
Types for Path Correctness of XML Queries

Dario Colazzo Giorgio Ghelli Paolo Manghi Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Via Buonarroti 2, Pisa, Italy

{colazzo,ghelli,manghi,sartiani}@di.unipi.it

Abstract

If a subexpression in a query will never contribute data to the query
answer, this should be regarded as an error. This principle has been
recently accepted into mainstream XML query languages, but was
still waiting for a complete treatment. We provide here a precise
definition for this class of errors, and define a type system that is
sound and complete, in its search for such errors, for a core lan-
guage, under mild restrictions on the use of recursion in type defi-
nitions. In the process, we describe a dichotomy amongexistential
anduniversaltype systems, which is useful to understand some un-
usual features of our type system.

Categories and Subject Descriptors:H.2.3 [Database Manage-
ment]: Languages-Query Languages

General Terms: Languages, Theory, Algorithms, Verification

Keywords: Type Correctness, XML Queries, XML Types.

1 Introduction

A type system for a query language usually fulfills two different
aims: computing a type for the query result (result analysis), and
flagging parts of the query that do not match the structure of the
data (correctness analysis), such as the use of a field name that is
not present in the database schema. Result analysis and correct-
ness analysis are inseparable in traditional languages, where er-
rors prevent result generation. Query languages for semistructured
data (SSD) and XML are different, since wrong paths just gener-
ate empty pieces of result. For these languages, the type systems
proposed up to now only analyze the result type, disregarding, to a
large extent, the navigation-correctness problem [6, 16, 3].

This situation is now beginning to evolve. In our paper [10], we
presented a first notion of error, which was a stepping stone toward
the one we propose here, based on the intuition that a query is cor-
rect if it maymatch some data. Along a similar line, the most recent
versions of XQuery (starting from the August 2003 Working Draft)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’04, September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

state that it is a static error for any expression other than the empty-
sequence expression to have the empty type. Since a static error-
checking system is only a tool toward an error-prevention aim, we
start by defining which error we are trying to prevent (Section 3).
The notion of correctness we define isexistential, which means that
a piece of code is correct if there exists at least one valid instance of
its free variables such that an undesirable condition (result empti-
ness, in our case) is avoided. This is in sharp contrast with theuni-
versal (or conservative) notions of correctness found in program-
ming languages, where a piece of code is correct if an undesired
event is avoided undereveryvalid instantiation of its free variables.
This quantification switch has deep consequences on the nature of
the theory that one develops, as we will discuss in the paper.

Once we have defined the error, we define the type rules aimed to
prevent it. Our type system is based on a couple of technical tools,
the collections oflocationsof wrong subqueries (Section 4.2) and
type-splitting(Section 5). We prove that, at the price of a mild re-
striction on the use of recursion, our type system infers types that
provide both an upper and a lower bound for the actual values re-
turned by a query, and captures all and only the navigation-errors in
the query.

The completeness result is of course lost if the language is gener-
alized to a realistic one, but is still interesting, because soundness
results alone do not discriminate an interesting type-system from
one that is completely trivial.

Our type system, although designed to deal with anexistentialno-
tion of correctness, can be used to checkuniversalnotions of cor-
rectness at the same time. We base our analysis on a tiny language,
µXQ, based on the UnQL, Lorel, StruQL, XML-QL, Quilt, XQuery
(and others) tradition [7, 1, 13, 6].

2 µXQ

µXQ is a minimal query language manipulating forests of ordered
trees. It has been designed to be the minimal core of XQuery-like
languages, similarly toλ-calculus for functional languages, hence
we choose not to include features such as thewhereclause, node
identity, document order, recursive functions. In Section 7 we dis-
cuss how to extend this work to those features.

µXQ term and query grammar is shown below. Theref andt de-
note respectively forests and trees, andl ranges over a set of labels
L. Furthermore,b denotes a leaf value of a base typeB, forest con-
catenation ‘,’ is associative, and(), f = f ,() = f .

A typical µXQ query consists of abinding section (let/for),
where variables are bound, and areturn clause that builds the
results. Variables can be eitherfor-variablesor let-variables. for-
variables(x,y,z) are bound to treest (items) by afor binder. let-
variables(x,y,z) are bound to forestsf by alet binder. This dis-

tinction simplifies the formal treatment, but is not crucial to our
approach.

Forests f ::= () | t | f , f

Trees t ::= b | l [f]
Queries Q ::= () | b | l [Q] | Q,Q | x | x

| x child :: l | x dos :: l
| for x in Q return Q
| let x ::= Q return Q

In the examples we will also use the XPath-like clausesQ/l and
Q//l , defined as:

Q / l
M= for x in Q return x child :: l

Q // l
M= for x in Q return x dos :: l

The semanticsJQKρ of a queryQ w.r.t. a substitutionρ is defined
in Table 2.1;ρ maps every for-variablex free inQ to a tree, and ev-
ery free let-variablex to a forest.Jlet x ::= Q1 return Q2Kρ eval-
uatesQ2 in ρ extended with the bindingx 7→JQ1Kρ. ∏t∈trees(f) A(t),
wheretrees(f) returns the sequence of trees off , is defined as the
forest A(t1), . . . ,A(tn) if f = t1, . . . , tn, hence is() when f = ().
childr(t) returns the list of all children of a treel [f] (it is unde-
fined overB), dos(f) returns the list of alldescendants-or-selfof
all trees in a forestf . f :: l selects all trees inf whose root is labeled
l .

We will need the operation(Q)|β, which, for any queryQ andloca-
tion β, locates the corresponding subquery. The locationβ is just a
path of 0’s and 1’s, and the function(Q)|β follows β in a walk down
the syntax tree ofQ.

DEFINITION 1 ((Q)|β:). (Q)|β denotes the subterm of the query
Q located by the locationβ, which is a sequence of0’s and1’s:

(Q)|ε
M= Q

(l [Q])|0.β
M= (Q)|β

(Q0,Q1)|i.β
M= (Qi)|β i∈{0,1}

(for x in Q0 return Q1)|i.β
M= (Qi)|β i∈{0,1}

(let x ::= Q0 return Q1)|i.β
M= (Qi)|β i∈{0,1}

(Q)|β
M= ⊥ otherwise

We also defineLocs(Q) = {β | (Q)|β 6=⊥}.

3 Query Correctness

W3C states that a subquery is wrong whenits typeis empty but the
query is different from() [12]. We have first to explain why we
cannot just adopt this as the definition of navigation-incorrectness.1

If a type system is used to identify a class of errors, the error must be
defined first (e.g., a core-dump is an error), then the type rules must
be introduced, and finally the adherence of the type-system findings
with the semantic errors must be evaluated. A notion of error that
depends on the type rules under definition prevents the investiga-
tion of this fundamental adherence question. For this reason, we
start the investigation with the definition of a notion of navigation-
correctness that only depends on the language semantics, namely,
on the semantics of a subquery to be empty, rather than on its type
to be empty.

1Actually, W3C documents do not advertise this statement as a
notion of error, but only as a type rule.

In this section we propose our notion, and show that it is pragmat-
ically acceptable, i.e. it is quite strict (stricter variants would rule
out some common jargon) but it is nottoo strict (every non-correct
query really has a problem). The next sections will show how this
notion is technically acceptable, in the sense that it is possible to
design a type system that matches it very precisely.

