which
contains useless condtions. The figure 5 gves a
rule that finds a path of length four to gofrom one
point of a grid to another one withou passng twice
on the same point. After ead new instanciation d a
variable in the @mndtions, the rule verifies that the
instanciated pant is different from any previously
instanciated ore.

preferpath (X, Y) :-

currentstate (X), 1
conrected (X, Y), 4
different (X, Y), 4
conrected (Y, Z), 16
different (Z, X), 12
different (Z,Y), 12
conrected (Z, W), 48
different (W, X), 48
different (W, Y), 36
different (W, Z), 36
conrected (W, D), 144
desired (D).
Figure5

Y 1
Figure 6
preferpath (X, Y) -

currentstate (X), 1
conrected (X, Y), 4
conrected (Y, Z), 16
different (Z, X)), 12
conrected (Z, W), 48
different (W, Y), 36
conrected (W, D), 144
desired (D).

Figure 7

However, in some caes, it is uselessto verify that
some points are different due to the topdogy d the
grid. For example, two conneded pdnts are dways
different. We can use ametarule that tell s to remove
the @ndtion ‘different (V, V1) if the condtion

‘conreded (V, V1) is present in the rule. Such a
metarule is given in figure 8. Ancother metarule
given in figure 9 removes the same @ndtion when
there is a path o length three between two pdnts,
this is a cnsequence of figure 6 that shows al the
pointsthat are & athreestep path from point A, they
are dl different from paoint A. The initid rule of
figure 5 makes 361 instanciations and tests. After
firing the metarule of deletion onthe initia rule, we
obtain the rule of figure 7 which makes only 261
instanciations or tests with the same results.

removecondtion (R, different (V, V1)) :-
rue(R),
condtion (R, connected (V, V1)),
condtion (R, different (V,V1)).

Figure 8

removecondition (R, different (V,V3)) :-
rule(R),
condition (R, connected (V, V1)),
condition (R, connected (V1,V2)),
condition (R, connected (V2,V3)),
condition (R, different (V, V3)).

Figure9

Figure 8 and 9 gve the metarules used to remove
the unrecessary condtions of therulein figure 5.

3 Speadup mecdhanisms modifying Learning

In this dion, we present three medanisms used to
speadup poblem solving. The first one is the
insertion d cutsin the unificaion gaph. The second
ore is the speddizaion d some multi-attributes
predicaes. The third ore is the ompilation d the
leaned rules into C++ programs. These three
mechanisms modify the generality and the aility of
leaning. They are only applied to crede the rules of
our efficient problem solver. We finish this ®dion
by showing hav these medhanisms can be used in a
leaning architedure withou atering the generality
of leaning.

3.1 Cutsin theunification graph

A medhanism is used so as nat to deduce many
times the same @nclusion wsing dfferent paths in
the semi-unificaion gaph. It consists in verifying
that the cnclusion hes not been alrealy deduced
when instanciating rew variables. This is dore by
inserting cuts after condtions instanciating veriables

with multiples values. A priority is given to the
instanciation d the variables present in conclusion
in order to instanciate them as on as possble in
the semi-unificaion d the rule. The soorer they are
instanciated in the rules, the more auts are possble
and the more savings are dore. In ou applicaion to
the game of Go, the insertion d cuts approximately
doules the speed dof the semi-unificaion.

The aits in the unification gaph are represented in
the rule of figure 10 by ‘"' . We use adepth first
semi-unification strategy. When a variable has
multi ple instanciations, like Z in the third condtion
of the rule, we mntinue to fire the following
condtions with the first instanciation o Z. Andit is
only when al the semi-unificaion treefoll owing the
instanciation d Z has been traversed that we
continue with the second instanciation d Z. The
cuts after the third condtion have worked six times
as we can see by comparing the number of
instanciations with the rule in figure 7. These
savings are dore because for these six values of Z, it
was unrecessry to develop the tree further as the
correspondng conclusion hed arealy been deduced.

