
Approximate Multiple Sequence Alignment with A-star
Tristan Cazenave

�

Abstract. The multiple sequence alignment problem is one of the
most important in computational biology. We present algorithms and
data structures to improve multiple sequence alignment with A-star.
The first improvement is to accelerate the search for the best open
node by 15%, using an array of stacks. The second improvement is
to detect duplicate nodes efficiently using a transposition table. The
third improvement consists in overestimating the admissible heuris-
tic. It works better for aligning long sequences. A typical speedup
for sequences of length two hundred fifty is 47 associated to a mem-
ory gain of 13 with an error rate of 0.09%. Overestimation can align
sequences that are not possible to align with the exact algorithm.

1 Introduction

Multiple sequence alignment is one of the most important problem
in computational biology. It is used to align DNA and protein se-
quences. The problem of aligning more than eight sequences takes
too much memory for current exact algorithms such as A-star or dy-
namic programming. Biologists use programs that give an approxi-
mate answer to overcome the difficulty of finding exact alignment.

From a search point of view, the problem has properties that are
different from other problems such as the sliding-tile puzzle, or
pathfinding on game maps. It has a branching factor in O(���), when
s is the number of sequences to align. The state space forms a lattice,
and there are many paths that go through the same node.

We propose three improvements to basic A-star applied to mul-
tiple sequence alignment. The first improvement is general and can
be used for other applications of A-star. It consists in using an array
of stacks instead of a priority queue for storing the open nodes and
finding the open node with the lowest f. The second improvement
is to efficiently detect duplicate nodes, i. e. nodes that must not be
re-expanded. Traversing the list of open nodes to find if a node is a
duplicate is costful, using a transposition table instead speeds up the
detection of duplicate nodes. The third improvement is to use overes-
timation. We have found that it enables large speedups and memory
gains at the cost of a low error rate.

The second section presents the multiple sequence alignment
problem, the third section details the modifications to the basic A-
star algorithm, the fourth section presents experimental results, the
last section concludes.

2 Multiple Sequence Alignment

In this section we present the multiple sequence alignment problem,
then we show how dynamic programming can be applied to it. We
present the approximate algorithms currently used to solve the prob-
lem, and we give an overview of the exact algorithms that have been
tested on it.
�

Université Paris 8, France, email: cazenave@ai.univ-paris8.fr

2.1 The problem

The multiple sequence alignment problem can be considered as a
shortest path problem in a s-dimensional lattice [2]. Let’s first con-
sider the case of dimension two, it consists in aligning two sequences.
We can write the letter of the first sequence on the horizontal axis,
and the letters of the second sequence on the vertical axis. The path
starts at the origin point of the matrix (point (0,0) at the upper left).
For each point there are three possible moves: the diagonal, the
horizontal, and the vertical moves. A diagonal move is equivalent
to aligning two characters of the sequences, an horizontal move is
equivalent to aligning a character of the horizontal sequence with a
gap in the second sequence, a vertical move aligns a character of the
vertical sequence with a gap in the horizontal sequence. All paths
stop at the bottom right of the matrix after the last two characters of
both sequences have been aligned.

The simple model to evaluate the cost of a move is: 0 for a match
(aligning the two same characters), 1 for a mismatch, and 2 for a gap
(a gap is represented with a -). The cost of a path is the sum of the
costs of its moves.

For example, if the first sequence is ACGTTAGCTA and the sec-
ond sequence is ACAGTTAGTA the best alignment is:

AC-GTTAGCTA
ACAGTTAG-TA

and it has a cost of four.
When aligning s sequences, the path goes through a s-dimensional

lattice, the branching factor is � ����� , and the cost of a move is the
sum of the costs of the moves for each pair of sequences.

2.2 Dynamic programming

Dynamic programming can be used to efficiently find solution to the
problem of sequence alignment. However if the average length of
the sequences to align is l, and the number of sequences is s, dy-
namic programming needs O(
�) memory and time. A possible im-
provement trades off time for space [4] but it still requires O(���

�
)

memory which is still too much for aligning many sequences.

