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Abstract

Planning for Autonomous Unmanned Ground Ve-
hicles (AUGV) is still a challenge, especially in dif-
ficult, off-road, critical situations. Automatic plan-
ning can be used to reach mission objectives, to per-
form navigation or maneuvers. Most of the time,
the problem consists in finding a path from a source
to a destination, while satisfying some operational
constraints. In a graph without negative cycles, the
computation of the single-pair shortest path from a
start node to an end node is solved in polynomial
time. Additional constraints on the solution path
can however make the problem harder to solve.
This becomes the case when we need the path to
pass through a few mandatory nodes without re-
quiring a specific order of visit. The complexity
grows exponentially with the number of mandatory
nodes to visit. In this paper, we focus on shortest
path search with mandatory nodes on a given con-
nected graph. We propose a hybrid model that com-
bines a constraint-based solver and a graph convo-
lutional neural network to improve search perfor-
mance. Promising results are obtained on realistic
scenarios.

1 Introduction
Autonomous unmanned ground vehicle (AUGV) operations
are constrained by terrain structure, observation abilities, em-
bedded resources. Missions must be executed in minimal
time, while meeting objectives. This is the case, for exam-
ples, in disaster relief, logistics or area surveillance, where
maneuvers must consider terrain knowledge. In most of ap-
plications, the AUGV ability to maneuver in its environment
has a direct impact on operational efficiency.

AUGV integrates several perception capabilities (on-line
mapping, geolocation, optronics, LIDAR) in order to update
its situation awareness on-line. This knowledge is used by
various on-board planning layers to maintain mission goals,
provide navigation waypoints and dynamically construct plat-
form maneuvers. Resulting actions and navigation plans are
used for controlling the robotic platform. Once the plans
are computed, the AUGV automatically manages its trajec-
tory and follows the navigation waypoints using control al-
gorithms and time sequence. Such autonomous system ar-
chitectures are challenging, especially because some mission
data (terrain, objectives, available resources) are known off-
line and others are acquired on-line. The planning problem
also involves technical actions (observations, measurements,
communications, etc.) to realize on some mandatory way-
points along the navigation plan [Guettier and Lucas, 2016].

Figure 1 presents the eRider, a UGV that has high mobil-
ity abilities, and is able to perform cross-over maneuvers on
difficult terrain for exploring disaster areas.

The paper focuses on the automatic planning algorithms,
and more specifically, on the ability to guide the problem
solving with machine learning techniques.

For such problems, classical robotic systems integrate A*
algorithms [Hart et al., 1968], as a best-first search approach
in the space of available paths. For a complete overview of
static algorithms (such as A*), replanning algorithms (D*),
anytime algorithms (e.g. ARA*), and anytime replanning al-
gorithms (AD*), see [Ferguson et al., 2005]. Representative
applications to autonomous systems can be very realistic, as
reported in [Meuleau et al., 2009] and [Meuleau et al., 2011].

Algorithms stemming from A* can handle some heuris-
tic metrics but can become complex to develop when dealing
with several constraints simultaneously like mandatory way-
points and distance metrics. Our approach combines a Con-
straint Programming (CP) method, with novel machine learn-
ing techniques. CP provides a powerful baseline to model and



Figure 1: The eRider, developed by SAFRAN, is an all-purpose op-
tionally piloted vehicle that can patrol a given area, observe at long
range or carry goods for various off-road applications in difficult en-
vironments. These specific vehicles can be either piloted or turned
instantaneously into AUGV.

solve combinatorial and / or constraint satisfaction problems
(CSP). It has been introduced in the late 70s [Laurière, 1978]
and has been developed until now [Hentenryck et al., 1998;
Ajili and Wallace, 2004; Carlsson, 2015], with several real-
world autonomous system applications, in space [Bornschlegl
et al., 2000; Simonin et al., 2015], aeronautics [Guettier et al.,
2002; Guettier and Lucas, 2016] and defense [Guettier et al.,
2015].

Convolutional neural networks (CNNs) have proven
to be very efficient when it comes to image recogni-
tion [Krizhevsky et al., 2012]. They use a variation of multi-
layer perceptrons designed to require minimal preprocessing,
and are capable of detecting complex patterns in the image.
In this paper, we are dealing with graphs representing ma-
neuvers or off-road navigation. Instead of CNNs, the paper
focuses on graph convolutional neural networks (GCNNs), a
recent variant for learning complex patterns in graph data. We
show that GCNNs are capable of making decisions to solve
path-related problems. In this work we combine this type of
machine learning algorithms with constraint solving methods
for planning.

