
Search for transitive connections

Tristan Cazenave, Bernard Helmstetter

Labo IA, Université Paris 8
2 rue de la Liberté, 93526, St-Denis, France
fax: 33 1 49 40 64 10
e-mail:

�
cazenave,bh � @ai.univ-paris8.fr

1 Introduction

In this paper, we explore a way to reduce the complexity of a search
on a double connection by searching both connections separately as
much as possible. In the best case the two connections are indepen-
dent, and a complex search that would cost �������	��

����
 can be reduced
to two searches of complexity ����� �
 , the variable � being the average
number of possible moves in a connection game, and � the depth of
the search for solving one of the connection game. In practice, the
two connections are seldom perfectly independent. Even when they
are not independent, it is useful to search the two connections sepa-
rately as it helps finding sets of relevant moves.

Programs have weaknesses at finding non transitivities as can be seen
in tournament games [1]. Some strong Go programs handle non tran-
sitivity using hand-coded patterns. For example, Many Faces of Go
uses a few hundred such patterns. Since there are too many cases of
non transitivity, this approach is limited.

The second section describes the problem of the non transitivity of
connections. The third section outlines the adaptation of Generalized
Threats Search to the connection game. The fourth section details the
evaluation function and the selection of moves used in our transitive

1

connection search algorithm. The fifth section gives experimental re-
sults. Eventually, the last section concludes and outlines future work.

2 Non-transitivity of connections

In this section we define the problem of the non transitivity of con-
nections. Even the best computer Go programs have problems deal-
ing with non transitivity. This problem is a special case of the more
general problem of the dependence between two or more different
sub-games.

Let � , � , � be three stones of the same color, ����� the connection
between � and � and � ��� the connection between � and � . We
call max player the player who wants to connect and min player the
player who wants to disconnect. In the starting position, the connec-
tions �	�
� and �	��� must be won; otherwise the transitive connection
would not be won a fortiori.

The easiest case is when the connections � �
� and � ��� are inde-
pendent. Then the transitive connection is won. Figure 1 shows an
example.

Fig. 1. Two independent connections

The interesting cases are when the connections are not independent,
that is to say when there is at least a move by min player which threat-
ens to break both connections. Then the transitive connection may or
may not be won. Figure 2 shows an example where the transitive con-
nection is lost if min player moves first: the move that disconnects is
white � . Now figure 3 shows an example of two connections that are
not independent but which make a transitive connection nonetheless.
The connections � ��� and � ��� are not independent because a white

2

move at � threatens to break both; but then a black move at � would
repair both connections.

Fig. 2. Non transitive connections

Fig. 3. transitive connections

3 Generalized threats connection search

In order to find transitive connections, we have to solve the problem
of finding direct and single connections. This section is about the sin-
gle connection game. We have used Generalized Threats Search [2]
to solve the single connection game. The threat used for these experi-
ments is the (8, 5, 2, 0) general threat. Moves in a generalized threats
are associated to an order. The order of a position is the number of
moves in a row by the same player that are required to win the game.
Moves of order � are moves associated to positions of order less or
equal to � . In the (8, 5, 2, 0) threat, eight is the number of order one
moves allowed in the generalized threat, five the number of order two
moves and two the number of order three moves. Only threats that
have less moves for each order are verified at min nodes.

It is not mandatory to use Generalized Threat Search; however, what-
ever algorithm we use to find direct connections, it has to send back
what we call a trace. Roughly speaking; the trace is a set of intersec-
tions that may change the result.

3

Precisely, the trace is a set of empty intersections such that if none is
modified, the result of the search associated to the trace is not modi-
fied. In order to compute the trace of a connection, we have applied
the following principle: for each test in the search, add to the trace the
intersections that enable the test to be true. In most cases, we have to
choose some intersections among many to be included in the trace.
For example if the test is that the string has at least two liberties, any
pair of liberties could be added. In practice, there are different pos-
sible traces that can be associated to a given search. In figure 4 we
can see the difference between the trace found by our program for a
connection, and a minimal trace obtained by hand.

(a) (b)

Fig. 4. Two possible traces for a connection

The evaluation function for the single connection returns:

� Lost if one of the two strings to connect is captured in a ladder,
� Lost if no max moves have been found, usually because the path

between the two strings is too long and the common adjacent strings
have too many liberties,

� Won if the two stones to connect are in the same string,
� Unknown otherwise.

