Search for transitive connections

Tristan Cazenave, Bernard Helmstetter
Labo IA, Université Paris 8
2 rue de la Liberté, 93526, St-Denis, France
e-mail: {cazenave,bh}@ai.univ-paris8.fr

Abstract

We present an algorithm that detects non tran-
sitive connections in the game of Go. An opti-
mized Alpha-Beta search is used on top of two
Generalized Threats searches, one for each of
the two connections. It deals with full board
situations such as the ones encountered in real
games. Our program is able to solve problems
such as the double monkey jump or the double
keima on the second line. Even if the results
are not theoretically perfect, they are pretty re-
liable given the results on a test suite.

1 Introduction

In this paper, we explore a way to reduce the complex-
ity of a search on a double connection by searching both
connections separately as much as possible. In the best
case the two connections are independent, and a com-
plex search that would cost O((2p)2?) can be reduced to
two searches of complexity O(p?), the variable p being
the average number of possible moves in a connection
game, and d the depth of the search for solving one of
the connection game. In practice, the two connections
are seldom perfectly independent. Even when they are
not independent, it is useful to search the two connec-
tions separately as it helps finding sets of relevant moves.

Programs are currently bad at finding complex non
transitivities as can be seen in tournament games [Wedd,
2000]. Some programs handle non transitivity using
hand-coded patterns, but there are too many cases of non
transitivity for this approach to be efficient.

The second section describes the problem of the non
transitivity of connections. The third section outlines the
adaptation of Generalized Threats Search to the connec-
tion game. The fourth section details the evaluation func-
tion and the selection of moves used in our transitive con-
nection search algorithm. The fifth section gives experi-
mental results. Eventually, the last section concludes and
outlines future work.

2 Non-transitivity of connections

In this section we define the problem of the non transitiv-
ity of connections. Even the best computer Go programs

have problems dealing with non transitivity. This prob-
lem is a special case of the more general problem of the
dependence between two or more different sub-goals.

Let s1, s9, s3 be three stones of the same color, C,
the connection between s; and s3, C the connection be-
tween s, and s3, and C the transitive connection between
s1 and s2. We call max player the player who wants to
connect and min player the player who wants to discon-
nect. In the starting position, the connections C; and Cy
must be won; otherwise connection C' would not be won
a fortiori.

The easiest case is when the connections Cy and C-
are independent. Then connection C' is won. Figure 1
shows an example.

7
T

Figure 1: Two independent connections

The interesting cases are when the connections are not
independent, that is to say when there is at least a move
by min player which threatens to break both connections.
Then connection C' may or may not be won. Figure
2 shows an example where connection C is lost if min
player moves first: the move that disconnects is white A.
Now figure 3 shows an example of two connections that
are not independent but which make a transitive connec-
tion nonetheless. The connections C; and Cs are not in-
dependent because a white move at A threatens to break
both; but then a black move at B would repair both con-
nections.

PN

E®

Figure 2: Non transitive connections

B
A
|

Figure 3: transitive connections

3 Generalized threats connection search

In order to find transitive connections, we have to solve
the problem of finding direct and single connections.
This section is about the single connection game. We
have used Generalized Threats Search [Cazenave, 2002]
to solve the single connection game. The threat used for
these experiments is the (8, 5, 2, 0) general threat. It is
not mandatory to use Generalized Threat Search; how-
ever, whatever algorithm we use to find direct connec-
tions, it has to send back a trace that contains all the in-
tersections that may change the result.
The evaluation function returns:

e Lost if one of the two strings to connect is captured
in a ladder,

e Won if the two stones to connect are in the same
string

e Unknown otherwise

We use specialized functions to find the max moves.
The order of a threat is the number of moves in a row
the max player has to play in order to win the game
[Cazenave, 2002]. The functions called for finding the
max moves depend on the order of the threat. We have
different specialized and heuristic functions for find-
ing possible moves that connect in one move, in two
moves or in three moves. When there is a possibility
for one of the two strings to be captured, the only max
moves considered are the moves that save the threat-
ened string. Concerning the min moves, the General-
ized Threat Search algorithm uses the trace of the veri-
fied threat to find the relevant min moves.

4 Search for transitivity

We use an Alpha-Beta algorithm with transposition ta-
bles, two killer moves and the history heuristic. The
game specific functions of our Alpha-Beta are: the eval-
uation function, and two functions minMoves and max-
Moves, which return sets of relevant moves for the play-
ers min or max.

4.1 Evaluation function

The evaluation function searches the connections C; and
C5 in isolation, and tries to deduce from this the status
of the transitive connection. The situation is different
depending on who is to play.

We consider first the case where max player is to play.
The connections Cy and Cs are first searched with max
player playing first, then with min player playing first.
Besides the results, the searches also return the traces
of all intersections on which the results depend. There
are two cases where we can be sure of the status of the
transitive connection:

e If Cy or C5 is lost, assuming max player plays first,
then the transitive connection is lost.

o If one of the connections, say C1, is won (assuming
min player plays first), if the other, C5, is winnable
(i.e. it can be won if max player plays first), and
if the traces on which those two results depend are
disjoint, then the transitive connection is winnable.
Indeed, in order to win it suffices for max player
max to play the winning move in connection Cs.