The paper is organized as follows. The first section (§ 2)
describes AUGV mission, environment and applications. The
following section (§ 3) presents the CP approach, problem
formalization and resolution. Section (§ 4) describes the
graph-based learning algorithm and section (§ 5) the data gen-
eration schema for training. Last sections (§ 6) and (§ 7) dis-
cuss results, highlight further work and conclude. Related
works are provided along the different sections.

2 Context and problem presentation
In modern AUGV architectures, path planning is performed
on the fly, responding to an operator demand (mission up-
date), a terrain obstacle, or free space discovery. In logistics,
such operator demands correspond to movement requests for
pick-up and delivery, while in area surveillance or disaster
relief, the platform must reccon some specific areas.

Figure 2 shows a flooded area and possible paths to assess
disaster damages. Possible paths are defined using a graph
representation, where edges and nodes represent respectively
ground mobility and accessible waypoints. With the given

Figure 2: Search and rescue mission. Potential paths for a manned
vehicle and a AUGV throughout a flooded area between the Seine
and the Vanne rivers in the area of Troyes, France. The blue area
represents the expected flooded area. Red circles represent possi-
ble waypoints while blue circles represent mandatory ones. Orange
edges represent trafficability and the blue ones a potential optimal
solution.

applications, graphs are defined during mission preparation,
by terrain analysis and situation assessment. The UGV sys-
tem responds to an operator demand by finding a route from
a starting point to a destination, and by maneuvering through
mandatory waypoints. During the mission, some paths may
not be trafficable or new flooded areas to investigate may be
identified.

These constraints depend on both environment situation
and mission objectives:

• Environment situation: new muddy areas can occur, af-
fecting cross-over duration between two waypoints or
increasing the risk of losing platform control.
• Mission objectives: mandatory waypoints are imposed

by the user and can correspond, for instance, to observa-
tion spots.

In figure 2, the UGV starts from its initial position (blue
circle) and must visit waypoints {W1,W2,W3,W4}. In the
disaster relief scenario, areas in blue are flooded and the dis-
aster perimeter must be evaluated by the vehicle. All nodes
circled in red have to be visited, as refugees and casualties are
likely to be found there. The main criterion to minimize is the
global traverse duration that meets all visit objectives. A typ-
ical damage assessment would require up to 10 mandatory
nodes to visit. Using the UGV system, the remote operator
can update the situation and set objectives accordingly, which
usually yields replanning events. To achieve high operational
efficiency, path planning must be solved just in time to exe-
cute maneuvers smoothly. However, such planning problems
rapidly become NP-hard and state-of-the-art solvers may in-
volve heavy processing loads, whereas a solution is required
right away.

Our proposed approach is to learn problem invariants from
the terrain structure in order to accelerate a model-based plan-
ner. This can be done by training a neural network on several



problem instances. Using feedback from the neural network,
the model-based planner can efficiently solve new problem
instances. Learning from terrain data can be performed off-
line, such that the knowledge acquired can be used on-line to
accelerate the on-board planner. However, critical missions
such as disaster relief necessitate rapid vehicle deployment
and it is not possible to pre-compute problem instances for
heavy datasets.

In this paper we consider two scenarios, leading to two
evaluation benchmarks. The first scenario, b1, is a fine grain
maneuver on a muddy terrain of small size (referred as bench-
mark ’maneuver’), while the second one, b2, is a coarse map-
ping (referred as benchmark ’exploration’) of a disaster risk
on a shore environment nearby a city.

3 Problem formalization and resolution
approach

This section presents the global constraint programming ap-
proach to solve complex planning problems. Let G = (V, E)
be a connected graph. A typical instance I of the kind of
path-planning problem we consider is defined as follows:

I = (s, d,M)

where:

• s ∈ V is the start node in graph G,

• d ∈ V is the destination node in graph G,

• M ⊂ V is a set of distinct mandatory nodes that need to
be visited at least once, regardless of the order of visit.

In order to solve instance I , one has to find a shortest path
from node s to node d that passes by each node in M at least
once. There is no limit to how many times a node can be vis-
ited in a path. Since the graph is connected, there is a solution
path to every existing instances. Let A be the adjacency ma-
trix of graph G, used in (§4) by our neural network, defined
as follows:

Avv′ =

{
0, if there is no edge from node v to node v′

wvv′ , otherwise, and the weight of the edge is wvv′

Let A′ be the cost matrix of graph G, used by our path-
planning solver, defined as follows:

A′vv′ =

{
∞, if there is no edge from node v to node v′

wvv′ , otherwise, and the weight of the edge is wvv′

3.1 Constraint Programming for Navigation and
Maneuver Planning

In our approach, planning is achieved using Constraint Pro-
gramming (CP) techniques, under a model-based develop-
ment approach. In CP, it is possible to design global search
algorithms that guarantee completeness and optimality. A
CSP, formulated within a CP environment, is composed of a
set of variables, their domains and algebraic constraints, that
are based on problem discretization. With CP, a declarative
formulation of the constraints to satisfy is provided which is

decoupled from the search algorithms, so that both can be
worked out independently. The CSP formulation and search
algorithms exposed in the paper are implemented with the
CLP(FD) domain of SICStus Prolog library [Carlsson, 2015].
It uses the state-of-the-art in discrete constrained optimization
techniques Arc Consistency-5 (AC-5) [Deville and Van Hen-
tenryck, 1991; Van Hentenryck et al., 1992] for constraint
propagation, managed by CLP(FD) predicates. With AC-5,
variable domains get reduced until a fixed point is reached by
constraint propagation. The search technique is hybridized
by statically defining the search exploration structure using
probing and learning on multiple problem instances. This ap-
proach, named probe learning, relies on several instances of
a problem to build up the search tree structure.

3.2 Planning model with Flow Constraints
The set of flow variables ϕu ∈ {0, 1} models a possible path
from start ∈ X to end ∈ X , where an edge u belongs to the
navigation plan if and only if a decision variable ϕu = 1, 0
otherwise. The resulting navigation plan, can be represented
as Φ = {u| u ∈ U, ϕu = 1}. From an initial position to
a requested final one, path consistency is enforced by flow
conservation equations, where ω+(x) ⊂ U and ω−(x) ⊂
U represent respectively outgoing and incoming edges from
vertex x. Since flow variables are {0, 1}, equation (1) ensures
path connectivity and uniqueness while equation (2) imposes
limit conditions for starting and ending the path:

∑
u ∈ ω+(x)

ϕu =
∑

u ∈ ω−(x)

ϕu ≤ N (1)

∑
u ∈ ω+(start)

ϕu = 1,
∑

u ∈ ω−(end)

ϕu = 1, (2)

These constraints provide a linear chain alternating pass-by
waypoint and navigation along the graph edges. Constant N
indicates the maximum number of times the vehicle can pass
by a waypoint. With this formulation, the plan may contain
cycles over several waypoints. Mandatory waypoints are im-
posed using constraint (3). The total path length is given by
the metric (4), and we will consider the path length as the op-
timization criterion to minimize in the context of this paper:

∀i ∈M
∑

u ∈ ω+(i)

ϕu ≥ 1 (3)

Dv =
∑

v′v ∈ ω−(v)

ϕv′vwvv′ (4)

3.3 Global search algorithm
The global search technique under consideration guarantees
completeness, solution optimality and proof of optimality. It
relies on three main algorithmic components:

• Variable filtering with correct values, using specific la-
beling predicates to instantiate problem domain vari-
ables. AC being incomplete, value filtering guarantees
search completeness.



• Tree search with standard backtracking when variable
instantiation fails.

• Branch and Bound (B&B) for cost optimization, using
minimize predicate.

Designing a good search technique consists in finding the
right variables ordering and value filtering, accelerated by do-
main or generic heuristics. A static probe provides an ini-
tial variable selection ordering, computed before running the
global branch and bound search. Note that in general probing
techniques [Sakkout and Wallace, 2000], the order can be re-
defined within the search structure [Ruml, 2001]. Similarly,
in our approach, the variable selection order provided by the
probe can still be iteratively updated by the labeling strategy
that makes use of other variable selection heuristics. Mainly,
first fail variable selection is used in addition to the initial
probing order. These algorithmic designs have already been
reported with different probing heuristics [Guettier and Lu-
cas, 2016], such as A* or meta-heuristics such as Ant Colony
Optimization [Lucas et al., 2010], [Lucas et al., 2009]. In
our design, the search is still complete, guarantying proof
of optimality, but demonstrates efficient pruning. Instead of
these heuristics techniques, we choose to train with multi-
ple instances the probing mechanism that provides a tentative
variable order to the global search.

4 Neural network training
In this section, we present how a neural network can be
trained on a particular graph. The aim is to let the neural
network learn to approximate the behavior of a model-based
planner on the graph. To this end, we first use our solver to
compute solutions for several random instances and use them
as training data. Then we train the neural network for solving
these instances by using the previously generated solutions as
supervision. We want to leverage the powerful mechanism of
neural networks to guide our path planner. We first provide a
brief introduction to neural networks and their main concepts.

4.1 Neural Networks
In recent years, neural networks (NNs), in particular
deep neural networks, have achieved major breakthroughs
in various areas of computer vision (image classification
[Krizhevsky et al., 2012], [Simonyan and Zisserman, 2014],
[He et al., 2016], object detection [Ren et al., 2015], [Red-
mon et al., 2016], [He et al., 2017], semantic segmentation
[Long et al., 2015]), neural machine translation [Sutskever
et al., 2014], computer games [Silver et al., 2016], [Silver
et al., 2017] and many other fields. While the fundamental
principles of training neural networks are known since many
years, the recent improvements are due to a mix of availability
of large image datasets, advances in GPU-based computation
and increased shared community effort.