We use specialized functions to find the max moves. The order of a
threat is the number of moves in a row the max player has to play in
order to win the game [2]. The functions called for finding the max
moves depend on the order of the threat. We have different specialized
and heuristic functions for finding possible moves that connect in one
move, in two moves or in three moves. When there is a possibility for
one of the two strings to be captured, the only max moves considered
are the moves that save the threatened string. Concerning the min

4

moves, the Generalized Threat Search algorithm uses the trace of the
verified threat to find the relevant min moves.

4 Search for transitivity

We use an Alpha-Beta algorithm with transposition tables, two killer
moves and the history heuristic. The game specific functions of our
Alpha-Beta are: the evaluation function, and two functions minMoves
and maxMoves, which return sets of relevant moves for the players
min or max.

4.1 Evaluation function

The evaluation function searches the connections � �
� and � ��� in
isolation using the Generalized Threats Search algorithm, and tries to
deduce from this the status of the transitive connection. The situation
is different depending on who is to play.

We consider first the case where max player is to play. The connec-
tions �	��� and �	��� are first searched with max player playing first,
then with min player playing first. Besides the results, the searches
also return the traces of all intersections on which the results depend.
There are two cases where we can be sure of the status of the transi-
tive connection:

� If � ��� or � ��� is lost, assuming max player plays first, then the
transitive connection is lost.

� If one of the connections, say � �
� , is won (assuming min player
plays first), if the other, � ��� , is winnable (i.e. it can be won if
max player plays first), and if the traces on which those two results
depend are disjoint, then the transitive connection is winnable. In-
deed, in order to win it suffices for max player to play the winning
move in connection � ��� .

We now consider the case where the player min (i.e. the player to

5

disconnect) plays first. There are again two cases where we can be
sure of the status of the transitive connection:

� If �	�
� or �	��� is lost, assuming min player plays first, then the
transitive connection is lost.

� If both connections � �
� and � ��� are won, assuming min player
plays first, and if the traces on which those two results depend are
disjoint, then the transitive connection is won.

4.2 Choose of min moves

Fig. 5. Min moves

In case the evaluation function can’t decide the status of the tran-
sitive connection we have to continue the main Alpha-Beta search
which deals with the transitive connection as a whole. Hopefully the
searches that have been made on the connections ���
� and �	��� can
give valuable information to find a relevant set of moves.

We take as set of min moves (moves for min player) the moves that
threaten to break either connection � ��� or � ��� . This is the union of
the traces of the two searches that have shown that the connections
� ��� and � ��� are won when min player plays first. An example of a
set of relevant min moves found by our program is given in figure 5.

It is possible to use the intersection of the traces rather than the union.
This is less safe as can be seen for instance in problem 13 of our test
suite (figure 10), where the only move that disconnects may not be in
the intersection. In practice, using the intersection of the traces solves
more problems and takes less time as can be seen in the experimental
results section.

In fact, even taking the union of the traces as the set of min moves
is not perfectly safe. We have found that it is safe for the problems

6

of our test suite, but we have built a transitivity problem (figure 6)
where it misses a move. The move white � does not threaten either
connection � ��� or � ��� , but it does break the transitive connection
because black cannot defend against both white � and white

�
. One

can note that white
�

would have directly worked too, so even in this
problem we would find at least one disconnecting move.

Fig. 6. Pathological position

4.3 Choose of max moves

In order to find a set of max moves, it is not suitable to use traces as
for min moves; instead it is better to use the notion of order. The order
of a connection is the number of moves in a row that are needed to
join the two strings in the same string, if the opponent does not play
[2]. Figure 7 (a) shows max moves to connect of order 2. There is
a path of length 2 composed of empty intersections between strings
� and � . Connecting may also involve capturing opponent strings
adjacent to both strings � and � . Figure 7 (b) gives an example of
the order 2 connection moves related to capturing a common adjacent
string. Figure 7 (c) details the moves of order 3 to connect strings �
and � .

Our algorithm to find order � moves between the strings � and � is
shown in figure 8. In case this algorithm is applied to a connection of
order less than � , it will not return all the moves of order � (which
would be all the legal moves!), only those close to the connection,
which is usually an advantage.