preferpath (X, Y) :-

currentstate (X), 1
connected (X, Y), 4
connected (Y, Z),! 10
different (Z, X)), 8
connected (Z, W), ! 20
different (W, Y), 16
connected (W, D), ! 40
desired (D).
Figure 10

This geadup medhanism modifies the generality of
leaning kecause it does not deduce the same fad in
various ways. Therefore, when explaining the
deduction d a fad, the eplanation modue only
produces one explanation. However, it is metimes
useful to produce several explanations of a fad
becaise some explanations of different deductions
can be shared and aher canna be shared. If the
system has sveral explanations, it can chocse the
explanation which makes the leaned rules contain
the lessnumber of condtions. Moreover, the system
can lean several rules from the same example using
different explanations for ead rule. Cutting the
semi-unificaion gaph leads to less explanations
and longer leaned rules. It prevents from leaning
multiple rules and makes leaned rules contain
unrecessary fads and therefore be less general than
rules leaned withou cuts.

3.2 Spedalization of some predicates
In order to show the originality of our approach, we

will compare it to the description o [36] also using
the grid task.

C B
N

A

A\
T

Figure 11

preferpath (X, Y) :-
currentstate (X),
upconnected (X, Y),
rightconnected (Y, Z),
upconnected (Z, W),
rightconnected (W, D),
desired (D).

Figure 12

Tambe [36] compares the influence of the
knowledge representation onthe generality and the
efficiency of leaned rules. The number of unique-
atribute dwunks required for the same level of
generdlity as the multi-attributes chunk for a path of
length pis (p+1)°. However, (p+1)* is the number of
points that can be readed with a path of length p.
The number of paths to goto this point is greder
than ore. In some caes, it is necessry to have a
chunk for ead dfferent path. For example, when
you want the system to read multi ple goals with the
same move. Thisis very important in some amplex
applications like Go, where a move adieving
multiple goals is preferred to a move atieving ony
one goal. Ancther example, if when there ae many
paths of length four to gofrom point A to pant B,
but that only some paths enables to passto pant C
which contains mething to pick up, like in figure
11 It is better for aroba to know all the paths © as
to be @le to choose the one which pess through
pont C and pusue two gas in ore move.
Therefore, the number of chunks required for the
same level of generality is much higher than (p+1)°
in more cwmplex applications like the game of Go o
the adievement of multiple goalsin the grid task.

However, the unique dtribute representation is
faster than the multi -attribute representation, but for
other reasons than those given in [36]. The reason

that the unique dtribute representation is faster is
that it enables the system to evaluate some
condtions at compile time. Thus, some of the
computations which where dore eab time the
leaned rule was fired are now dore only once a
compile time. If we replace the general rule of
figure 7 by its gedadized rules, we obtain 144
rules, eath of one ntaining 5 instanciations as
shown in figure 12. Therefore we have 5*144=720
instanciations when matching all the rules. To avoid
that spedalization makes matching slower, we have
to share the cndtions between rules. If we share
the condtions of the partialy spedalized rules into
a tree of condtionss we now have
1+4+12+36+144=197 instanciations for the same
result. This is now lessthan the 261 instanciations
and tests of the general rules. What we have dore is
the remova of the tests and o some instanciations,
we still have 197 ou of the 261instanciations of the
genera rule but we have no more the 36+12=48
tests of the genera rule ad the 16 uwseless
instanciations which were at by the tests
Sometimes, the spedalization modue aedes arule
more than orce the unificaion between rules
enables the system to remove redundant rules.

3.3 Compilation in C++

Another source of inefficiency is the interpretation
of production rules. When an interpreted problem
solver instanciates a variable, it has to go through
trees representing the working memory, to crege a
linked list of the instanciations of the variable and
to go through this linked list. Instanciating a
variable or making a test requires a lot of
instructions at the assmbly language level. If arule
is compiled into a C++ program,
tests are represented by ory one
instruction and multiple
instanciations by asimple loop.