Deep neural networks enable multiple levels of abstraction
of data by using models with millions of trainable parameters
coupled with non-linear transformations of the input data. It
is known that a sufficiently large neural network can approx-
imate any continuous function [Funahashi, 1989], although
the cost of training such a network can be prohibitive. With

this in mind, we attempt to train a neural network to approxi-
mate the behavior of a model-based planner.

In spite of the complex structure of a NN, the main mech-
anism is straightforward. A feedforward neural network, or
multi-layer perceptron (MLP), withL layers describes a func-
tion f(x;θ) : Rdx 7→ Rdy that maps an input vector x ∈ Rdx

to an output vector y ∈ Rdy . x is the input data that we
need to analyze (e.g. an image, a signal, a graph, etc.), while
y is the expected decision from the NN (e.g. a class index, a
heatmap, etc.). The function f performs L successive opera-
tions over the input x:

h(l) = f (l)(h(l−1); θ(l)), l = 1, . . . , L (5)

where h(l) is the hidden state of the network (i.e. features
from intermediate layers) and f(h(l−1); θ(l)) : Rdl−1 7→ Rdl

is the mapping function performed at layer l; h0 = x. In
other words, f(x) = f (L)(f (L−1)(. . . f (1)(x) . . . )). Each
intermediate mapping depends on the output of the previous
layer and on a set of trainable parameters θ(l). We denote
by θ = {θ(1), . . . , θ(L)} the entire set of parameters of the
network. The intermediate functions f(h(l−1); θ(l)) have the
form:

f (l)(h(l−1); θ(l)) = σ
(
θ(l)h(l−1) + b(l)

)
, (6)

where θ(l) ∈ Rdl×dl−1 and b(l) ∈ Rdl are the trainable pa-
rameters and the bias, while σ(·) is an activation function
which is applied individually to each element of its input vec-
tor to introduce non-linearities. Intermediate layers are actu-
ally a combination of linear classifiers followed by a piece-
wise non-linearity. Layers with this form are termed fully-
connected layers.

NNs are typically trained using labeled training data, i.e. a
set of input-output pairs (xi,yi), i = 1, . . . , N , where N is
the size of the training set. During training we aim to mini-
mize the training loss:

L(θ) =
1

N

N∑
i=1

`(ŷi,yi), (7)

where ŷi = f(xi;θ) is the estimation of yi by the NN and
` : RdL × RdL 7→ R is the loss function. ` measures the dis-
tance between the true label yi and the estimated one ŷi.
Through backpropagation, the information from the loss is
transmitted to all θ and gradients of each θl are computed
w.r.t. the loss. The optimal values of the parameters θ are
then found via stochastic gradient descent (SGD) which up-
dates θ iteratively towards the minimization of L. The in-
put data is randomly grouped into mini-batches and parame-
ters are updated after each pass. The entire dataset is passed
through the network multiple times and the parameters are
updated after each pass until reaching a satisfactory optimum.
In this manner all the parameters of the NN are learned jointly
and the pipeline allows the network to learn to extract features
and to learn other more abstract features on top of the repre-
sentations from lower layers.

CNNs [Fukushima and Miyake, 1982], [LeCun et al.,
1995] are a generalization of multilayer perceptrons for 2D



data. In convolutional layers, groups of parameters (which
can be seen as small fully-connected layers) are slided across
an input vector similarly to filters in image processing. This
reduces significantly the number of parameters of the network
since they are now shared across locations, whereas in fully
connected layers there is a parameter for element of the input.
Since the convolutional units act locally, the input to the net-
work can have a variable size. A convolutional layer is also
a combination of linear classifiers (6) and the output of such
layer is 2D and is called feature map. CNNs are highly popu-
lar in most recent approaches for computer vision problems.

4.2 Graph Convolutional Networks
Graph Convolutional Neural Networks (GCNNs) are gener-
alizations of CNNs to non-Euclidean graphs. GCNNs are
in fact neural networks based on local operators on a graph
G = (V, E) which are derived from spectral graph theory.
The filter parameters are typically shared over all locations in
the graph, thus the name convolutional. In the past two years
there has been a growing interest for transferring the intu-
itions and practices from deep neural networks on structured
inputs to graphs [Gori et al., 2005], [Henaff et al., 2015],
[Defferrard et al., 2016], [Kipf and Welling, 2016]. [Bruna
et al., 2013] and [Henaff et al., 2015] bridge spectral graph
theory with multi-layer neural networks by learning smooth
spectral multipliers of the graph Laplacian. Then [Defferrard
et al., 2016] and [Kipf and Welling, 2016] approximate these
smooth filters in the spectral domain using polynomials of
the graph Laplacian. The free parameters of the polynomials
are learned by a neural network, avoiding the costly computa-
tion of the eigenvectors of the graph Laplacian. We refer the
reader to [Bronstein et al., 2017] for a comprehensive review
on deep learning on graphs.

