
Noname manuscript No.
(will be inserted by the editor)

A Parallel General Game Player

Jean Méhat · Tristan Cazenave

Received: date / Accepted: date

Abstract We have parallelized our general game player

Ary on a cluster of computers. We propose multiple par-

allelization algorithms. For the sake of simplicity all our

algorithms have processes that run independently and

that join their results at the end of the thinking time in

order to choose a move. Parallelization works very well

for checkers, quite well for other two player sequential

move games and not at all for a few other games.

1 Introduction

In this paper we evaluate the interest of parallelization

for General Game Playing (GGP). Monte-Carlo Tree

Search (MCTS) is currently the algorithm that gives

the best results for GGP: using MCTS, our program

Ary won the 2009 GGP competition. It has been es-

tablished in games such as Go or Hex that a parallel

implementation of MCTS gives good results [2,3,12,10,

8]. In this paper we investigate simple algorithms that

parallelize MCTS for the games of the GGP competi-

tions.

Section 2 explains the basics of Monte-Carlo Tree

Search. Section 3 presents General Game Playing. Sec-

tion 4 describes various parallel Monte-Carlo Tree Search

algorithms. Section 5 details experimental results. Sec-

tion 6 concludes.

Jean Méhat
LIASD, Université Paris 8, 2 rue de la Liberté, 93526 Saint-
Denis Cedex, France
E-mail: jm@ai.univ-paris8.fr

T. Cazenave
LAMSADE, Université Paris-Dauphine, Place du Maréchal
du Lattre de Tassigny, 75775 Paris Cedex 16, France
E-mail: cazenave@lamsade.dauphine.fr

2 Monte-Carlo Tree Search

Monte-Carlo tree search algorithms play random games

(i.e. playouts) so as to select moves that are good on

average. The most popular Monte-Carlo tree search al-

gorithm is UCT [13]. It consists in building a move tree

that is used to choose the first moves of playouts. The

move tree is constructed incrementally, with a new node

added for each random game. On the next exploration,

a path is chosen in the already built move tree by choos-

ing the branch whose estimated gain is maximum. This

gain is estimated by the mean of the previous play-

outs plus confidence in the estimation. The confidence

is calculated by a function of the number of explorations

of the node t and of the number of exploration of the

branch s as
√
log(t)/s. When arriving at a leaf node of

the move tree, if it is not a terminal situation, a new

node is added to the tree and a Monte-Carlo simula-

tion is started to obtain an evaluation of this node and

update the evaluation of its parent nodes.

UCT and its refinements are applied with success to

Monte-Carlo Go [7,11] and to many other games [9,1,

4].

When there are some unexplored moves, UCT will

choose to explore them. When all the branches from a

node have been explored, UCT will tend to re-explore

the most promising ones: this tendency is controlled by

a constant C, that is used to multiply the confidence

upper bound
√
log(t)/s. The higher the constant C, the

more UCT will explore unpromising nodes. At the limit,

when the whole game tree has been explored, UCT is

favoring the better branches and will converge to the

same choice as a Minimax exploration.



2 Jean Méhat, Tristan Cazenave

3 General Game Playing

3.1 Previous work

Lot of previous work on computers and games was to

design algorithms tailored to a specific game. However

a possible criticism of these works is that a special-

ized program lacks of general intelligence. Hence the

field of General Game Playing has emerged with the

goal of having computer programs play a large variety

of games. Early work on General Game Playing can

be traced back to Jacques Pitrat [16]. It was followed

by the work of Barney Pell [15]. The General Game

Playing community has been growing since the estab-

lishment of an annual competition since 2005 and the

standardization of the Game Description Language [14].

3.2 Communication between the Game Master and

the players

The communication between the Game Server and the

players in the GGP competition takes the form of a

client-servers interaction, with the players acting as servers

and the Game Master acting as a client.

Every interaction starts with a new network con-

nection established at the request of the Game Master

with a player, through which it sends a request or no-

tification: description of the game, timing constraints

and role of the player, notification of the moves played

by all players in the preceding step, notification of the

end of the game. The message contents is prepended

with a header.