Assume the existence of two variables $contacts and
$mobilecontacts (we use here $ to identify variables) with
types:

$contacts : (data[phone[...] | mobile[...]])+
$mobilecontacts : (data[mobile[...]])+

where| is a union type operator (i.e., either-or), and+ indicates an
arbitrary, non-empty, repetition, and consider the following queries:

Q1 : $contacts/fone
Q2 : $contacts/phone,$contacts/mobile
Q3 : $contacts/phone
Q4 : $contacts/fone,$contacts/mobile
Q5 : for $c in $contacts

return ($c/phone,$c/mobile)
Q6 : for $c in ($contacts,$mobilecontacts)

return ($c/phone,$c/mobile)

Q1 is wrong, since it cannot match the data, whileQ2 is correct,
since it perfectly matches the schema, i.e. the query surely matches
data conforming to the given schema. Such queries lead to the sim-
plest definition of correctness: a query is correct if it always finds
some data, for every substitution of its free variables that isvalid,
i.e. coherent with the known structural information.Q3, however,
shows that this view is over-restrictive: the query is completely rea-
sonable, but it may not match any data, in case we only have mo-
biles in the current database instance. This query is typical enough
to convince us that, in this context, we have to opt for an existen-
tial notion of correctness: a query is correct ifthere existsa valid
schema instance that is matched by the query. This is the notion we
studied in [10], under the name ‘weak correctness’.

Q4 is troublesome. It is clearly wrong, since the first path cannot
match the data, however the whole query can return a non-empty
result, hence the whole querydoesmatch some valid schema in-
stance, and is hence ‘weak-correct’.

The point is that the non-matching subquery does not generate, ac-
cording toµXQ semantics, a ‘no-match-found error’ which propa-
gates up from $contacts/fone to the whole result. Moreover, we
wouldnotwant such behavior, otherwise the subqueries of the good
queryQ2 would raise and propagate that error as well, for example
when no $mobile is in the database. In a programming language
with error propagation we can say that something goes wrong iff
the whole program returns ‘error’. Here, instead, we have to talk
about the result of every subquery. We hence arrive at the following
notion of correctness (where non-() means ‘syntactically different
from ()’):

DEFINITION 2. Foreach-Exist (FE) Query Correctness: A query
Q is correct w.r.t. a set of valid substitutionsR if, for eachnon-()
subquery Q′ in Q, there existsρ∈R such that, when Q is evaluated
underρ, Q′ evaluates to a non-empty sequence.

As desired, under this characterization,Q2 and Q3 above
are correct, whileQ1 and Q4 are not. QueryQ6, which
corresponds to a typical XQuery jargon, is correct as well,
if we apply the existential quantification to the bindings
of the variables bound byfor: at least one binding for
$c exists (under a valid substitution for $contacts and
$mobilecontacts) that makes $c/phone productive. Q5 is cor-
rect a fortiori.

Table 2.1.µXQ semantics

JbKρ
M= b JxKρ

M= ρ(x) JxKρ
M= ρ(x)

J()Kρ
M= () JQ1,Q2Kρ

M= JQ1Kρ,JQ2Kρ Jl [Q]Kρ
M= l [JQKρ]

Jx child :: lKρ
M= childr(JxKρ) :: l Jlet x ::= Q1 return Q2Kρ

M= JQ2Kρ,x7→JQ1Kρ

Jx dos :: lKρ
M= dos(JxKρ) :: l Jfor x in Q1 return Q2Kρ

M= ∏t∈trees(JQ1Kρ)JQ2Kρ,x7→t

dos(b) M= () childr(b) M=⊥ b:: l
M= ()

dos(l [f]) M= l [f],dos(f) childr(l [f]) M= f l [f] :: l
M= l [f]

dos(()) M= () () :: l
M= ()

dos(f , f ′) M= dos(f),dos(f ′) (f , f ′) :: l
M= f :: l , f ′ :: l

m[f] :: l
M= () m 6= l

Once one accepts that correctness, in this context, has to be exis-
tentially quantified on substitutions and universally on subqueries,
there is still space to consider a last variation, theexists-foreach
version, where the quantification order is exchanged:

REMARK 1. Exist-Foreach (EF) Query Correctness: A query Q
is correct w.r.t. a set of valid substitutionsR if there existsρ ∈ R
such that,for eachnon-() subquery Q′ in Q, when Q is evaluated
underρ, Q′ evaluates to a non-empty sequence.

While FE-correctness only requires that each subquery makes sense
w.r.t. a different substitution, this stricter version requires the exis-
tence of at least one database that exploits every subquery. This
variation is equivalent to FE-correctness on queriesQ1-Q4, but it
differs on queriesQ5-Q6. In these queries, there exists no single
substitution for $c that makes both $c/phone and $c/mobile pro-
ductive at the same time. SinceQ5 andQ6 are sensible queries, and
correspond to XQuery usage patterns, we conclude that the exist-
foreach version of correctness would be too strict for our purposes.

So, we have shown that our notion rules out some wrong queries
and that its most natural immediate strengthening is too strict.
Hence, we have shown that our notion is ‘maximally strict’.

We have now to show that our notion is arguably not too strict, since
it only flags queries that really have a problem. This is simple: by
definition, if a queryQ is not FE-correct, a non-() subqueryQ′

exists, such that for allρ∈R , Q′ evaluates to an empty sequence.
Hence, we have a non-() piece of code that is equivalent to(), and
warning the programmer makes obviously sense.

To formalize FE-correctness we defineExt(ρ, Q, β), the set of all
valid substitutions that will be used to evaluate the subquery(Q)|β
when Q is evaluated underρ. These substitutions correspond to
ρ extended with the bindings introduced by each traversedlet or
for. Ext(ρ, Q, β) is not just a singleton since each subquery in the
scope of afor x in Q0 is evaluated once for each tree inJQ0Kρ.
SinceJQ0Kρ may be the empty forest,Ext(ρ, Q, β) may be empty
as well.

DEFINITION 3. Substitution Extension

Ext(ρ, Q, ε) M= {ρ}
Ext(ρ, let x ::= Q0 return Q1, 1.β)

M= Ext((ρ,x 7→JQ0Kρ), Q1, β)

Ext(ρ, for x in Q0 return Q1, 1.β)
M=

S
t∈trees(JQ0Kρ) Ext((ρ,x 7→ t), Q1, β)

otherwise:(Q)|i 6=⊥⇒ Ext(ρ, Q, i.β) M= Ext(ρ, (Q)|i , β)

FE-correctness can be formally captured in terms of substitution
extension. A non-() subquery(Q)|β is correct if there existρ ∈ R
andρ′ ∈ Ext(β, Q, ρ) such thatJ(Q)|βKρ′ 6= (). Indeed, if such a
substitution cannot be found,(Q)|β is useless to the whole query,
and is hence incorrect.

We first define the setCriticalLocs(Q) of the locations ofQ where
we will look for pieces of wrong code.