We consider here the approach of [Kipf and Welling,
2016]. The GCNNs have the following layer propagation
rule:

h(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2h(l)θ(l)

)
, (8)

where Ã = A+ IN is the adjacency matrix of the graph with
added self-connections such that when multiplying with Ã
we aggregate features vectors from both a node and its neigh-
bors; IN the identity matrix. D̃ is the diagonal node degree
matrix of Ã. σ(·) is the activation function, which we set
to ReLU(·) = max(0, ·). The diagonal degree D̃ is em-
ployed for normalization of Ã in order to avoid change of
scales in the feature vectors when multiplying with Ã. [Kipf
and Welling, 2016] argue that using a symmetric normaliza-
tion, i.e. D̃−

1
2 ÃD̃−

1
2 , ensures better dynamics compared to

simple averaging of neighboring nodes in one-sided normal-
ization D̃−1A.

The input of our model is a vector x, where h(0) = x, con-
taining information about the problem instance, including the
graph representation. We describe next the chosen encoding
for vector x.

4.3 Vector encoding of instances
For every instance I = (s, d,M) of a given graph G =
(V, E), we associate a vector x made up of triplets features

Figure 3: Graph with seven nodes. The instance I defined in the
figure requires finding an optimal path from node 3 to node 1 which
passes by node 0 and 6 at least once. x is the vector associated with
instance I . The number written next to an edge is its cost.

per node in G, making up for a total of 3 |V| features. The
three features for a node j ∈ V are:

• A start node feature

sj =

{
1, if node j is a start node in instance I
0, otherwise

• An end node feature

ej =

{
1, if node j is the end node in instance I
0, otherwise

• A mandatory node feature

mj =

{
1, if node j is a mandatory node in instance I
0, otherwise

Vector x is the concatenation of these features:

x = (s1, e1,m1, s2, e2,m2, ..., s|V|, e|V|,m|V|) (9)

Figure 3 illustrates an example of an instance I in a graph
and the associated vector x.

4.4 Neural network architecture
We define a neural network f that uses a sequence of graph
convolutions followed by a fully connected layer. The idea is
to have the neural network take as input any instance I on the
graph G, and output a probability ŷ over which node should
be visited first from the start node in an optimal path that
solves I . The weights of the neural network θ are tuned in the
training phase for this purpose. We train the neural network
on instances that have already been processed by the solver.
Here, the solver serves as a teacher to the neural network and
the neural network learns to approximate the solutions given
by the solver.

The output ŷ of the neural network is a vector of size |V|.
We format the input vector x as following: we reshape x into
a matrix of size (|V| , 3), which contains the start, end and
mandatory features of every node by rows. This matrix be-
comes the input for f , which aims to extract and aggregate
local information over layers starting from the input. The
output of the convolutions, a matrix, is flattened into a vec-
tor by concatenating its rows. A fully connected layer then



Figure 4: Architecture of the neural network f : f takes as input
the vector xi of an instance Ii and outputs a probability over all
nodes in the graph, suggesting which node should be visited first.

links the flattened vector to a vector z of real-numbers of size
|V|. Finally we use a softmax function to obtain a probability
distribution. Formally, the softmax function is given by:

softmax(z)i =
ezi∑|V|

k=1 e
zk

(10)

This formula ensures that: ∀i ∈
{1, 2, ..., |V|}, softmax(z)i > 0 and

∑|V |
i=1 softmax(z)i = 1.

Once the training of the neural network is concluded, we
expect it to return the next node to visit for any instance I in
the same manner as the solver.

5 Data generation
This section provides a global schema for data generation, ei-
ther for the learning purpose, or for experimenting the global
search strategy. We also give the main processing principles
to conduct the learning phase.

5.1 Number of instances
Suppose the connected graph G = (V, E) has |V | = n nodes.
Let Pn be the set of all existing instances for graph G. The
number of instances Cn = |Pn| that exist is given by the
following formula:

Cn = 2!

(
n

2

) n−2∑
p=0

(
n− 2

p

)
(11)

where:

• 2!
(
n
2

)
= n(n−1) is the number of existing combinations

of source-destination pairs, taking ordering into account.