2.3 Approximate algorithms

The programs currently used by biologist such as CLUSTAL W [12]
and DCA [11] find sub-optimal alignments. They consist in series of
progressive pairwise alignments.

2.4 Exact algorithms

A* was applied to the optimal alignment of multiple sequences by
Ikeda and Imai [6]. The admissible heuristic is computed using the

dynamic programming tables for the pairwise alignments. Because
of the large branching factor of the problem, and the large number
of open nodes, A* cannot align more than seven sequences due to
memory limits. To overcome this difficulty and reduce the memory
requirements, A* with partial expansion was proposed [13]. It con-
sists in not memorizing in the open list child nodes that have a f value
greater than the f value of their parent plus a threshold. Experimen-
tal results show that Partial Expansion A* can align seven sequences
with less stored nodes than A*, and can align some eight sequences
problems. However the gain in memory is acquired at the cost of a
greater search time.

Another refinement was proposed to reduce both the memory
and the time requirements, using an octree to represent a three-way
heuristic [9]. A close approach is the use of external memory pat-
tern databases using strucured duplicate detection [15]. It reduces
the memory requirements of the pattern databases by an average fac-
tor of 83 times, and makes Sweep-A* [14] run 16% faster than using
traditional pattern databases.

Other researchers have compared A-star and dynamic program-
ming [5].

3 A-star

This section presents modifications to the A-star algorithm. In all the
paper, the admissible heuristic we have used for A-star is the sum
of the pairwise alignments given by the 2-dimensional dynamic pro-
gramming tables. The first subsection deals with the efficient choice
of the best open node. The second subsection is about efficient dupli-
cate node detection. The third subsection explains how we have used
overestimation.

3.1 Choosing the best open node

Naive implementation of A-star use a list to store the open and the
closed nodes. In this case, when the program has to find the best
open node, it has to go through all the list to find the node with the
minimum f. The cost of using a list is linear in the size of the list.

A more elaborate, and commonly used, implementation of A-star
uses a priority queue to represent the open list. A priority queue uses
a heap to maintain the nodes sorted. The insertion of a new node, as
well as the finding of the best node require a logarithmic time in the
size of the list.

We propose to use an array of stacks to maintain the open list. The
index in the array is the value of f for the nodes stored in the corre-
sponding stack. The insertion of an element is performed in constant
time, just pushing it on the top of the stack that corresponds to its
f value. Finding the best node is also performed in almost constant
time. The smallest f value (currentf) over all the nodes is maintained,
and updated each time a node is inserted in the open list. When re-
trieving the best open node, currentf is used to check if the stack at
this index has an element. If so the first element is popped and re-
turned as the best node. If the stack is empty, currentf is incremented
and the test if performed again for the next index in the array of
stacks.

3.2 Duplicate node detection

In the multiple sequence alignment problem, it is very important not
to expand again nodes that are already present in the open or closed
lists, with a smaller or equal g.

A possible implementation is to go through all the closed and open
nodes, to verify if the node to insert in the open list is not already
present with a smaller or equal g. When implemented this way, the
duplicate node detection takes most of the time of the algorithm.

We propose an implementation of duplicate node detection which
uses a transposition table. Transposition tables are often used in game
programs so as to memorize the results of search at nodes of the tree
[1]. In order to hash position, we have used Zobrist hashing [16]. A
position in the state space is defined by its coordinates. There are as
many coordinates as there are sequences. For each possible sequence,
and each possible coordinate in this sequence, a 64-bit random num-
ber has been computed once for all. The Zobrist hashing of a position
is the XOR of all the random numbers that correspond to the coordi-
nates of the position. The XOR is used because:

� it is a very fast operation on bits,� it is incremental: in order to undo the XOR with a number, the
only operation needed is to XOR again with this number. When
a node is expanded, it is a move to a neighboring position. The
program only has to XOR the random numbers of the old coor-
dinates that change, and to XOR also the random numbers of the
new coordinates.� The XOR of random values that have a uniform repartition gives
a random value that has a uniform repartition. It is important to
lower the collision probability.