CriticalLocs(Q) M=
{β | ((Q)|β = (x child :: l) ∨ (Q)|β = (x dos :: l))} ∪
{β.0 | (Q)|β = for x in Q0 return Q1}

CriticalLocs(Q) does not coincide withLocs(Q) because, at least,
all locations that reach a subquery that is() must not be tested for
non-emptiness. But we can also observe that alet subquery evalu-
ates to() if and only if thereturn subquery does, hence, once we
have indicated that thereturn subquery has a problem, the same
information about the wholelet subquery is redundant. A similar
consideration holds for aQ0,Q1 subquery: once the subqueriesQ0
andQ1 have been checked, any information about the fact that the
wholeQ0,Q1 evaluates to() is redundant. After a complete analy-
sis, one realizes that only errors located in subqueries from which
the programmer explicitly started achild/dos navigation or afor
iteration should be considered.

We can now formalize query correctness.

DEFINITION 4. Correctness of Q w.r.t.R : Let R be a set of sub-
stitutions for the free variables of a query Q. Q is correct w.r.t.R
iff:

∀β∈CriticalLocs(Q).
∃ρ∈R . ∃ρ′∈Ext(ρ, Q, β). J(Q)|βKρ′ 6= ()

Dually, Q has an error at pathβ∈CriticalLocs(Q) iff:

∀ρ∈R . ∀ρ′∈Ext(ρ, Q, β). J(Q)|βKρ′ = ()

(Observe that Ext(ρ, Q, β) = /0 implies that Q has an error atβ.)

While this notion of (navigation-)correctness is existential, one may
still extendµXQ with other operations that more naturally lead to
a universal notion of correctness, as happens with operations that
modify persistent data. In this context, a piece of code would be
correct if it were navigation-correct for at least one substitution and
update-correct for every substitution.

4 Type System

4.1 Type Environments and Types

We adopt, essentially, XDuce’s type language [14]. Types and type
environments are defined as follows:

Types T ::= () empty forest type
| B base type
| T,T product type
| T | T union type
| l [T] element type
| T∗ repetition type
| X type variable

Environments E ::= ()
| X=T, E

An element type with empty contentl [()] will always be abbrevi-
ated asl []. A type environmentE is a sequence of type definitions
of the formX = T where no type variable is bound to two types;
E(X) denotes the type bound toX by E.

We restrict tol []-guarded type environments, that are environments
where onlyl []-guarded vertical recursion is allowed, as inX = l [X |
()] for example; we forbid equations likeX = X | () andX = X,Y.
The lack of horizontal recursion is counterbalanced by the presence
of the Kleene star operator∗. This restriction is canonical, and
makes the type language as expressive as regular tree languages
[15, 11], hence expressive enough to capture the essence of DTD
and XML Schema [15, 18, 17].

Type semantics is standard:J KE is the minimal function from types
to sets of forests that satisfies the following monotone equations
(the function is well-defined by Knaster-Tarski theorem):

J()KE
M= {()}

JBKE
M= {b}

JT,T ′KE
M= { f , f ′ | f ∈JTKE, f ′∈JT ′KE}

JT | T ′KE
M= JTKE ∪ JT ′KE

Jl [T]KE
M= {l [f] | f ∈JTKE}

JT∗KE
M= {(), f1, . . . , fn | n≥ 0, fi ∈JTKE}

JXKE
M= JE(X)KE

An environmentE is well-formed only if it is l []-guarded and de-
fines type with non-empty semantics, i.e. empty-type definitions
like X = l [X] are not allowed. This condition admits an easy syn-
tactic test (see [9] for details). The non-emptiness condition is not
essential, but simplifies the type rules. In a nutshell, ifx:T, andT
may be empty, thenx:T ` for y in x return Q may be incorrect
just becauseT is empty, and the type rules would have to check
this. A typeT is well-formed in an environmentE if every variable
in T is defined inE.

4.2 Analysis offor and Locator Sets

The type assignments for the free variables of a query are defined
by means ofvariable environmentsΓ of the form:

Variable Environments Γ ::= () | x : T,Γ | x : T,Γ

A variable environmentΓ is well-formed, w.r.t. an environmentE,
if no variable is defined twice, if every type is well-formed inE,
and if every for-variablex is associated to a tree type (l [T ′] or B).

Our type rules (Table 4.1) are based on judgments of the form:

judgments J ::= E; Γ `β Q : (T; S) |
E; Γ `β x in T → Q : (T; S)

In E; Γ `β Q : (T; S), the typeT is the result type ofQ, and defines
an upper bound for the actual set of values forQ; the role ofS and
β will be discussed shortly.

To analyzefor x in Q1 return Q2, we compute a typeT1 for
Q1 (Table 4.1, rule TYPEFOR) and use the judgmentE; Γ `β
x in T1 → Q2 : (T2;) to compute the type ofQ2 through a
case-analysis on the typeT1 (rules (TYPEIN. . .)). By rule (TYPE-
INELSPLITTING), case-analysis stops when a tree typel [T] is
met, thereforel []-guardedness ofE implies that recursive type-
variables do not make case-analysis loop forever. Rule (TYPE-
INELSPLITTING), and rule (TYPELETSPLITTING), use the func-
tion SplitE(T), to be discussed later. For now, we simply define
SplitE(T) = {T}.

Our typing judgments also return an error setS , which contains
a set of locations with shapeβ.α, such that, for eachα, the sub-
query ofQ at α is not FE-correct. This is a sharp departure from
the traditional approach, where the result of error-checking is just a
boolean. We believe booleans are not enough, in a system that com-
bines case-analysis with subquery quantification. Consider, for ex-
ample, the following queries over $contacts : (data[phone[...]] |
data[mobile[...]])+.

Q5 : for $c in $contacts
return ($c/phone,$c/mobile)

Q7 : for $c in $contacts
return ($c/fone,$c/mobile)

Because of universal quantification on subqueries (Definition 4),
a query (Q,Q′) is FE-incorrect iff eitherQ or Q′ is. Be-
cause of existential quantification on substitutions, a query
for y in x return Q is FE-incorrect iffQ is incorrect for every
binding ofy. Hence, a case-analysis-based type checking algorithm
would compute the error-checking function ErrΓ(Q) as follows:

Err$c:(T1|T2)(Q7)
=

V
T∈{T1,T2}(Err$c:T($c/fone)∨Err$c:T($c/mobile))

As expected,Q7 is deemed wrong because for everyTi at least
one of $c/fone and $c/mobile is wrong. Unfortunately, the cor-
rect queryQ5 is deemed wrong as well: since each of the sub-
casesdata[phone[...]] anddata[mobile[...]] makes one of the sub-
queries incorrect, the external conjunction returns true.

Err$c:(T1|T2)(Q5)
=

V
T∈{T1,T2}(Err$c:T($c/phone)∨Err$c:T($c/mobile))

The problem cannot be solved by playing with the boolean op-
erators, since they exactly correspond to the quantifications in
the definition of FE-correctness. However, we can generalize
booleans to sets of locations, and use the following equations,
where ErrLeaf(Q) returns the location ofQ whenQ is wrong.

Err$c:(T1|T2)(Q5)
=

T
T∈{T1,T2} ({ErrLeaf$c:T($c/phone)}∪

{ErrLeaf$c:T($c/mobile)})
Err$c:(T1|T2)(Q7)

=
T

T∈{T1,T2} ({ErrLeaf$c:T($c/fone)}∪
{ErrLeaf$c:T($c/mobile)})

This time Err(Q5) is the intersection of two different singletons
of locations, hence is empty. This corresponds to the fact that no
subquery is always returning an empty result, hence no subquery is
incorrect. However, Err(Q7) is the intersection of two sets that both
contain the location of $c/fone. This signifies that, for every well-
typed substitution for $c, the subquery $c/fone is always empty,
hence the subquery is incorrect.