•
∑n−2

p=0

(
n−2
p

)
is, for every possible source-destination

pair, the number of possible sets of mandatory nodes to
visit. It can be simplified to 2n−2

Therefore, equation (11) can be rewritten as:

Cn = 2n−2n(n− 1) (12)

The number of instances for a graph with n = 20 is equal
to 99 614 720. It is reasonable to assume that calculating the
solutions of all instances becomes too time-consuming.

5.2 Instance generator
In order to generate instances Ii = (si, di,Mi), a genera-
tor function is built. It returns a set of instances R, all of
which are solvable since the graph G is connected. These
instances are sampled out of the set of all possible instance
configurations Pn = {I1, I2, ..., I2n−2n(n−1)} such that they
cover Pn as evenly as possible . For our experiments, we
built 2 different connected graphs G1 and G2 containing re-
spectively 15 and 22 nodes, based on the two benchmarks b1
and b2. Although these graphs are undirected, our approach
remains applicable to directed graphs. However, the problem
instances generated must remain realistic in terms of mission
data. To be close to some ’realistic’ instances, we first gener-
ate a shortest path length among all pairs of starting to ending
nodes (si, di) within the graph. We then apply a decimation
ratio (typically 90%), keeping the 10% set of instances that
have the longest paths. For each resulting pair (si, di), we
then generate multiple random instances, with an increasing
cardinality for the set of mandatory waypoints (typically from
1 to 10 mandatory waypoints). Each instance Ii generated in
R is fed to our solver, providing an optimal pi. The short-
est path (Dijkstra) is set as probe, and for processing conve-
nience, we set a ’time out’ at 3 seconds for each instance. If
no optimal solution can be proven, the instance is not consid-
ered for further learning process (although some suboptimal
solutions may be found). Using this process, the number of
instances generated and resolved are reported in Table 1.

Table 1: Number of instances resolved under 3 seconds by the solver
out of the generation process, and used for the learning phase.

Mandatory waypoints #: 0 1 2 4 6 8 10
Instances for benchmark maneuver (b1)
generated (1256): 42 212 246 252 252 252
optimally solved (651): 42 212 185 121 61 30
Instances for benchmark exploration (b2)
generated (2503): 69 368 410 414 414 414 414
optimally solved (554): 69 265 168 42 9 1 0

Only 651 (over 1256 generated) and 554 (over 2503) are
solved optimally for respectively benchmarks b1 and b2. In-
deed, easy instances are optimally solved more often than dif-
ficult ones. Given the number of nodes in the graphs, and
applying (11), we are working with less than 0.001% of the
total instances. As a consequence, most of the learning is
performed on a small number of easy instances. For each in-
stance Ii = (si, di,Mi), let |Mi| be the number of mandatory
nodes from Mi. The corresponding optimal path pi found by
our solver is a path that passes through all the nodes in Mi =
{mi1,mi2, ...,mi|Mi|}, i.e.: pi = {si, vi1, vi2, ..., viq, di},
mij ∈ {vi1, vi2, ..., viq} ∀j ∈ 1, 2, ..., |Mi|.

Since our neural network model predicts the next node to
visit for a given instance I , our data is reprocessed before the
training phase. We use the following lemma to reprocess the
data:

Lemma 1. Let I = (s, d,M) be a problem instance, and
p = {s, v1, v2, v3, ..., vq, d} an optimal path that solves I . It



comes that:

• {v1, v2, v3, ..., vq, d} is an optimal solution for the in-
stance (v1, d,M\{v1})
• {v2, v3, ..., vq, d} is an optimal solution for the instance

(v2, d,M\{v1, v2})
• ...

• {vq, d} is an optimal solution for the instance
(vq, d,M\{v1, v2, .., vq})

More specifically: {vi, vi+1, ..., vq, d} is an optimal
solution for the instance (vi, d,M\{v1, v2, ..., vi})|∀i ∈
1, 2, ..., q

Proof. Suppose that {v1, v2, v3, ..., vq, d} is not an optimal
solution for (v1, d,M\{v1}). There is therefore a path p′ that
starts from v1, ends in d, that visits every node in M\{v1}
with a lower cost than the path {v1, v2, v3, ..., vq, d}.
Therefore p = {s, v1, v2, v3, ..., vq, d} is not optimal for the
original problem p since it does not take that shorter path,
which is contradictory. It results that {v1, v2, v3, ..., vq, d} is
optimal for (v1, d,M\{v1}). The same reasoning is applied
recursively.