Each position in the search space is associated to a 64-bit hash-
code. The lowest bits of this hascode are use to index the position in
the transposition table. An entry of the transposition table contains
a list of structure. Each structure contains a hashcode and a g value.
When the algorithm detects duplicate, it goes through the list and
verifies if an entry with the same hashcode as the current position,
and a less or equal g is present. In that case, the node is cut.

3.3 Overestimation

Overestimation has been used for Sokoban in the program Rolling
Stones, adding all the patterns that match instead of only selecting
the ones that ensure admissibility [7]. This use of overestimation has
helped Rolling Stones solve 52 problems instead of 47 without over-
estimation.

Pearl has introduced � -admissible search [10] which finds solu-
tions with bounded costs.

A related but different approach is to use likely-admissible heuris-
tics [3]. It consists in relaxing the admissibility requirement in a
probabilistic sense. Instead of providing an upper bound to the cost, it
guarantees to end-up with optimal solutions with a given probability.

In A-star, the value associated to a node is the sum of the cost
of the path from the origin to the node (the g value), and of the ad-
missible heuristic that gives a lower bound on the cost of the re-
maining path to the goal (the h value). We have for the node � :��� ���	��
 � ���
��� � ��� .

In order to overestimate the length of the remaining path, we have
used the following f:

��� ������
 � ����������� � ��� where � is a real
number greater than one. Overestimation speeds up A-star at the cost
of making it inexact.

The main property of this overestimation is that it develops more
easily nodes that have a low h value first, i. e. nodes that are closer to
the goal than in usual A-star. Nodes that have been discarded early in
the search stay discarded longer than in usual A-star. So overestima-
tion privilegiates paths where some search has already been invested,

and paths that have a low admissible heuristic at the beginning of the
path.

4 Experimental results

Experiments use a Celeron 1.7 GHz with 1 GB of RAM. Given the
available memory, we have chosen a limit of 10,000,000 nodes for
A-star.

4.1 Generation of test data

In order to test the different algorithms, we have generated random
sequences of bases (i.e. strings composed of letters in the � A,C,G,T �
alphabet). The tests use sets of strings of length fifty, one hundred,
two hundred or two hundred and fifty. This methodology is similar to
Korf and Zhang testing methodology [8]. Generating random prob-
lems allows to generate a large number of problems, and to easily
replicate experiments. For each length, we have generated one hun-
dred problems. Each problem is composed of ten strings.

4.2 Array of stacks

Table 1 gives the time and number of nodes used by A-star with a
priority queue, and A-star with an array of stacks. � is the number
of sequences to align. Each line describes the result of solving one
hundred problems with sequences of length fifty.

Table 1. Comparison of priority queues and array of stacks.

� �����
	���
������ ����
���� ����	������
array 38.54s 3,154,269

queue 45.38s 3,310,618!
array 744.42s 23,045,612!

queue 888.92s 23,914,925

For five sequences the speed of the array of stacks is 81,844 nodes
per seconds while the speed of the priority queue is 72,953 nodes per
second. The array of stacks is 12% faster.

On more complex problems with more nodes, the comparison is
even better for the array of stacks: for six sequences it develops
30,957 nodes per seconds versus 26,903 nodes per second for the
priority queue. The array of stacks is 15% faster.

4.3 Duplicate node detection

Table 2 gives the time used to solve the one hundred problems with
sequences of length fifty, using transposition tables, and using lists.
The transposition table uses 65,535 entries. The index of a position
is the last 16 bits of its hashcode.

Even for problems with a small number of nodes such as the
alignment of four sequences, the transposition table algorithm out-
performs clearly the list implementation.

On the more complex problem of aligning five sequences, the list
implementation takes 2203 seconds for solving the first six prob-
lems, when the transposition table implementation takes 2.05 sec-
onds. Lists become even worse for more than five sequences since
the number of nodes grows and the list implementation takes a time
proportional to the square of the number of nodes.

Table 2. Comparison of list and transposition table.