The type rules are listed in Tables 4.1 and 4.2. We describe them
by referring to the example.

Rule (TYPEFOR) starts the case-analysis, as previously discussed,
propagates the error setS1, and adds an errorβ.0 if the type ofQ1
only contains the empty forest (β is a current-location parameter
propagated and updated by the rules). It uses the auxiliary judg-
mentT ∼E (), which checks whetherJTKE = J()KE, and is defined
below.2

Rules (TYPEINUNION) and (TYPEINCONC) perform the case
analysis, and only put inS those locations that are wrong in both
branches.

Rule (TYPEINELSPLITTING) stops the case-analysis, inserts the
assumptionx : m[T] in Γ, and falls back to standard type-checking
(recall that we assumedSplitE(T) = {T}). At this point, rule
(TYPECHILD) is applied. It requires the type ofx to be a tree type
m[T ′], usesE ` T ′ :: l ⇒U (defined below) to restrict the content
type T ′ to the tree types with structurel [], and puts an error lo-
cationβ in S iff the restricted typeU is equivalent to the type()
(which is an easy test). Rule (TYPEDOS) is similar, but, instead of
using the content typeT ′, it extracts all the node types{U1, . . . ,Un}
that are reachable fromT, using the function TreesE(T) defined be-
low, and defines a new typeU ′ = (U1 | . . . |Un)∗. U ′ is the type of
any forest that only contains nodes whose type is one of theUi ’s,
hence is an appropriate type for the forest of all descendants of a
tree of typeT. The type ofx dos :: l is obtained by restrictingU ′
to the tree types with structurel []. Rule (TYPELETSPLITTING)
is standard, since we are assuming thatSplitE(T) = {T}. We will
later relax this assumption.

We now define the auxiliary function TreesE(T), the predicate
T ∼E (), and the auxiliary judgmentsE ` T :: l ⇒U .

DEFINITION 5. Subtrees Type Extraction: For any E well-formed
and T such that È T Def, we define TreesE(T) as follows (well-
defined by Knaster-Tarski Th.):

TreesE(()) M= /0
TreesE(B) M= {B}
TreesE(l [T]) M= {l [T]}∪TreesE(T)
TreesE(T,U) M= TreesE(T)∪TreesE(U)
TreesE(T∗) M= TreesE(T)
TreesE(T |U) M= TreesE(T)∪TreesE(U)
TreesE(X) M= TreesE(E(X))

DEFINITION 6. Empty-Forest-Type Checking: For any well-
formed environment E and type T well-formed in E, we define
T ∼E () as the minimal function (assumingfalse < true) that
respects the following set of equations, well-defined by Knaster-

2The type() is not to be confused with the empty type. It is a
singleton type, which only contains the empty forest.

Tarski theorem:

()∼E () M= true

l [T]∼E () M= false

B∼E () M= false

T,U ∼E () M= T ∼E ()∧U ∼E ()
T∗ ∼E () M= T ∼E ()
T |U ∼E () M= T ∼E ()∧U ∼E ()
X ∼E () M= E(X)∼E ()

Correctness of this definition is proved by the following theorem.

LEMMA 1 (EMPTY-FOREST-TYPE CHECKING).
For any well-formed environment E and type T well-formed
in E:

T ∼E () ⇔ JTKE = {()}

The judgmentE ` T :: l ⇒U is defined by the rules in Table 4.2.

LEMMA 2 (TERMINATION OF TYPE FILTERING). For any la-
bel l, type environment E well-formed and types T and U, the back-
ward application of the type rules to È T :: l ⇒U terminates.

LEMMA 3 (TYPE FILTERING CHECKING). For any label l,
well-formed type environment E and type T well-formed in E:

E ` T :: l ⇒U ⇔ JUKE = { f :: l | f ∈ JTKE}

4.3 Properties of the Type System

We provisionally assumed thatSplitE(T) = {T}, which results in
a completely standard (TYPELET) rule. This is sufficient to obtain
the canonical ‘soundness’ property (Theorem 4): types are upper
bounds for the set of all possible results. (This implies that this
type system can be used to checkuniversalnotions of correctness,
though we will not exemplify this fact here.)

DEFINITION 7. R (E,Γ): For any well-formed type environment
E andΓ well-formed in E, we define the set of valid substitutions as

R (E,Γ) = {ρ | χ 7→ f ∈ ρ⇔ (χ : T ∈ Γ∧ f ∈ JTKE)}

whereχ is either a for-variable or a let-variable.

THEOREM 4 (UPPERBOUND). For any well-formed
environment E,Γ well-formed in E, and well-formed Q:

E; Γ `β Q : (U ;) ∧ ρ∈R (E,Γ) ⇒ JQKρ ∈ JUKE

The next property one expects is some form of ‘well typed terms
never go wrong’ property, that specifies that every run-time error is
detected by the type system. But in this context we believe that one
should first look for the opposite implication ‘we will never bother
you with a false alarm’. We expect that a type system based on our
proposal would be used as an auxiliary tool in a programming envi-
ronment based on a commercial language, and that the programmer
would be allowed to ignore its error messages. As a consequence,
most programmers would just ignoreall the error messages, if there
is the doubt that they do not correspond to real errors, but are just a
figment of the type rules.

Hence we believe that, in this context, the essential ‘sound-
ness’ property of error-checking is that expressed by Theorem 5,
which goes the other way around with respect to the standard
‘progress+subject reduction’ combination.

Table 4.1.Query Type Rules
(TYPEEMPTY)

WF(E; Γ `β () : ((); /0))

E; Γ `β () : ((); /0)

(TYPEATOMIC)
WF(E; Γ `β b : (B; /0))

E; Γ `β b : (B; /0)

(TYPEVARLET)
x : T ∈ Γ WF(E; Γ `β x : (T; /0))

E; Γ `β x : (T; /0)

(TYPEVARFOR)
x : T ∈ Γ WF(E; Γ `β x : (T; /0))

E; Γ `β x : (T; /0)

(TYPEELEM)
E; Γ `β.0 Q : (T; S)

E; Γ `β l [Q] : (l [T]; S)

(TYPEFOREST)
E; Γ `β.0 Q1 : (T1; S1)
E; Γ `β.1 Q2 : (T2; S2)

E; Γ `β Q1,Q2 : (T1,T2; S1∪S2)

(TYPELETSPLITTING)
E; Γ `β.0 Q1 : (T1; S)
SplitE(T1) = {A1, . . . ,An}
E; Γ, x : Ai `β.1 Q2 : (Ui ; Si)

E; Γ `β let x := Q1 return Q2 : (U1 | . . . |Un; S ∪
T

i=1...n Si)

(TYPEFOR)
E; Γ `β.0 Q1 : (T1; S1)
E; Γ `β x in T1 → Q2 : (T2; S2)
S = if T1 ∼E () then{β.0} else/0

E; Γ `β for x in Q1 return Q2 : (T2; S1∪S2∪S)

(TYPEINEMPTY)
WF(E; Γ `β x in () → Q : ((); β.CriticalLocs(Q)))