5.3 Data processing
Let (Ii, pi) be an instance-solution pair that was previ-
ously generated, such that Ii = (si, di,Mi) and pi =
{si, vi1, vi2, vi3, ..., viqi , di}. This pair, which we call root
pair, is split into several pairs (Ii,j , pi,j),∀j ∈ 1, 2, ..., qi in
the same way as in Lemma 1. This guarantees that for each
instance Ii,j , pi,j is an optimal solution path. For each newly
obtained pair (Ii,j , pi,j), we store (Ii,j , ti,j) in a dataset d,
where ti,j ∈ V is the first node visited in path pi,j after the
start node. The same process is applied for every root pair
(Ii, pi) which was stored. The dataset is shuffled to com-
pensate for the correlation resulting from splitting root pairs
(Ii, pi) into pairs (Ii,j , pi,j), which are children instances and
whose solutions enable the solving of the parent instance.

5.4 Supervised learning
Following the creation of dataset X , we train the neural net-
work so that it can learn to approximate the behavior of our
solver, and correctly predict the next step that should be taken
in an optimal path for a given instance I . We take 80% of the
data in dataset X for our training set. The validation set is
given by the remaining 20% of the data in X . We generate a
separate set of instances for testing purposes in (§6.2). Let f
be the function for the neural network defined previously. f
takes as input a vector instance xi and outputs a distribution
vector ŷi which is the probability distribution over all nodes
in the graph of the next node to visit: f(xi;θ) = ŷi where
θ are the weights of the neural network. We define the loss
function L as the average of the logarithmic loss of the prob-
abilities predicted by the neural network for each problem
instance Ii with the actual label target node ti. L is defined
as follows:

L(θ) =
1

m

m∑
i=1

n∑
j=1

−tij log(f(xi;θ)j) (13)

• m is the number of training examples in the training set,

• n is the number of nodes in the graph,

• xi is the vector of the problem instance Ii,

• tij is the variable that indicates whether for the problem
instance Ii, the node j was the next optimal node to visit:
tij = 1 if so, else tij = 0,

• f(xi;θ)j is the probability the neural network outputs
to visit node j for the problem instance Ii.

We ran the training on the data obtained from graphs G1
and G2. Training curves are available in the Appendix. The
neural networks trained for each graph generalize relatively
well on unknown instances (the neural network for graph G1
achieves 96% accuracy on its validation set, while the neural
network for graph G2 achieves 92% accuracy on its validation
set).

6 Experiments and results
In this section, we evaluate to which extent the neural network
can help solve new instances. When solving an instance I ,
the neural network is used at search start, and given as input
the corresponding vector x. The output ŷ is used to create
a preference ordering over all existing nodes in the graph,
and corresponds to the preference of the next node to visit
from the start node of the instance I . This order suggested by
the neural network is provided to the solver at the root of the
search tree, and children nodes of the root node will be visited
in the order they appear in the preference ordering. Figure 5
depicts this process. The neural network is not used again
to create preference orderings of root nodes of the resulting
subtrees. We motivate this design choice by the fact that a
large amount of operations is required for a feedforward pass.
Probing with the neural network at every choice point would
make the solving too slow and impractical.

6.1 Implementation details
We consider the following architecture for the neural net-
work: 2 graph convolution layers with 10 hidden units, and
a fully connected layer. We apply dropout on the units of
the last graph convolution layer with a keep rate of 0.9. We
use batch normalization [Ioffe and Szegedy, 2015] for every
layer in the graph convolutions with decay of moving average
ε = 0.9. The neural network is trained using a variant of the
stochastic gradient descent (SGD) called Adam [Kingma and
Ba, 2015]. Adam uses adaptive learning rates for each vari-
able of the neural network to decrease the number of steps
required to minimize the loss function. We set the learning
rate to η = 10−4 and train the neural network with mini-
batches of data of size 32. To reduce overfitting, we do early
stopping: the training is stopped once the performance on the
validation set stops improving. Training takes less than an
hour for each graph on an Nvidia Tesla V100 GPU. The neu-
ral network was implemented in Python using Tensorflow.

6.2 Performance evaluation
We generate instances for two test benchmarks, a maneu-
ver benchmark, associated with graph G1, and an exploration



Figure 5: Processing pipeline for path planning using GCNs: The GCN takes as input the adjacency matrix with costs and the instance.
Graph convolutional layers process each node in the graph and its neighbors. In the hidden layers, new features are generated for each node
in the graph. In the last layer, the features are passed through a fully-connected layer and a softmax. The softmax layer indicates the next
node in the optimal path.

benchmark, associated with graph G2. The first benchmark
comprises 1008 instances, the second one 2208 instances.
Note that these instances are generated with our instance gen-
erator, and therefore may contain anywhere from 0 to 10
mandatory nodes. We solve the instances using our original
model-based planning solver without neural network support
to obtain reference performance. Then, we evaluate solving
performance on the same instances using neural net probing:
a modified version of the solver based on an initial variable
ordering (eg: probing) for the search tree by the neural net-
work that was trained over data provided in (§ 5). In both
cases, we only keep results where the proof of optimality
could be achieved. Results are reported in Table 2, showing
stable improvements on all datasets of instances.