� �����
	���
������ ����
����"
list 124.54s"

transposition 2.03s

4.4 Straight alignment

In order to find an upper bound to the cost of an alignment and better
evaluate overestimation, we have tested the algorithm which consists
in aligning all the sequences without introducing gaps. The tests were
run for one hundred sets of sequences of length fifty and one hundred
sets of sequences of length one hundred. The same sets of sequences
are used for testing overestimation. The results are given in table 3
for sequences of length fifty, and in table 4 for sequences of length
one hundred.

Table 3. Upper bounds for one hundred sets of sequences of length fifty.

� �#�$���%�����
37,341!
56,041&
78,561'

104,711(
135,545�*)
168,401

Table 4. Upper bounds for one hundred sets of sequences of length one
hundred.

� ���+�*�,�����"
44,894
75,061!

112,500&
157,548'
209,945

4.5 Overestimation

We tested overestimation for different numbers of sequences, dif-
ferent weights, and different lengths of sequences. Results for se-
quences of length fifty are given in table 5. The first column gives the
number of sequences to align, the second column gives the weight
used for overestimation (1.00 corresponds to the exact algorithm),
the third column gives the cumulated time used to solve one hun-
dred problems, the fourth column gives the sum of the lengths of the
shortest paths found for each problem, the fifth column gives the sum
of the nodes used for solving each problem.

The results for the exact algorithm are not given for eight or more
sequences, since the node limit is reached for these problems before
the problem is solved.

We can observe than the 1.05 weight is a safe weight. It reduces
significantly the time and the number of nodes, while finding align-
ments that are better than straight alignments and quite close to opti-
mal alignments. The 1.10 and the 1.20 weights sometimes give worse
results than the straight alignment, and should be avoided.

Table 5. Results for one hundred sets of sequences of length fifty.

� � ����
�� � �#�$���%����� ����	������
1.00 38.54s 36,654 3,154,269
1.05 2.59s 36,747 556,463
1.10 0.57s 37,036 212,282
1.20 0.30s 37,320 161,983!
1.00 744.42s 55,362 23,045,612!
1.05 24.97s 55,477 2,556,103!
1.10 1.76s 55,929 496,354!
1.20 0.85s 56,161 328,479&
1.00 30,844.41s 77,982 168,829,955&
1.05 268.40s 78,147 12,052,417&
1.10 6.47s 78,592 1,247,218&
1.20 2.17s 78,767 653,935'
1.05 5,639.71s 104,396 58,990,176'
1.10 26.17s 104,895 3,151,376'
1.20 4.62s 104,914 1,305,738(
1.10 94.02s 134,856 8,153,718(
1.20 16.68s 134,765 2,586,087�*)
1.10 572.74s 168,920 21,489,700�*)
1.20 44.12s 168,592 5,193,800

Table 6 has been created using table 5. For each number of se-
quences, and each weight, the speedup, the error and the memory
gain are given. The error is calculated dividing the sum of the lengths
of the paths found with overestimation by the sum of the lengths of
the shortest paths found by the exact algorithm. The memory gain is
computed dividing the number of nodes of the exact algorithm by the
number of nodes of the approximate algorithm.

We can observe in this table that the memory gains increase ex-
ponentially with the number of sequences, and that the speedups in-
crease more than exponentially with the number of sequences.

Table 6. Gains over the exact algorithm for sequences of length fifty.

� � ��� ��������� ����� 	�� ������	���� �
��
��
1.05 14.88 0.25% 5.67
1.10 67.61 1.04% 14.86
1.20 128.47 1.82% 19.47!
1.05 29.81 0.21% 9.02!
1.10 422.97 1.02% 46.42!
1.20 875.78 1.44% 70.15&
1.05 114.92 0.21% 14.01&
1.10 4,767.30 0.78% 135.36&
1.20 14,214.00 1.01% 258.17

In order to test if gain are due to a reduction of the branching factor
or to a reduction of the depth of the search, we tested the program on
sequences of length one hundred. Results are given in table 7. We
can observe that the 1.10 weight is always better than the straight
alignment, while the 1.20 weight becomes worse for seven and eight
sequences. The 1.05 weight gives interesting speedups and memory
gains for alignments that are close to optimal.