E; Γ `β x in () → Q : ((); β.CriticalLocs(Q))

(TYPEINELSPLITTING)
SplitE(m[T]) = {A1, . . . ,An}
E; Γ, x : Ai `β Q : (Ui ; Si)

E; Γ `β x in m[T] → Q : (U1 | . . . |Un;
T

i=1...n Si)

(TYPEINATOMIC)
E; Γ,x : B`β Q : (U ; S)

E; Γ `β x in B → Q : (U ; S)

(TYPEINCONC)
E; Γ `β x in T → Q : (T ′; S1)
E; Γ `β x inU → Q : (U ′; S2)

E; Γ `β x in T,U → Q : (T ′,U ′; S1∩S2)

(TYPEINUNION)
E; Γ `β x in T1 → Q : (T ′1; S1)
E; Γ `β x in T2 → Q : (T ′2; S2)

E; Γ `β x in T1 | T2 → Q : (T ′1 | T ′2; S1∩S2)

(TYPEINVAR)
E(X) = T
E; Γ `β x in T → Q : (U ; S)

E; Γ `β x in X → Q : (U ; S)

(TYPEINSTAR)

E; Γ `β x in T → Q : (U ; S)

E; Γ `β x in T∗ → Q : (U∗; S)

(TYPECHILD NOMATCH)
WF(E; Γ `β x child :: l : (U ; S))
x : T ∈ Γ ∧ T = B

E; Γ `β x child :: l : ((); β)

(TYPEDOSNOMATCH)
WF(E; Γ `β x child :: l : (U ; S))
x : T ∈ Γ ∧ T = B

E; Γ `β x dos :: l : ((); β)

(TYPECHILD)

WF(E; Γ `β x child :: l : (U ; S))
x : T ∈ Γ ∧ T = m[T ′]
E ` T ′ :: l ⇒U
S = if U ∼E () then{β} else/0

E; Γ `β x child :: l : (U ; S)

(TYPEDOS)
WF(E; Γ `β x dos :: l : (U ; S))
x : T ∈ Γ ∧ T = m[T ′]
{U1, . . . ,Un}= TreesE(m[T ′])
U ′ = (U1 | . . . |Un)∗
E ` U ′ :: l ⇒U
S = if U ∼E () then{β} else/0

E; Γ `β x dos :: l : (U ; S)

Table 4.2.Filter Type Rules
(MATCH)

E ` l [T] :: l ⇒ l [T]

(NOMATCHFILT)
T = B ∨ T = m[T ′]
E ` T :: l ⇒ ()

(FORESTFILT)
E ` T :: l ⇒ T ′ E ` U :: l ⇒U ′

E ` T,U :: l ⇒ T ′,U ′

(STARFILT)
E ` T :: l ⇒U

E ` T∗ :: l ⇒U∗

(UNIONFILT)
E ` T :: l ⇒ T ′ E ` U :: l ⇒U ′

E ` T |U :: l ⇒ T ′ |U ′

(VARFILT)
E ` E(X) :: l ⇒U

E ` X :: l ⇒U

THEOREM 5. (Soundness of Existential Error-Checking) For any
well-formed environment E,Γ well-formed in E, and query Q:

E; Γ `β Q : (U ; S) ∧ β.α ∈ S ⇒
⇒Q has an error atα w.r.t. R (E,Γ)

4.4 Existential vs. Universal Error-Checking

It is now time to cite some standard theorems that one
may expect to hold, and which do not. Recall query
$contacts/phone from Section 3, and observe that it stops be-
ing correct if one substitutes $contacts with a query, or a term, of
type(data[mobile[...]])+, although this is a subtype of the original
type. This means that the canonicalsubsumptionandsubstitution
properties fail for this type system.

PROPERTY1 (SUBSUMPTION). In a type system that only
checks a universally quantified notion of correctness, if T′ ≤ T is a
subtype relation such that T′ ≤ T⇒ JT ′KE ⊆ JTKE, then

E; Γ `ε Q : (U ; /0) ∧ (x : T)∈Γ ∧
∧ E; Γ `ε Q1 : (T ′; /0) ∧ T ′ ≤ T

(where Q: (; /0) means that Q has no static type error) implies

E; Γ `ε Q{x←Q1} : (U ′; /0) ∧ U ′ ≤U

PROPERTY2 (WELL-TYPED SUBSTITUTION). In a type sys-
tem that checks a universally quantified notion of correctness,

E; Γ `ε Q : (U ; /0), ρ∈R (E,Γ), and J f Kρ = ρ(x)

(where f is a term of the subgrammar() | b | l [f] | f , f ′) implies

E; Γ `ε Q{x← f} : (U ; /0).

Subsumptionandsubstitutionare consequences of the universal na-
ture of the errors one looks for in traditional type system. There,
every instantiation of a variable with a type-correct value is guar-
anteed not to fail, hence, if we substitute the variable with a type-
correct expression, no error will arise.

Subsumption derives from the universal nature of the checked er-
rors as well: if no value in a type creates problems, a smaller type
creates no problem a fortiori.

Substitution and subsumption are so deeply ingrained in the tech-
niques we use to design type systems and to prove their properties,
that their failure implies that nothing should be taken for granted.
For example, the fact that a type is just an upper bound of the set
of values returned by a query (Theorem 4) creates no problem in a
system that enjoys subsumption: whatever can be proved using this
upper-approximation would be true a fortiori if one used a better
approximation (i.e., a subtype). On the other hand, with an existen-
tial notion of error, when types become smaller, more errors appear,
hence an upper-bound approximation is going to mask some prob-
lems.

In the end, we have been able to design a framework where the
pieces fit together, but some unusual features will show up. The
fact that our notion of ‘soundness of error-checking’ (Theorem 5)
goes the other way round with respect to canonical type systems is
a first example.

4.5 Combining Universal and Existential

The machinery we presented can be actually used to check both
existential and universal notions of correctness. To this aim, the

inferred type can be used in the standard way, so that a universally-
wrong subexpression will not match any type rule. For example,
we may have an integer+ operator and the following rule.

(TYPE+)
E; Γ `β.0 Q : (Int; S)
E; Γ `β.1 Q′ : (Int; S ′)

E; Γ `β Q+Q′ : (Int; S ∪S ′)

If eitherQ or Q′ has a type that is different fromInt, the expression
will not type-check, nor will it type-check if one of them has a type
Int | T.

In such a system, the Upper Bound Theorem would imply the tra-
ditional Error-Soundness theorem, going the other way round with
respect to Theorem 5.

THEOREM 6. (Soundness of Universal Error-Checking) For any
well-formed environment E,Γ well-formed in E, and well-formed
Q:

E; Γ `β Q : (U ;) ⇒
⇒ Q has no universal-error w.r.t.R (E,Γ)

5 Type-Splitting

5.1 Motivation and Definition

We provisionally assumed thatSplitE(T) = {T}. This simple def-
inition is enough to obtain soundness of type checking and error-
checking. These are the canonical properties that are proved for
any type system, but they are not very informative: any system that
associates the universal type to any expression, and never finds any
existential error, enjoys them as well.3 For the core-languageµXQ,
we can actually aim for a much stronger property: a type system
that iscomplete, in a sense to be made precise later, and that is able
to catcheveryFE-error. (No other proposed type system enjoys this
property of “completeness over the core”.)