Table 2: Number of instances resolved with proof of optimality.
Comparison between the reference version and the neural network
probing one (under 3 seconds ’time out’).

Mandatory waypoints #: 3 5 7 9
Solving instances for benchmark maneuver (b1)
reference: 167 99 43 15
neural net probing: 220 185 131 89
Solving instances for benchmark exploration (b2)
reference: 104 29 4 1
neural net probing: 210 65 18 4

Table 3 summarizes the number of instances solved by both
solvers under 3 seconds with more detailed search features.
Average number of backtracks and solving time on maneu-
ver are significantly lower, denoting an efficient pruning of
the search tree. The situation is different for exploration with
10% more backtracks. Given that the graph for exploration
contains more nodes than the graph for maneuver, this re-
sult is explained by more complex instances solved optimally
with neural network probing, with an accordingly high num-
ber of backtracks. The reference solver, on the other hand,
was unable to solve those instances, thus not taking into ac-
count the number of backtracks.

Higher performance could be obtained by training on more
random instances. However, this would require solving more
instances with the initial solver to generate training data,
which brings a significant additional computational cost.

Table 3: Global search features for proof of optimality, comparison
between the reference version and the neural network probing one
(under 3 seconds ’time out’).

Benchmarks Maneuver Exploration
Number of instances resolved
reference 324 138
neural net probing 625 297
Average solving time for optimality
reference 504 1044
neural net probing 394 1203
Average number of backtracks for optimality
reference 55787 26065
neural net probing 35176 26504

7 Conclusion
In order to solve AUGV path planning problems with manda-
tory waypoints, we introduced an algorithm capable of sig-
nificantly accelerating the performance of a constraint-based
solving method. The algorithm requires the solving of multi-
ple random instances to enable the training of the neural net-
work, which is then used to accelerate the solver itself on new
instances. The approach is efficient, even with small training
datasets, as required by application preparation requirements.
The performance obtained is realistic on two representative
AUGV planning benchmarks. A drawback is that the neu-
ral network can only be used to accelerate the solver on the
same geometric graph from which the random instances were
solved, making it impractical if a solution is required right
away on a previously unknown graph. Nevertheless, if the
graph is known in advance, it becomes a better alternative
to pre-computing the solution to all existing instances, as the
number of instance configurations grows exponentially with
the size of the graph.
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A Appendix: Learning curves
A.1 Graph G1
|V | = 15

Figure 6: The loss function curve during training. The X-axis is the iteration step. The Y-axis is the average logarithmic log loss. The blue
curve is the loss on a batch of training examples from the training set, the orange curve is the loss for the cross-validation set. The curves are
smoothed by a coefficient µ = 0.8. We observe that the loss of the cross-validation set follows the loss of the training set as the training steps
go on, while staying only slightly superior. This means the model, trained on instances of the training set, generalizes well on instances that
are not part of the training set.

Figure 7: The accuracy curve during training. The X-axis is the iteration step. The Y-axis is the prediction accuracy. The blue curve is the
accuracy on a batch of training examples from the training set, the orange curve is the accuracy for the cross-validation set. The curves are
smoothed by a coefficient µ = 0.8. We observe that the accuracy of the cross-validation set follows the accuracy of the training set as the
training steps go on, while staying only slightly inferior. This means the model, trained on instances of the training set, correctly predicts
instances that are not part of the training set. By the end of the training phase, the model achieves an accuracy of 96% on the cross-validation
set.



A.2 Graph G2
|V | = 22

Figure 8: The loss function curve during training. The X-axis is the iteration step. The Y-axis is the average logarithmic log loss. The blue
curve is the loss on a batch of training examples from the training set, the orange curve is the loss for the cross-validation set. The curves are
smoothed by a coefficient µ = 0.8. We observe that the loss of the cross-validation set follows the loss of the training set as the training steps
go on, while staying only slightly superior. This means the model, trained on instances of the training set, generalizes well on instances that
are not part of the training set.

Figure 9: The accuracy curve during training. The X-axis is the iteration step. The Y-axis is the prediction accuracy. The blue curve is the
accuracy on a batch of training examples from the training set, the orange curve is the accuracy for the cross-validation set. The curves are
smoothed by a coefficient µ = 0.8. We observe that the accuracy of the cross-validation set follows the accuracy of the training set as the
training steps go on, while staying only slightly inferior. This means the model, trained on instances of the training set, correctly predicts
instances that are not part of the training set. By the end of the training phase, the model achieves an accuracy of 92% on the cross-validation
set.