We now consider the case where the player min (i.e.
the player to disconnect) plays first. There are again two
cases where we can be sure of the status of the transitive
connection:

e If Cy or Cy is lost, assuming min player plays first,
then the transitive connection is lost.

o If both connections C; and C5 are won, assuming
min player plays first, and if the traces on which
those two results depend are disjoint, then the tran-
sitive connection is won.

4.2 Choose of min moves

Figure 4: Min moves

In case the evaluation function can’t decide the sta-
tus of the transitive connection we have to continue the
main Alpha-Beta search which deals with the transitive
connection as a whole. Hopefully the searches that have
been made on the connections C; and C, can give valu-
able information to find a relevant set of moves.

We take as set of min moves (moves for min player)
the moves that threaten to break either connection C; or
C5y. This is the union of the traces of the two searches
that have shown that the connections C and C- are won
when min player plays first. An example of a set of rele-
vant min moves found by our program is given in figure
4.

We may wonder why we could not use the intersection
of the traces rather than the union. However this not safe
at all, as can be seen for instance in problem 13 of our
test suite (figure 7).

Taking the union of the traces, as we do, is in fact not
perfectly safe either. It has worked well in the problems
of our test suitem but we know one artificially built tran-
sitivity problem (figure 5) where it misses a move. The
move white A does not threaten either connection C; or
C-, but it does break the transitive connection because
black cannot defend against both white B and white C.
One can note that white C' would have directly worked
too, so even in this problem we would find at least one
disconnecting move.

Figure 5: Pathological position

4.3 Choose of max moves

The set of max moves depends on the order at which we
want to search the transitive connection. We have chosen
to take as set of max moves the union of the sets of moves
of order up to ordermax in each connection C; and Cs.
The variable ordermax equals at most the order of the
maximum threat for the connection search plus one. An
example of a set of max moves found by our program
is given in figure 6. In this case it is obviously far from
perfect, because our program selects moves of order 3
although the two connections are of order 2. Using it-
erative widening on the order of the connections would
make it more selective.

Figure 6: Max moves

5 Experimental results

In our experiments, the maximum threat used for the
Generalized Threats connection search has been set to
(8,5, 2, 0). We only choose maoves of order less or equal
to three for the connections C; and Cs in order to find
the max moves in the transitive search. The maximum
number of moves in each of the two Generalized Threats
searches is limited to 4,000.

We have built a test suite of 21 problems. Half of the
problems are taken from Golois games, and the other half
are classical problems. All the problems except problems
3 and 17 are solved by our program. Problem 3 is not
solved because in one of the forced lines a black cuting
string gains 4 liberties and is therefore considered stable.
In problem 17, our algorithm finds the good move but
fails to see that it depends on a ko.

In table 1, for each problem, the number of moves
played in the search and the elapsed time used for the
search are given. The experiments were runona 1.7 GHz
Pentium with 100 Mb of RAM. Representative examples
of our test suite can be found in figure 7.

Some problems that human find relatively easy such
as the double keima on the second line in problem 16

Table 1: Nodes and time for the transitivity problems.

Problem moves time(ms)
1 20833 140
2 39497 280
3 83256 480
4 1425 10
5 139018 850
6 9070 70
7 76075 630
8 5179 40
9 4042 30
10 2933 20
11 26408 180
12 19080 130
13 283492 2110
14 23841 100
15 120248 560
16 6523413 33190
17 121936 620
18 148069 670
19 54049 310
20 1460301 10550
21 7763 70

are difficult for our program, while some problems that
humans find relatively difficult such as problem 21 are
easy for our program.

6 Conclusion

We have described an algorithm to detect non transitive
connections in the game of Go. An optimized Alpha-
Beta search is used on top of two Generalized Threats
searches. Our program is able to solve problems such
as the double monkey jump or the double keima on the
second line. It deals with full board situations such as the
ones encountered in real games. Even if the results are
not theoretically perfect as can be seen on a pathological
position, they are pretty reliable given the results on our
test suite.

The program is currently too slow for problems such
as the double keima to be used in a Go program. How-
ever, a simplified and more limited version could be use-
ful to detect more simple cases. Future work includes
making it faster by using optimizations such as iterative
widening in the overall search [Cazenave, 2001], and
extending it toward a more general search program for
combinations of sub-goals.

References

[Cazenave, 2001] T. Cazenave. Iterative Widening. In
Proceedings of 1JCAI-01, Vol. 1, pages 523-528,
Seattle, 2001.

[Cazenave, 2002] T. Cazenave. A Generalized Threats
Search Algorithm. In Computers and Games 2002,
Lecture Notes in Computer Science, Edmonton, Al-
berta, Canada, 2002. Springer.

Figure 7: Problems of the test suite

[Wedd, 2000] N. Wedd. Goemate wins go tournament.
ICGA Journal, 23(3):175-178, September 2000.