Compiled

x=current_state; Problem Solving

y=up_connected [X];

z=right_connected [y];

w=up_connected [y];

d=right_connected [w];

if (d==desired) {
prefer_path (x,y);}

Figure 13

P
/ Problem Solving

\ Compiled/Efficient

X=current_state;
for (y=1; y<number_of connections[x]; y++) {
y=connected [X] [_V];
for (_z=1; _z<number_of connections[y]; _z++) {
z=connected [y] [_Z];
if (z21=x) {
for (Cw=1; _w<number_of_connections[z]; _w++) {
w=connected [Z] [_w];
if (wi=y) {
for (_d=1; _d<number_of connections[w]; _d++) {
d=connected [w] [_dI;
if (d==desired) {

prefer_path (x,y); 1}

Figure 14

Our system transforms its learned production rules
into C++ programs 9 as to match them efficiently.
Figure 13 gves the program correspondng to the
compilation d the rule in figure 12. The system is
also able to compil e rules containing multi-attribute
predicaes as sown in figure 14 which represents
the compilation d the rule in figure 7. The
compilation d interpreted rules into C++ programs
gives a fador sixty in the speed of matching the
rules.

3.4 How to use these speadup medianisms in a
learning system

Despite the fad that efficient and compil ed rules are
not used in ou interpreted leaning system, they are
of grea use in the overdl architedure of the whale
leaning system. Our leaning architedure is
composed o two problem solvers. One is
interpreted and is used to lean new rules, and the
other one is compiled and is used to solve problems
quickly and to deted when leaning can ocaur. The

Interpreted

e

-~

Interpreted/General
Learned Rules

Learning

—» =jsusedto do

Learned Rules

Figure 15

interpreted problem solver uses a generd
representation so as to lean genera rules. Leaning

genera rules is more dficient than leaning a lot of
spedfic rules. For example, to lean the rule of
figure 5, a system using a genera representation
needs only one run. A system using an efficient but
spedalized representation reeds 144 dfferent runs.
The use of the general representation requires less
time ad less examples than the spedalized
representation for the same results. The compiled
version d the problem-solver can be used to deted
that leaning can ocaur. When the @mpiled
problem-solver deteds that leaning can ocaur, it
credes anew problem and gvesit to the interpreted
problem-solver which leans new rules and integrate
them in the two problem solvers.

The achitedure of the whaoe leaning system is
given in figure 15. Leaning and efficient problem
solving are two dfferent adivities that can be dore
in perald.

4 Application to alearning Go system
4.1 Computer Go

Go was developed three to four millennia o in
Ching; it is the oldest and ore of the most popuar
board game in the world. Like dess it is
deterministic, perfed information, zero-sum game
of strategy between two players. The game of Go is
the most complex two-person complete information
game [1]. Robson [33] proved that Go generalized
to NxN boards is exporential in time. Making a
good Go program is recognized as a callenge for
Al [34]. Today, the best computer Go program is
Handtalk. It has the strength of an advanced
beginner. This is not due to a ladk of work in the
computer Go field, the best top pograms are the
result of morethan 10 yeas of work. But it is rather
dueto theintradability of seach in the domain (250
moves per position, up to 60 moves to look-ahead)
and to the huge anournt of knowledge necessary to
play the game well. The best Go programs are based
on knavledge intensive goproadies. But there istoo
much Go knowvledge to pu in a program to creae a
goodGo program in a reasonable time. That is why
large leaning techniques are of grea interest for the
computerization d the game of Go.

4.2 Representation of knowledge in computer Go

A Go bard is a grid, therefore the speedup
mechanisms used for the grid task are dso used for

the game of Go. However, in the game of Go, some
predicaes canna be speddized. An example of
such a predicae is the Liberty predicae. A string o
stones can have anumber of liberties ranging from 1
to 266 On the mntrary of the number and d the
locaion d the intersedions conreded to a given
intersedion, the number and the locaion d liberties
is variable. Leaned rules in the game of Go mix
unique-attribute and multi-attribute predicates.