Our provisional type system is not up to this aim. It is not precise
enough when, for example, there are variables that occur more than
once (non-linearvariables) and with a union type. For example,
consider the (artificial) typeX = data[mobile[]∗ | phone[]∗], and
the query

x/mobile,x/phone.

Whenx has typeX, this query yields either a sequence of elements
mobile[] or a sequence of elementsphone[]. Instead, as in XQuery,
our type system infers a type(mobile[]∗, phone[]∗), which also con-
tains sequences with bothmobile[] andphone[] elements.

Our provisional type system does not guarantee completeness of
error-checking either. For example, consider the typeY = c[a[] | b[]]
and the query:

Q8 = for x in y/a return y/b

wherey is of typeY. (This code returns a sequence ofy/b iff y
has a childa, and returns() otherwise.) The query is FE-incorrect,
as there is no substitution that makes the subqueryy/b yield a not-
empty result: ify is of typec[a[]] theny/b cannot return any tree,
and if y is of typec[b[]] theny/a is empty, hencey/b will not be
evaluated at all. Nevertheless, our provisional type system validates

3In the traditional view, soundness means: well-typed programs
never go wrong. This is enjoyed by any type system that consider
every program as ill-typed, since it finds every universal error in
every program.

the query as correct. This is because the two uses ofy are deemed
acceptable by exploiting two separate, and incompatible, branches
of the union type ofy. (Similar phenomena happen in all related
type systems we are aware of, including the XQuery type system.)

We solve these problems by defining a type system that, when a
variable with a union type is introduced, performs a case-analysis
on the different cases of the union, even when the union type oper-
ator is hidden inside the type (as inc[a[] | b[]]). In our setting, this
amounts to defining a non-trivial version of theSplit() function.

We will prove that the resulting type system detects all FE-errors,
and infers a type that provides both an upper and a lower bound for
the set of all possible query results (Theorem 14).

Of course, the existence of any kind of correct and complete static
analysis also shows that the language is, in some sense, poor.
Specifically, our result relies on a monotonicity property ofµXQ
(Lemma 10) that would not hold in most realistic extensions of the
language. Still, the existence of a core where the analysis is com-
plete is an important result, because it formally measures the quality
of the match between our notion of error and our type system.

The error-complete approach is based on enumerating the branches
of the union types of typed variables (splitting the type), performing
an independent analysis for each branch, and combining the results.
The amount of splitting is governed by the functionSplitE(T) (Def-
inition 8), which rewritesT to a set{T1, . . . ,Tn} such thatT1 | . . . |Tn
is equivalent toT. Essentially,SplitE(T) rewritesT in order to
make| be the outermost type operator. For example, typec[a[] | b[]]
is split into{c[a[]], c[b[]]}, and the queryQ8 presented above is an-
alyzed once withy : c[a[]] and once withy : c[b[]]. The subquery
(Q8)|1 is (correctly) flagged as wrong, since the location 1 is in the
error set of both runs of the analysis.

By splitting a type more and more finely, a more precise type analy-
sis can be obtained, at the price of a more expensive type-checking
process, since the rest of the query is checked once for every addend
generated by splitting.

Our key result is the fact that splitting can be stopped in front of∗-
types (SplitE(T∗) = {T∗}), and still the new type system enjoys the
completeness properties formalized by Theorem 16 below. Hence,
for example:

SplitE((data[phone[...] | mobile[...]])∗)
= {(data[phone[...] | mobile[...]])∗}

SplitE(phone[...] | mobile[...])
= {phone[...]; mobile[...]}

SplitE(a[(b[],c[]) | (d[],e[])])
= {a[b[],c[]]; a[d[],e[]]}.

The definition ofSplitE(T) is non-trivial because of recursive type
variables. Consider the typeY = a[Y] | b[Y] | () and a type assump-
tion y : Y. Every time we unfoldY, new instances of| appear, which
have to be “pulled out” bySplitE(T), and which generate new cases
to analyze. We would like to unfoldY just once, and to analyze the
query just three times, tryingy : a[Y], y : b[Y] andy : (). But, con-
sider the following generalization ofQ8, where(/a)n stands forn
consecutive occurrences of/a:

Qn = for x in y(/a)n/a return y(/a)n/b

To catch the error,Y must be unfoldedn+1 times. This means that
we cannot decide how deeplyY has to be unfolded before looking
at the query under consideration.

A more complex type system, where unfolding depends on the

query, may be worth studying. However, we claim that a simpler
solution is acceptable in practice, based on a mild restriction on the
use of recursion. We restrict to environmentsE, namely∗-guarded
environments, for which recursion is guarded by a∗ type construc-
tor, hence ruling out theY type above (see [9] for details). Under
this restriction, error-completeness is obtained by unfolding recur-
sion until∗ is met, and “pulling out” only the union type construc-
tors that are found outside the∗ (Definition 8).

Hence, we have to prove that an assumption likey : (c[a[X] |b[X]])∗,
where union types are guarded by∗, does not need to be split any
further. Splitting was needed, for queryQ8, to detect a situation
where the correctness of(Q8)|1 depended on the existence of two
mutually incompatiblepathsc/a andc/b inside the type ofy. The
key observation is the fact that these paths are not incompatible
wheny has typec[(a[] | b[])∗], sincec[a[],b[]] is a legitimate value
for y. The non-existence of incompatible paths in types where union
is guarded by∗ is formalized in Lemma 12, and Theorem 16 shows
that this property is enough to guarantee error-completeness.

We claim that our restriction is “mild”. Indeed, it is respected by
all the schemas reported in the W3C document “XML query use
cases” [8].

DEFINITION 8. SplitE(T): If E is ∗-guarded, then:

SplitE(()) M= {()}
SplitE(B) M= {B}
SplitE(U∗) M= {U∗}
SplitE(X) M= SplitE(E(X))
SplitE(T |U) M= SplitE(T)∪SplitE(U)
SplitE(l [T]) M= {l [A] | A∈ SplitE(T)}
SplitE(T,U) M=

M= {(A,B) | A∈ SplitE(T)∧B∈ SplitE(U)}

SplitE(T) is well-defined by Knaster-Tarski theorem. IfE is ∗-
guarded,SplitE(T) can be computed by a standard top-down recur-
sive implementation of the definition above:∗-guardedness ofE
implies that the∗ case will break any potential infinite loop due to
the recursive definition of a type variable.

Splitting preserves type semantics.

LEMMA 7. For each∗-guarded environment E and type T defined
in E:

JTKE =
S

A∈SplitE(T)JAKE

5.2 Simulation and Query Monotonicity

To characterize the precision of the type system, we define now a
pre-order relation on forestsf v f ′, forest simulation. This pre-
order compares forests as if they were sets of trees instead of se-
quences, so that, for example,a[],a[]v a[] anda[],b[]v b[],a[], but
implies path inclusion, so that ifa/b is a path of f and f v f ′,
thena/b is a path off ′ as well. Simulation has the property that,
if a query is correct when run withy = f and f v f ′, then the
query is correct when run withy = f ′. Simulation allows us to
formally specify that our type inference technique is precise ‘up-to-
simulation’, and is a key tool in our proof of error-completeness.