Table 8 gives the gains and the error calculated with table 7. If
we compare table 6 with table 8, we can observe that the gains for
four sequences in table 8 are similar to the gain for five sequences in
table 6. The branching factor is fifteen for four sequences, and thirty
one for five sequences, the average length of the shortest path is four
hundred twenty six for four sequences of length one hundred, and
three hundred sixty seven for five sequences of length fifty. The gains

Table 7. Results for one hundred sets of sequences of length one hundred.

� � ����
 � � �#�$���,����� ���,	������"
1.00 65.31s 42,605 5,403,857"
1.05 3.18s 42,696 732,666"
1.10 0.58s 43,069 243,311"
1.20 0.36s 43,587 162,110
1.00 4547.52s 72,152 88,548,072
1.05 109.81s 72,246 8,045,147
1.10 2.90s 72,986 788,188
1.20 0.84s 74,167 340,647!
1.05 6250,38s 109,398 93,687,353!
1.10 17.59s 110,401 2,865,184!
1.20 1.91s 112,185 700,769&
1.10 216.68s 155,251 14,090,458&
1.20 4,47s 157,674 1,415,208'
1.10 7,288.41s 207,858 89,290,030'
1.20 10.43s 210,554 2,839,425

Table 8. Gains over the exact algorithm for sequences of length one
hundred.

� � ��� �������	� ����� 	�� ������	���� ����
��"
1.05 20.54 0.21% 7.38"
1.10 112.60 1.09% 22.21"
1.20 181.42 2.30% 33.34
1.05 41.41 0.13% 11.01
1.10 1568.11 1.15% 112.34
1.20 5413.71 2.79% 259.94

are slightly greater for four sequences of length one hundred than for
five sequences of length fifty, with length of the shortest paths which
are also slightly greater.

Concerning five sequences of length one hundred, and seven se-
quences of length fifty, the average length of the shortest paths are
respectively seven hundred twenty two and seven hundred eighty,
when the gains in memory are equivalent, and the speedups are three
times greater for the seven sequences.

The speedup is more correlated with the length of the shortest path
than with the branching factor.

The error rates are more important for five sequences of length one
hundred than for seven sequences of length fifty, even if the speedup
are lower. It is interesting as it shows that speedup and error rates
are not always correlated, and that there are portions of the space of
problems (denoted by the length of the sequences and the number of
sequences) that are more favorable to overestimation than others.

As the overestimation has a better behavior for sequences of length
one hundred than for sequences of length fifty, we have tested the
algorithm on sequences of length two hundred (tables 9 and 10), and
on sequences of length two hundred and fifty (tables 11 and 12).

For sequences of length two hundred, all weights give much better
results than the straight alignment. Moreover, the speedups and the
memory gains are also better than for four sequences of length one
hundred.

Concerning sequences of length two hundred fifty, the speedups
and memory gains are even better, and all the weights give align-
ments much better than the straight one. For five sequences, the over-
estimation finds alignments that are much better than the straight one
when the exact algorithm exhausts memory. When we have tested the
first alignment of five sequences with a weight of 1.05, the node limit

Table 9. Results for one hundred sets of sequences of length two hundred.

� � � ��
 � � �#�$���,����� ���,	������"
1.00 3,664.79s 84,102 91,691,701"
1.05 97.87s 84,197 7,638,509"
1.10 2.28s 85,190 611,965"
1.20 0.99s 86,631 336,527"

straight 0.06s 90,104 0

Table 10. Gains over the exact algorithm for sequences of length two
hundred.

� � ��� ��������� ����� 	�� ������	���� ����
��"
1.05 37.44 0.11% 12.00"
1.10 1607.36 1.29% 149.83"
1.20 3701.81 3.00% 272.46

was reached and A-star stopped with no solution after 2,818 seconds.
Comparatively, a weight of 1.10 found a path of length 1807 in 0.39
seconds and 57,044 nodes (a straight alignment gave 1865). For this
problem the speedup was therefore of much more than 7,225 and the
memory gain of much more than 175.

Table 11. Results for one hundred sets of sequences of length two hundred
fifty.