The players have to answer on the same network

connection in a delay specified by the initial message.

3.3 Ary

In this subsection we present Ary, the program used for

the experiments.

Ary is written in C. It uses Monte-Carlo Tree Search

(MCTS) and a Prolog interpreter as an inference en-

gine. Ary won the 2009 GGP competition.

Its architecture is somewhat similar to the one of

CadiaPlayer [9,1] since it also uses UCT and Prolog.

It is different from the winners of the 2005 and 2006

competitions, ClunePlayer and FluxPlayer [6,17] that

used evaluation functions.

4 Parallel Monte-Carlo Tree Search

Cazenave and Jouandeau have proposed three algorithms

to parallelize UCT [2]. The most simple one is the single

run algorithm renamed as the root parallel algorithm in

[5]. Other algorithms that share the UCT tree and that

perform playouts in parallel have been proposed either

on a cluster [3,12,10] or on a multithreaded computer

[8].

In this paper we focus on the most simple of these al-

gorithms, namely the root parallel algorithm. The prin-

ciple of the root parallel algorithm is to perform inde-

pendent Monte-Carlo tree searches in parallel on differ-

ent CPU. When the thinking time is elapsed the results

of the different searches are joined in order to choose

the move.

For each move at the root of a UCT tree, we have

a mean and a number of playouts. Each CPU has its

own UCT tree. Let µi,m be the mean of move m on

CPU number i, and pi,m be the number of playouts

associated to move m on CPU number i.

The evaluation of a move using the root parallel al-

gorithm and n CPUs is: evaluationm =
∑n

i=1 µi,m×pi,m∑n
i=1 pi,m

The root parallel algorithm plays the move with the

greatest evaluationm.

4.1 Structure of the root parallelisation

In this section we present the structure of the program

when doing root parallelization.

The player is built with two components: subplay-

ers that actually perform the search and a multiplexer

that ensures coordination between the subplayers, as

illustrated on figure figure 1.

Game

Master

Multiplexer

Subplayer 1

Subplayer 2

Subplayer n

...

Fig. 1 The interactions between the Game Master the mul-
tiplexer and the subplayers

The multiplexer is the contact point for the game

master. When it receives a message from the game mas-

ter, it dispatches it to every subplayer. The message

transmitted to the subplayers is an exact copy of the

one received from the game master, except that the ini-

tial clock and play clock can be decreased to account

for networks delays introduced by the multiplexer.

Subplayers are not aware of the presence of the mul-

tiplexer and respond to its request as they would do to

a request from the Game Master. We only modified the



A Parallel General Game Player 3

player to let it add an evaluation of the moves it ex-

plored in new fields of the header of its answer. The

current Dresden Game Master accepts these supple-

mentary headers fields without errors, so a single sub-

player can be used to interact directly with the Game

Master, bypassing the multiplexer.

After all the players responded or the thinking time

is nearly exhausted, the multiplexer combines the eval-

uation of moves explored received from the subplayers,

selects accordingly one of these moves and transmit it

to the Game Master.

The principal advantage of this scheme is its sim-

plicity: subplayers are nearly exact copies of the usual

player; the interaction between the processus takes place

through standard network connections, not requiring a

middleware; the only place where races are possible is

in the multiplexer between the threads used to commu-

nicate with each subplayers. Its principal disadvantage

is that during the search phase of one step, the search in

one subplayer has no influence on the other subplayers.

4.2 Different ways to combine sub-players evaluations

There are different ways to enrich the explorations of

the moves in one subplayer with the information ac-

quired in the other subplayers [2,10]. Given the model

of interactions between the subplayers and the multi-

plexer, we can only use the combination in the mul-

tiplexer of the evaluation of moves in the subplayers.

We explored four different combination strategies: Best,

Sum, Sum10 and Raw.