DEFINITION 9. Forest Simulation fv f ′: Simulation fv f ′ is the
smallest relation on forests that respects the following conditions:

bv b
l [f1]v l [f2] ⇔ f1 v f2
f v f ′ ⇔ ∀t ∈ trees(f). ∃t ′ ∈ trees(f ′). t v t ′

LEMMA 8. For each f and f′:

(f v f ′ ∧ f 6= ()) ⇒ f ′ 6= ()

Lemma 10 states thatµXQ queries are monotone with respect tov
extended to substitutions in the obvious way:

ρv ρ′ ⇔def ∀x∈ dom(ρ). ρ(x) v ρ′(x).

We are not talking here about the usual (trivial) set-of-values mono-
tonicity property, that states that, if the set of values that the variable
$x is allowed to range over increases, then the set of values that can
be assumed by the query result increases as well. We are stating
here a much stronger property that specifies that queries are mono-
tone with respect to a pre-order that is defined on values (forests, in
this case), something similar to strictness properties for functional
languages. This strong property is not needed in order to prove
soundness results, but is crucial for completeness.

Query monotonicity depends on monotonicity of axis steps.

LEMMA 9 (MONOTONICITY OF AXIS STEPS).

∀ f , f ′. f v f ′ ⇒ f :: l v f ′ :: l ,
dos(f)v dos(f ′),
childr(f)v childr(f ′)

LEMMA 10 (QUERY MONOTONICITY).

∀Q,ρ,ρ′. ρv ρ′ ⇒ JQKρ v JQKρ′

Query monotonicity implies monotonicity of substitution exten-
sion.

LEMMA 11 (EXTENSION MONOTONICITY).
For any well-formed query Q and pair of substitutionsρ1
and ρ2 such that FV(Q) ⊆ dom(ρ1) = dom(ρ2) and ρ1 v ρ2,
∀β ∈ Locs(Q).

∀ρ′ ∈ Ext(ρ1, Q, β). ∃ρ′′ ∈ Ext(ρ2, Q, β). ρ′ v ρ′′

Finally, Lemma 12 shows that, after splitting, all the types we get
are closed for finitev-upper-bounds. Very informally, this captures
the notion of ‘no mutual exclusion’ among paths, and implies that,
if we use substitutions based on differentfi ’s in different branches
of a typing proof, we can then combine all these branches, because
one upper-bound of thosefi-based substitutions exists that is ac-
ceptable as well. (You do not find this lemma in the canonical type
papers, because it is strictly related with the existential interpreta-
tion of typing.) This is the key lemma that allows us to prove that
this type system is “complete”, i.e. that, if a typeU is inferred for
a queryQ, every element ofU is actually a possible result forQ,
modulov (Theorem 14). The combination of soundness and com-
pleteness of type inference gives us a soundness-and-completeness
property for error-checking as well: our type system discovers all
and only the FE-errors of the analyzed query (Theorem 15 and The-
orem 16).

LEMMA 12. For any type A defined in a∗-guarded environment
E, if SplitE(A) = {A} then,

∀ f1, . . . , fn ∈ JAKE. ∃ f ∈ JAKE. fi v f i = 1. . .n

5.3 Soundness and Completeness of Type In-
ference and Error Checking

The system enjoys soundness and completeness of type inference
and error-checking. The full proofs can be found in [9].

THEOREM 13 (UPPERBOUND). For each query Q,
well-formed E, andΓ well-formed in E:

E; Γ `β Q : (U ;) ∧ ρ ∈ R (E,Γ) ⇒ JQKρ ∈ JUKE

We can finally prove that, whenE is ∗-guarded, type inference is
complete up-to-simulation, and error-checking is complete.

THEOREM 14 (LOWER BOUND). For each query Q,
∗-guarded E, andΓ well-formed in E:

E; Γ `β Q : (U ;) ⇒ ∀ f ∈ JUKE. ∃ρ ∈ R (E,Γ). f v JQKρ

THEOREM 15 (SOUNDNESS OFERROR-CHECKING). For each
query Q,∗-guarded E, andΓ well-formed in E:

E; Γ `β Q : (; S) ⇒
⇒ (β.α ∈ S ⇒ Q has an error atα w.r.t. R (E,Γ))

THEOREM 16 (COMPLETENESS OFERROR-CHECKING). For
each query Q,∗-guarded E, andΓ well-formed in E:

E; Γ `β Q : (; S) ⇒
⇒ (Q has an error atα w.r.t. R (E,Γ) ⇒ β.α ∈ S)

5.4 The Cost of Case-Analysis

Our type system uses case-analysis to type-check for-iteration,
and to examine the alternative types generated by type-splitting
when new variables are inserted into the environment. This
case-analysis approach is not the only possibility to type-check
for x in Q1 return Q2. XQuery, for example, promotes the type
of Q1 to a quantified disjunction of tree types [12], and then ana-
lyzesQ2 just once, associatingx with the disjunctive type. While
this makes type checking more efficient, it makes it far less precise.
For example, ifx is a variable of typer[a[],b[],c[]], the subqueryy
of for y in x/ ∗ return y (where∗ matches any label) would be
analyzed once under the assumptiony : (a[] | b[] | c[])+, becausey
may assume one of thea[], b[], c[] types (hence thea[] | b[] | c[]) and
y will be evaluated more than once (hence the+). The query will
then have type(a[] | b[] | c[])+, and thus, its use in a context where
the typea[],b[],c[] is expected, would raise a static error. While this
can be mitigated by the use of some dynamic typing, we think that
a type system where record types are treated with a greater preci-
sion is definitely worth studying. (In our type system, the query is
assigned its exact typea[],b[],c[].)

Our techniques are, in principle, quite expensive: the natural imple-
mentation of nested case-analysis is a nested loop, whose execution
time is exponential with the nesting level.

However, we have examined many queries and always found that
they can be type-checked without nested case-analysis, thanks to
their adherence to some restrictions on the shape of the query and
of the involved types. In this section we describe these conditions,
and explain why they make type-checking feasible.

We start with for-iteration case-analysis, assuming that no type-
splitting takes place.

We say that a type is label-deterministic iff, in its syntax tree, it
is never the case that, after expanding recursive types with their
definitions, two subtermsl[T] andl[U] are found with the same
labell but two different content-typesT andU. Label-deterministic
types are extremely common; every type defined by a DTD is label-
deterministic.

In a nutshell, assuming that no type-splitting takes place, the follow-
ing query still requires an exponential time to be type-checked, be-
cause the subquery that starts withfor $x2 has to be type-checked
twice, once under the assumption$x1:a1[T1], and once under the
assumption$x1:b1[U1], and every other$xi duplicates the needed
time as well:

for $x1 in (a1[...], b1[...])
...
for $xn in (an[...], bn[...])
return ($x1,...,$xn)

However, if the type of$x1 only had one tree type at the top
level, for example if it werea1[T1], or a1[T1]*, or a1[T1] |
(a1[T1],a1[T1]), then the subquery could only be type-checked
once, under the assumption$x1:a1[T1], hence this variable would
not contribute to the exponential grow of type-checking complex-
ity.4

Hence, the following query can be type-checked efficiently, if all
the free variables have label-deterministic types, and if the final ex-
pressionE is either for-free or has in turn the same shape:

for $x1 in $y1/a//b/c
...
for $xn in $yn/c/*/e
return E($x1,...,$xn)

Intuitively, the type of$y1/a//b/c is a combination of instances
of a unique typec[T] using ‘|’, ‘,’, and ‘*’: the c[] comes from
the final step/c of the path, and everyc is associated with the
sameT since the type of$y1 is label-deterministic. Hence, the rest
of the query can be type-checked just once, under the assumption
$x1:c[T]. The type of$y1/a//b/c can be efficiently computed as
well. Every$yi with i > 1 may be either a free variable or it may
be$xj with j < i, hence we also have to observe that all the$xi’s
are associated with label-deterministic types.