The set of max moves depends on the order at which we want to

7

(a) (b) (c)

Fig. 7. Moves of order 2 (a and b) and 3 (c)

��� �
For each move � at a liberty of string � , or at a liberty of an opponent
string adjacent to � that has at most � liberties and which is either
adjacent to � , or that has a common liberty with � :

Play(�)
If the connection is of order �	��
 :��� ��
�� ���
�� moves of order �	��
��
Undo(�)

return
�

Fig. 8. Algorithm to find order � moves between strings � and �

search the transitive connection. We have chosen to take as set of
max moves the union of the sets of moves of order up to ordermax
in each connection � ��� and � ��� . The variable ordermax equals at
most the order of the maximum threat for the connection search plus
one.

An example of a set of max moves found by our program is given
in figure 9. In this case it is obviously far from perfect, because our
program selects moves of order 3 although the two connections are
of order 2.

Fig. 9. Set of moves when Black is to play

8

5 Experimental results

In our experiments, the maximum threat used for the Generalized
Threats connection search has been set to (8, 5, 2, 0). We only choose
moves of order less or equal to three for the connections � ��� and
� ��� in order to find the max moves in the transitive search. The
maximum number of moves in each of the two Generalized Threats
searches is limited to 100,000 unless stated otherwise.

We have built a test suite of 22 problems depicted in figure 10. The
disconnecting moves, if any, are marked. Only problem 17 involves
a ko. Two thirds of the problems are taken from Golois games, and
one third are classical problems. The problems from Golois are taken
from games where it failed to analyze transitivity correctly. This test
suite is available for download on the first author’s web page.

In order to compare transitive search with another algorithm, we have
tested an optimized Alpha-Beta algorithm that uses Golois moves
generators for connections and disconnections. The evaluation func-
tion of this Alpha-Beta returns Lost as soon as one of the two connec-
tions is Lost. A connection is Lost if the length of any path between
the two strings is strictly greater than three. A connection is Won if
the two stones to connect are in the same string.

In table 1, for each problem, the number of moves played in the search
and the elapsed time used for the search are given. The experiments
were run on a 3.0 GHz Pentium with 2 GB of RAM. The maximum
number of nodes is set to 10,000,000 in the transitive search and in
the Alpha-Beta. The left part of the table details the performance of
the Alpha-Beta algorithm, and the right part the performance of the
Transitive search algorithm.

Concerning the results of the Transitive search algorithm with union
of the traces, problem 3 is not solved because in one of the forced
lines a black cutting string gains 4 liberties and is therefore consid-
ered stable. In problem 17, our algorithm finds the good move but
fails to see that it depends on a ko. In problem 20, the program fails

9

Table 1
Nodes and time for the transitivity problems.

Alpha-Beta Transitive Search

(with union of the traces)

Problem ��������� 	�
 ����
������ ����������� ��������� 	�
 ����
������ �����������

1 61,188 190 yes 115,065 180 yes

2 348,950 1,390 yes 56,130 90 yes

3 85,582 330 no 397,880 560 no

4 147 10 yes 1,857 0 yes

5 2,687,471 6,850 yes 384,933 620 yes

6 8,655 40 yes 11,670 20 yes

7 234,806 1,910 yes 86,656 160 yes

8 43,537 180 yes 5,920 10 yes

9 72,800 320 yes 6,231 0 yes

10 101 0 yes 6,503 10 yes

11 8,307 100 yes 31,742 50 yes

12 88,152 400 yes 93,959 160 yes

13 10,000,108 39,510 no 1,906,627 3,330 no

14 21,266 40 yes 27,442 40 yes

15 198,569 610 yes 372,134 490 yes

16 10,000,256 33,300 no 10,437,826 14,320 no

17 10,000,183 29,530 no 783,545 1160 no

18 3605 10 yes 269,258 430 yes

19 3,828,385 16,360 yes 109,155 220 yes

20 22,871 50 yes 10,186,430 14,900 no

21 988 0 yes 6,436 260 yes

22 13,703 20 yes 18,846 40 yes

Total 18 17

because it does not verify that connected strings are not captured in
a ladder, and therefore the trace does not contain the capturing move
for the attacker. In problem 16, it fails because it is short of nodes
in the main search, and in problem 13 it fails because it is short of

10

nodes in one of the connection searches. The problem 13 involves
two opponent strings that cannot be captured, this is why our algo-
rithm fails to see the disconnection: for each move in the first capture
search, it searches the other capture. In order to solve it faster, we
should decompose it into two independent capture problems. This is
not currently done by our connection algorithm.