4.3 Results obtained by our program

Introsped has been used to write the tadicd and
most important part of a Go playing program named
Gogd, it plays amove in 10 seands on a Pentium
133 MHz. For eath move it proves abou 450
tadicd theorems, eat theorem requires between 4
and 600 nods in aseach treeto be proved, a ead
node of ead tree the rules leaned by Introsped are
cdled to find the useful moves to try. Introsped
discovered these rules by itself only given the rules
of the game. Gogd competed in the internationa
computer Go tournament held duing 1JCAI97. It
finished 6 ou of 40 participants. The five first
programs are @mmercial programs that have
required a lot of man*yeas of work. It has
outperformed ather commercia systems that have
required more than 10man*yeas of work.

5 Conclusion

We have described a way of managing the tradeoff
between generaity and efficiency in knowledge
representation for large leaning systems. We have
propcsed an architedure that enables to combine
efficiency in problem solving to generdity in
leaning. Our architedure cmbines generality and
efficiency by wsing two problem solvers. The first
ore is interpreted and wses a genera knowledge
representation. It enables to lean genera rules. The
seond ore is compiled and wses a spedaized
knowledge representation. It enables to solve
problems rapidly and to deted when leaning can
ocaur in oder to dedde to cdl the first problem
solver. We have described speedup medanisms that
allow to transform a genera representation into a
speddized and efficient one. This approach haes
shown its guccessin its applicaion to the game of
Go. It is a genera approach that has also been
applied successully to ather domains[3,4,5].

References

[1] - L. V. Allis, Searching for Sdutions in Games and
Artificial Intelligence. Ph.D. Thesis, Vrije Universitat
Amsterdam, Maastricht, September 1994

[2] T. Cazenave, Automatic Ordering o Predicates by
Metarules. Proceealings of the 4th International
Workshop onMetareasonring and Metaprogramming in
Logic, Bonn 1996

[3] - T. Cazenave. Learning to Manage a Firm. First
International Conference on Indwstrial Engineeing
Applicaion and Pradice, USA, 1996

[4] - T. Cazenave. Systéme d’' Apprentissage par Auto-
Observation. Application au Jeu de Go. Thése de
['Université Paris 6, Décenbre 1996

[5] - T. Cazenave. Automatically Improving Agents
Behaviors in anUrban $mulation. Second International
Conference on Industrial Engineering Applicaion and
Pradice USA, 1997.

[6] - M. P. Chase, M. Zweben, R. L. Piazza J. D.
Burger, P. P. Maglio, H. Hirsh. Approximating learned
search control knowledge. Proceealings of the sixth
International Workshop onMacdhine Leaning, pp. 218
220, 1997

[7] - J. Cheng. Management of Sppedup Mechansms in
Learning Architedures. Ph. D. Thesis, Carnegie Mellon
University, Pittsburgh, January 1995

[8] - G. Degong R. Moorey. Explanaion Based
Learning: an dternative vew. Madine Leaning 2
1986

[9] - R. B. Doorenbes. Production Matching for Large
Learning Sstems. Ph.D. Theds, Carnegie Mellon
University, Pittsburgh, January 1995

[10] - O. Etzion. Why PRODIGY/EBL works. AAA -
90, pp. 915922, 1990

[1]] - O. Etzioni. A Structural Theory of Search Corntrol.
PhD thesis, Schod of Computer Science, Carnegie
Mellon University, 1990

[12] - O. Etzioni. A structural theory of explanaion-
based learning. Artificial Intelligence 60(1) :93-139
1993

[13] - C.L. Forgy, RETE : A Fast Algorithm for the
Many Pattern / Many Objed Pattern Matching Problem,
Artificial Intelligenceval. 19, pp 1737, 1982