� � � ��
 � � �#�$���,����� ����	������"
1.00 12,998.15s 104,565 217,402,086"
1.05 274.72s 104,660 16,514,033"
1.10 4.17s 106,002 1,019,825"
1.20 1.27s 107,831 426,185"

straight 0.08s 112,060 0
1.10 64.88s 179,024 7,012,805
1.20 3.44s 183,058 933,319

straight 0.15s 187,103 0

In conclusion, overestimation gives better results for long se-
quences.

5 Conclusion and Future Work

We have shown that using an array of stacks instead of a priority
queue makes A-star 15% faster for the multiple sequence alignment
problem. Using a transposition table to detect duplicate nodes instead
of a list makes it up to 1,000 faster for five sequences. Overestimation
of the admissible heuristic gives large speedups and memory gain for
small error rates, it works better with long sequences than with short
ones.

Future works include combining our improvement with other
heuristics used for exact algorithms such as pattern databases [15],
partial expansion [13] and dynamic programming [5].

REFERENCES
[1] D. Breuker, ‘Memory versus search in games’, Phd thesis, University

of Maastricht, (October 1998).
[2] H. Carrillo and D. Lipman, ‘The multiple sequence alignment prob-

lem in biology’, SIAM Journal Applied Mathematics, 48, 1073–1082,
(1988).

Table 12. Gains over the exact algorithm for sequences of length two
hundred fifty.

� � ��� �������	� ����� 	�� ������	���� ����
��"
1.05 47.31 0.09% 13.16"
1.10 3,117.06 1.37% 213.18"
1.20 10,234.76 3.12% 510.11

[3] M. Ernandes and M. Gori, ‘Likely-admissible and sub-symbolic heuris-
tics’, in ECAI 2004, pp. 613–617, Valencia, Spain, (2004). IOS Press.

[4] D. S. Hirschberg, ‘A linear space algorithm for computing maximal
common subsequences’, Communications of the ACM, 18(6), 341–343,
(1975).

[5] H. Hohwald, I. Thayer, and R. Korf, ‘Comparing best-first search and
dynamic programming for optimal multiple sequence alignment’, in
IJCAI-03, pp. 1239–1245, (2003).

[6] T. Ikeda and T. Imai, ‘Fast A* algorithms for multiple sequence align-
ment’, in Genome Informatics Workshop 94, pp. 90–99, (1994).

[7] A. Junghanns and J. Schaeffer, ‘Domain-dependent single-agent search
enhancements’, in IJCAI-99, pp. 570–575, (1999).

[8] R. E. Korf and W. Zhang, ‘Divide-and-conquer frontier search applied
to optimal sequence alignment’, in AAAI-00, pp. 910–916, (2000).

[9] M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron, ‘Memory-efficient
A* heuristics for multiple sequence alignment’, in AAAI-02, pp. 737–
743, (2002).

[10] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley, Reading, MA, 1984.

[11] K. Reinert, J. Stoye, and T. Will, ‘An iterative method for faster sum-
of-paris multiple sequence alignment’, Bioinformatics, 16(9), 808–814,
(2000).

[12] J. Thompson, D. Higgins, and T. Gibson, ‘CLUSTAL W: Improving
the sensitivity of progressive multiple sequence alignment through se-
quence weighting, position-specific gap penalties and weight matrix
choice’, Nucleic Acids Research, 22, 4673–4680, (1994).

[13] T. Yoshizumi, T. Miura, and T. Ishida, ‘A* with partial expansion for
large branching factor problems’, in AAAI-00, pp. 923–929, (2000).

[14] R. Zhou and E. Hansen, ‘Sweep A*: Space-efficient heuristic search
in partially ordered graphs’, in Proceedings of 15th IEEE International
Conference on Tools with Artificial Intelligence, pp. 427–434, (2003).

[15] R. Zhou and E. Hansen, ‘External-memory pattern databases using
structured duplicate detection’, in AAAI-05, Pittsburgh, PA, (July 2005).

[16] A. Zobrist, ‘A new hashing method with applications for game playing’,
ICCA Journal, 13(2), 69–73, (1990).