Table 2 details the runs of the Transitive search algorithm using the
intersection of the traces for min moves instead of the union as in
table 1. The algorithm using the intersection is faster, especially for
problem 16 that is solved relatively quickly compared to Alpha-Beta
and Transitive Search that do not solve it because of a lack of nodes.
In problems 5 and 8, connections are transitive. These two problems
are representative of the usual problems that a transitive search algo-
rithm has to solve (i.e. connections are usually transitive). If we com-
pare the transitive search algorithm using intersection of the traces
with the Alpha-Beta algorithm, we see that for these problems, the
transitive search algorithm is much faster.

The transitive search can be tuned with two parameters: the maximum
transitive search time and the maximum number of nodes allowed to
each connection search. Connections searches are also named sec-
ondary searches. The Transitive search algorithm with intersection
of the traces is used for the experiments. In order to choose the best
algorithm for a given maximum response time, we have tested Tran-
sitive search for different secondary nodes and different maximum
response time. Table 3 gives the number of problems solved depend-
ing on the two parameters. When choosing the appropriate number of
secondary nodes for a given maximum time, we see that Transitive
search is better than Alpha-Beta for response time inferior or equal to
one second.

Some problems that human find relatively easy such as the double
keima on the second line in problem 16 are difficult for our pro-
gram, while some problems that humans find relatively difficult such
as problem 21 are easy for our program.

11

Table 2
Transitive search with intersection of the traces.

Problem ������� � 	�
 ���
������ � ��� � � �
1 104,025 150 yes

2 2,558 10 yes

3 359,609 490 no

4 1,502 0 yes

5 5,962 10 yes

6 10,463 10 yes

7 23,268 50 yes

8 1,230 0 yes

9 6,231 10 yes

10 5,471 0 yes

11 14,262 20 yes

12 93,959 130 yes

13 1,913,120 2,720 no

14 19,165 20 yes

15 194,050 250 yes

16 1,214,948 1,660 yes

17 382,636 490 no

18 67,642 90 yes

19 99,858 150 yes

20 145,989 250 no

21 4,298 10 yes

22 7,723 10 yes

Total 18

6 Conclusion

We have described an algorithm to detect non transitive connections
in the game of Go. An optimized Alpha-Beta search is used on top
of two Generalized Threats searches. Our program is able to solve
problems such as the double monkey jump or the double keima on
the second line. It deals with full board situations such as the ones

12

Table 3
Number of problems solved depending on max. time, algorithm and max. secondary nodes
for Transitive Search

Transitive Search Alpha-Beta
	�
 ����
������ 1000 5000 10000 30000 100000

10 7 6 9 9 8 4

30 7 10 10 11 11 5

100 7 13 14 13 13 9

300 7 13 15 15 17 11

1000 7 13 15 15 17 15

encountered in real games.

The program can be used with the intersection of the traces for choos-
ing moves at min nodes. It then solves transitive problems much faster
than Alpha-Beta and Transitive Search with the union of the traces,
as can be seen for problems 2, 5, 8 and 16.

It can also be used in the safe mode, taking the union of the traces:
even if the results are not theoretically perfect as can be seen on a
pathological position, they are pretty reliable given the results on our
test suite.

The program could be used in a Go program in fast mode, and with
the intersection of the traces, to detect relatively simple non transi-
tivities. The good point of the transitive search algorithm is that it
can solve problems that cannot be solved by some of the strongest
Go programs, the drawback is that it is much slower than a pattern
based approach that only solves the common cases. The utility of this
approach is dependent on the architecture of the program. Since the
algorithm is still slow, it would be difficult to integrate it in a Go
program based on global search, because the search for transitivities
would have to be done at each call of the global evaluation, unless
perhaps the results are cached. However, it could be used in programs
that are not based on global search, and that spend more time on the
evaluation of the position.

There is still room for improvements in solving more quickly prob-

13

1 2 3 4 5 6

7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22

Fig. 10. Problems of the test suite

lems such as problem 13. It involves improving the connection search
algorithm. Future work also includes extending it toward a more gen-
eral search program for combinations of sub-games.

References

[1] N. Wedd, Goemate wins go tournament, ICGA Journal 23 (3) (2000) 175–178.

[2] T. Cazenave, A Generalized Threats Search Algorithm, in: Computers and Games 2002,
Lecture Notes in Computer Science, Springer, Edmonton, Alberta, Canada, 2002, pp.
75–87.

14