[14 - J CGraich, G. Deong COMPOSER: A
probalili stic solution to the utility problem in speed-up
learning, AAA1-92, pp 235240, 1992

[19] - R. Greiner, I. Jurisica A statistical approach to
solving the EBL utility problem, AAAI-92, pp 241248
1992

[16] - L. B. Holder. Empirical Analysis of the general
utility problem in machine learning, AAAI1-92, pp 249
254, 1992

[17] - T. Ishida. Optimizing Rules in Production S§ystem
Programs, AAA| 1988 pp 699704, 1988

[18] - J. Laird, P. Rosenbloom, A. Newell. Churking in
SOAR : An Anatomy of a General Learning Medhansm.
Machine Leaning 1(1), 1986

[19] - P. Laird. Dynamic Optimization. ICML-92, pp.
263272 1992

[20] - S. Markovitch, P. D. Scott, Information Filtering:
Sledion Medharisms in Learning Systems, Madine
Leaning 1Q pp. 113-151, 1993

[2]] - Minton S. Constraint-Based Generalization -
Learning Game-Playing Plans from Snge Examples.
Procealings of the Fourth National Conference on
Artificial Intelligence, 251-254 Los Altos, William
Kaufmann, 1984

[22] - S. Minton. Learning Sarch Control Knowledge -
An Explanaion Based Approach. Kluwer Academic,
Boston, 1988

[23] - S. Minton, J. Carborell, C. Knodock, D. Kuokka,
O. Etzioni, Y. Gil. ExplandaionBased Learning : A
Problem Sdving Perspedive Artificial Intelligence 40,
1989

[24] - S. Minton. Quartitative Results Concerning the
utility of ExplanaionBased Learning Artificial
Intelligence 42, 1990

[29 - S. Minton. Is There Any Neeal for Domain-
Dependent Control Information: A Reply. AAAI-96,
1990

[26] - S. Minton. Automatically Configuring Constraints
Sdisfaction Programs: A Case Sudy. Constraints,
Volume 1, Number 1, 1996

[27] - T. M. Mitchell, R. M. Keller, S. T. Kedar-Kabelli .
Explandion-based Generalization : A unifying view.
Machine Leaning 1(1), 1986

[28] - T. M. Mitchell et al. Theo : A Framework for Self-
Improving Systems. In Architedure for Intelligence, K.
VanLehn, Ed., Erlbaum,1991

[29] - Y. Parchemal. SEPIAR : un systéme a base de
connassances qui apprend a uiliser efficacement une
expertise. Thése de |’ Université Paris 6, 1988

[30] - M. A. Pérez O. Etzioni. DYNAMIC : A new role
for training poblems in EBL. ICML-92 pp 36%372
1992

[31] - J. Pitrat. Realization d a Program Learning to
Find Combinations at Chess Computer Oriented
Leaning Processes, Simon J. Ed., Noordhdf, 1976

[321 - J Pitrat, Métaconndssaance - Futur de
Il ntelli gence Artificiell e, Hermeés, Paris, 1990

[33 - J M. Robson - The Complexty of Go -
Procealings IFIP - pp. 413417- 1983

[34] - B. Selman, R. A. Brooks, T. Dean, E. Horvitz, T.
M. Mitchell, N. J. Nilson. Challenge Problems for
Artificial Intelligence, AAAI-96, pp. 13401345 1996

[39] - D. Subramanian, R. Feldman. The utility of EBL
in reaursivedomains, AAA1-90, pp. 942-949 1990

[36] - M. Tambe, A. Newell, P. S. Rosenbloom, The
problem of expensve durks and its lution by
restricting expressveness Madine Leaning 5 (3)
(1990, pp. 299-348 1990

[37] - M. Tambe, P. S. Rosenbloom, Investigating
production system representations for non-combinatorial
match. Artificial Intelligence 68 (1994, pp. 155199
1994