As a player does, a subplayer selects a move and

transmits it in his answer to the Multiplexer or the

Game Master. Moreover, it adds in the header its eval-

uation of this selected move. In one-player games, this

evaluation is the best reward obtained in a playout

starting with this move; in multiplayer games, this eval-

uation is the mean of the rewards obtained in playout

starting with this move, i.e. the left part of the UCT

formula used to select a node to explore, excluding the

confidence part. In multiplayer games, the subplayer

transmit also this evaluation and the number of explo-

rations for all the moves available to the player.

The Best strategy consists simply in selecting in the

multiplexer the move with the best evaluation found

by one subplayer. In MCTS explorations for one player

games, each subplayer stores the playout with the best

result, and uses it through steps to ensure that the re-

ward obtained can only grow. This strategy works well

for one player games, as it is the only one that ensures

the preservation of the best path found, and we tried

to observe how it performs in multiplayer games.

The Sum strategy uses the evaluation of all the ex-

plored moves transmitted by the subplayers: for all the

subplayers s, the evaluation es and the number of play-

outs ps are used to compute a new evaluation with∑
es × ps/

∑
ps. Sum combines the top of the UCT

trees built into the subplayers.

The Sum10 strategy is the same as the Sum strat-

egy, but uses only the ten best evaluated moves of each

subplayer. For the games like Connect Four where a

player has less than ten moves available, it amounts to

the same strategy as Sum In games with more than ten

moves, we expect that the refutation of the false good

move discovered in one subplayer has no effect on the

evaluation of this move, as this move will not appear

in the best ten of the subplayer that has discovered the

refutation.

On the contrary, the Raw strategy combines the

evaluations of the subplayers without considering the

number of explorations in the subplayers, simply as∑
es/n where n is the number of subplayers having

evaluated this move. Once a refutation of a false good

move is found, UCT will tend to avoid exploration of

the subtree starting with this false good move, while it

will tend to explore it in the subplayers that have not

found the refutation: ponderating the evaluation of a

subplayer by its number of explorations could lead to a

bias favorizing the false good move in the Sum strategy.

Ignoring the number of explorations, as done in Raw,

appears as a simple way to avoid this bias.

5 Experimental Results

In this section we have run the parallel algorithms on

various games and with 1 to 16 subplayers. Each paral-

lel algorithm played between 91 and 230 games against

the sequential algorithm which used the same time (10

seconds per move).

The results for Best are given in table 1. We can ob-

serve moderate improvements for games such as break-

throuh, checkers and othello. The improvements are ei-

ther small or inexistent for the other games. Blocker

and skirmish are simultaneous moves games.



4 Jean Méhat, Tristan Cazenave

Table 1 Results for Best

Best with parallel as first player
games 1 2 4 8 16 #experiments
blocker 35 46 42 42 35 /100-100
breakthrough 44 55 58 56 58 /100-100
checkers 44 58 70 66 72 /99-100
connect4 60 67 69 75 65 /100-100
othello 39 54 55 61 58 /100-100
pawn whopping 60 65 65 70 69 /100-100
pentago 54 66 68 64 62 /100-100
skirmish 75 78 74 76 77 /99-100

The results for Sum are given in 2. The results

are better than with the Best algorithm for sequential

moves games. For the two simultaneous moves games

the parallelization does not work. The results are espe-

cially good at checkers, othello and pentago. However at

breakthrough it appears useless to have more than two

subplayers. A reason why parallelization does not work

well at breakthrough is that the game is not well suited

for Monte-Carlo Tree Search and UCT: UCT frequently

does not find the refutation of moves that appear good

but are not.

Table 2 Results for Sum

Sum with parallel as second player
games 1 2 4 8 16 #experiments
blocker 63 61 57 71 67 /93-100
breakthrough 44 65 60 67 65 /97-100
checkers 47 65 83 86 94 /96-99
connect4 28 44 63 66 75 /100-100
othello 59 60 72 84 83 /99-100
pawn whopping 44 45 43 46 35 /94-100
pentago 35 54 68 64 68 /98-100
skirmish 71 71 74 76 71 /97-100

Table 3 gives the results for the Sum10 algorithm.

The results are slightly better but the small margin is

not significant enough to draw a firm conclusion.

Table 3 Results for Sum10 as second player

Sum10 with parallel as second player
games 1 2 4 8 16 #experiments
blocker 69 59 66 63 73 /100-100
breakthrough 55 54 65 73 72 /97-100
checkers 54 66 88 91 95 /96-100
connect4 28 44 63 66 75 /100-100
othello 45 54 72 77 79 /100-100
pawn whopping 34 43 53 33 46 /100-100
pentago 30 42 35 45 59 /100-100
skirmish 72 74 74 76 74 /100-100

Table 4 gives the results for the same games and

the same algorithm but this time as the first player in

all the games. Again the parallelization works well at

checkers, connect4, othello and pentago but does not

work for blocker, breakthrough, pawn whopping and

skirmish. This table show that the parallelization works

in a similar way whether the parallel algorithm is the

first player or the second player.

Table 4 Results for Sum10

Sum10 with parallel as first player
games 1 2 4 8 16 #experiments
blocker 36 35 40 38 36 /167-172
breakthrough 55 56 56 61 61 /98-100
checkers 50 67 80 89 92 /87-100
connect4 60 71 75 79 86 /100-158
othello 48 50 67 66 76 /150-151
pawn whopping 55 69 77 75 81 /154-230
pentago 60 53 66 65 78 /150-221
skirmish 77 79 79 78 76 /150-150

Table 5 gives the results for the Raw algorithm. The

parallelization is worse for all the games than with the

Sum algorithm. For some games such as connect4 Raw

does not improve on a single subplayer. Even at break-

through were refutations are difficult to find for UCT,

the Raw algorithm is worse than the Sum algorithm.

Table 5 Results for Raw as second player

Raw, with parallel as second player
games 1 2 4 8 16 #experiments
blocker 61 62 60 61 63 /109-110
breakthrough 51 41 52 57 58 /97-99
checkers 50 59 64 73 84 /94-99
connect4 44 41 42 40 44 /91-100
othello 47 53 62 66 79 /96-100
pawn whopping 44 45 43 46 35 /94-100
pentago 45 37 42 50 59 /92-100
skirmish 75 75 74 75 72 /97-100

We performed similar experiments with the sequen-

tial algorithm. In table 6 the sequential algorithm plays

against the same sequential algorithm with twice more

time, four times more times, ... until 16 times more

time.

Comparing table 6 with table 4 we can observe the

influence of having a single sequential UCT tree ver-

sus having parallel separate trees in the subplayers. We

can see that for breakthrough having more time for

the sequential version of UCT improves the results a

lot while the parallelization does not improve as much.



A Parallel General Game Player 5

Concerning blocker, even with the sequential algorithm

there is no improvement with additional time. Results

at skirmish are slightly improved with the sequential

algorithm while there is no improvement with the par-

allel algorithm. Similarly, for pawn whopping the paral-

lelization does not work when the sequential algorithm

benefits from additional time.

Concerning checkers, the Sum algorithm works al-

most as well as the sequential algorithm. On the other

games (connect4, othello and pentago) the results are

worse than the sequential algorithm but are still quite

beneficial.

Table 6 Results for the sequential algorithm

Sequential game with asymetrical time as a second player
game t 2t 4t 8t 16t
blocker 51 68 71 55 54 /80-96
breakthrough 58 72 81 88 95 /63-85
checkers 46 79 94 93 100 /58-81
connect4 43 56 65 80 89 /74-89
othello 50 70 84 91 93 /72-82
pawn whopping 39 66 74 74 79 /79-90
pentago 35 62 80 93 91 /83-99
skirmish 71 82 86 83 86 /79-90

6 Conclusion

We have presented four simple parallel algorithms for

MCTS: Best, Sum, Sum10 and Raw. These algorithms

wer compared for various games of the GGP competi-

tions. They were also compared to the sequential algo-

rithm that uses as much time as the sum of the times

of all the subplayers. Results are very good for check-

ers that parallelize well. They are quite good for con-

nect4, othello and pentago yelding substantial improve-

ments even if the behaviour is not as good as giving

more time to the sequential algorithm. Parallelization

does not help for breakthrough, blocker, skirmish and

pawn whopping. Overall parallelization is worthy since

it improves much the results in half of the games we

have tested. The best algorithms are Sum and Sum10

and their results are very close.

References

1. Björnsson, Y., Finnsson, H.: Cadiaplayer: A simulation-
based general game player. IEEE Transactions on Com-
putational Intelligence and AI in Games 1(1), 4–15
(2009)

2. Cazenave, T., Jouandeau, N.: On the parallelization of
UCT. In: Computer Games Workshop 2007, pp. 93–101.
Amsterdam, The Netherlands (2007)

3. Cazenave, T., Jouandeau, N.: A parallel monte-carlo
tree search algorithm. In: Computers and Games, Lec-
ture Notes in Computer Science, vol. 5131, pp. 72–80.
Springer (2008)

4. Cazenave, T., Saffidine, A.: Utilisation de la recherche
arborescente monte-carlo au hex. Revue d’Intelligence
Artificielle 23(2-3), 183–202 (2009)

5. Chaslot, G., Winands, M.H.M., van den Herik, H.J.: Par-
allel monte-carlo tree search. In: Computers and Games,
Lecture Notes in Computer Science, vol. 5131, pp. 60–71.
Springer (2008)

6. Clune, J.: Heuristic evaluation functions for general game
playing. In: AAAI, pp. 1134–1139 (2007)

7. Coulom, R.: Efficient selectivity and back-up operators in
monte-carlo tree search. In: Computers and Games 2006,
Volume 4630 of LNCS, pp. 72–83. Springer, Torino, Italy
(2006)

8. Enzenberger, M., 0003, M.M.: A lock-free multithreaded
monte-carlo tree search algorithm. In: ACG, Lec-
ture Notes in Computer Science, vol. 6048, pp. 14–20.
Springer (2009)

9. Finnsson, H., Björnsson, Y.: Simulation-based approach
to general game playing. In: AAAI, pp. 259–264 (2008)

10. Gelly, S., Hoock, J.B., Rimmel, A., Teytaud, O.,
Kalemkarian, Y.: The parallelization of monte-carlo plan-
ning - parallelization of mc-planning. In: ICINCO-ICSO,
pp. 244–249 (2008)

11. Gelly, S., Silver, D.: Achieving master level play in 9 x 9
computer go. In: AAAI, pp. 1537–1540 (2008)

12. Kato, H., Takeuchi, I.: Parallel monte-carlo tree search
with simulation servers. In: 13th Game Programming
Workshop (GPW-08) (2008). URL http://www.gggo.jp/

publications/gpw08-private.pdf
13. Kocsis, L., Szepesvàri, C.: Bandit based monte-carlo

planning. In: ECML, Lecture Notes in Computer Sci-
ence, vol. 4212, pp. 282–293. Springer (2006)

14. Love, N., Hinrichs, T., Genesereth, M.: General game
playing: Game description language specification. Tech.
rep., Stanford University (2006)

15. Pell, B.: A strategic metagame player for general chess-
like games. In: AAAI, pp. 1378–1385 (1994)

16. Pitrat, J.: Realization of a general game-playing program.
In: IFIP Congress (2), pp. 1570–1574 (1968)

17. Schiffel, S., Thielscher, M.: Fluxplayer: A successful gen-
eral game player. In: AAAI, pp. 1191–1196 (2007)

Jean Méhat is 51 years old. He
completed his PhD on the control
and programming of a massively par-
allel computer in 1989. He is asso-
ciate professor at the university of
Paris 8 and currently doing his re-
seach in the domain of General Game
Playing.

Tristan Cazenave is professor of
computer science at LAMSADE,
Universite Paris-Dauphine. He holds
a PhD from Universite Paris 6. His
interests are in search algorithms and
computer games. He has written pro-
grams for multiple board games and
has authored more than one hundred
scientific papers on artificial intelli-
gence in games.