This class of queries is formally defined in [9]. This class is big
enough to include most of the queries presented in [8]. If a query
is out of this class because it contains just a couple of ‘exotic’ it-
erations, the performance of the type-checking algorithm degrades
gracefully. Of course, if the query systematically differs from that
query, and is deeply nested, type checking becomes unfeasible.

for-iteration. By analyzing the types used in [8] and other reposi-
tories over the Web, we have verified that, in the vast majority of
cases, whenever union is used to specify an element-content, then
union is ∗-guarded. Therefore, in these cases, type-splitting be-
haves as the identity mapping, i.e. types are not split. For example,
consider the following DTD that we borrow from [8]:

<!DOCTYPE report [
<!ELEMENT report (section*)>
<!ELEMENT section (title, content)>
<!ELEMENT title (#PCDATA)>

4In the third case (a1[T1] | (a1[T1],a1[T1])), the trivial al-
gorithm would actually type-check the subquery three times under
the same assumption$x1:a1[T1], but this can be easily amended
using standard memoization techniques.

<!ELEMENT content (#PCDATA | anesthesia | prep
| incision | action | observation)*>

<!ELEMENT anesthesia (#PCDATA)>
<!ELEMENT prep ((#PCDATA | action)*)>
<!ELEMENT incision ((#PCDATA | geography

| instrument)*)>
<!ELEMENT action ((#PCDATA | instrument)*)>
<!ELEMENT observation (#PCDATA)>
<!ELEMENT geography (#PCDATA)>
<!ELEMENT instrument (#PCDATA)>

]>

In this DTD, union is intensively used to specify element-contents.
However, it is always∗-guarded. Hence, each element type reached
by case-analysis is never actually split, sinceSplitE(m[(T)∗]) =
m[(T)∗]. Actually, we have found a few schemas where union is
not∗-guarded. We report here the only such example from [8].

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ |editor+),

publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor(last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

The union(author+ | editor+) is not ∗-guarded, but its two
immediate componentsauthor+ andeditor+ are. By looking at
repositories of schemas over the Web we have verified that when
union is not∗-guarded then it either involves a few∗-guarded types
(as above) or types that contain a very small number of nested types.
Hence, splitting always produces very few types. An example of
types with low degree of nesting of not∗-guarded types is given
by the following DTD, which describes time stamps used in Unix
systems management.

<!ELEMENT TimeStamp (DateTime |
(Seconds, Microseconds?))>

<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Seconds (#PCDATA)>
<!ELEMENT Microseconds (#PCDATA)>

The other cases we have found of not∗-guarded use of union types
are not far from this one. All of them feature a very low degree of
nesting. We suspect that, in general, deeply nested not∗-guarded
unions are difficult to work with in practice, hence are avoided by
schema designers.

We plan further investigations about the patterns, in types and
queries, that we have discovered, since several applications may
profit from these regularities.

6 Related Work

Our Previous WorkThe work we presented in [10] was a first step
toward the system we have here. In that work we compared the
universal and existential notions of correctness, but the notions of
weak and strong correctness we proposed were, respectively, too
weak and too strong. Weak correctness accepted queries such as
Q4 : $contacts/fone, $contacts/mobile from Section 3, while
strong correctness refused queries likeQ3 : $contacts/phone.

XDuce XDuce [14] is a typed, functional, Turing complete pro-
gramming language. It is based on an ML-like pattern language
that implements aone-matchsemantics, i.e. every pattern, instead
of collecting every matched piece of data (as in standard query lan-
guages), only binds the first match. XDuce is nearer to a program-
ming language than to a query language, but we consider it here

since it is an example of typed language for XML that explicitly
provides a notion of type correctness. XDuce supports auniversal
notion of correctness for patterns: functions are correct if and only
if their bodies specify a matching pattern (a function case) for all
possible alternatives described by the input type. As discussed in
the paper, we believe that this notion of correctness, although well
suited for a programming language, is too restrictive for an XML
query language.

CDuceCDuce [4] is a language that derives from XDuce but adopts
a more sophisticated type system, featuring function types, intersec-
tion, and negation types. CDuce is not specialized for XML, but the
typical XDuce idioms can be easily encoded. CDuce performs so-
phisticated correctness analysis, but it adopts the same universally-
quantified definition of correctness as XDuce: type checking en-
sures that if a function is well typed theneverypossible input value
is matched by at least a branch pattern in the function body. We are
working with the CDuce team to extend our approach to that lan-
guage and the derived query language CQL [5], and the preliminary
results are very promising.

XQuery XQuery type inference [12] recursively infers a type for
every subexpression, starting from the types known for the input
variables. As we discussed in Section 4, it does not perform type
case-analysis, which makes type inference faster, but makes the in-
ferred types less precise. Very recently, a new rule has been added
to XQuery type system that states that it is a static error for any
expression other than the empty-sequence expression to have the
empty type. This new rule is not sufficient to achieve error-checking
completeness, because of the minor precision of XQuery type infer-
ence. If the system were extended with union-types case-analysis in
order to have a higher precision, then the error-reporting approach
should be extended with some technique related to our locations-set
approach.

In the previous versions of the standard, no navigation-error-
checking was performed. As we stated in the introduction, even
in absence of explicit navigation-error-checking, the inferred type
can point out the presence of navigation-problems, but with some
limits. When no match is possible for a subquery, the type sys-
tem will typically (but not always) assign an empty-sequence type
to that subquery. This empty-sequence type may become the fi-
nal type of the query, hence telling the programmer that something
went wrong. But if the subquery is inside an element constructor
that accepts empty content, or is combined with an expression with
a non-empty type as in “error,Q”, then the final type of the query
will not be an empty-sequence, and the error may be completely
hidden.

k-pebbles proposalDan Suciu et al. develop a formal framework
for the definition of result analysis tools[16, 2]. These papers de-
fine some upper bounds to what can be accomplished by result type
analysis. Our results do not contradict these, since we study here a
language that is weaker than k-pebbles automata.

7 µXQ and XQuery

µXQ, although inspired by XQuery, omits many important features,
which we briefly discuss here.

We did not consider awhereclause in our version of the FLWOR
construct. In the presence ofwhere, the identification of navigation-
errors with constant emptiness of a subquery becomes questionable.
Consider the following query.

for $x in a[] where Condition return $x

This query is always empty if, and only if, the expressionCondition
is always false. Hence, we have an FE-error iffConditionis always
false. Such a notion of type error sounds heretic, but it should not

be discarded too lightly. For a programmer, knowing that a condi-
tion is uniformly false is as useful as knowing that a subquery is
always empty. Its undecidability in realistic languages is not really
a problem, since any type-checking algorithm is approximate in a
real language.

For an alternative definition, let us define, for each queryQ,
where-drop(Q) as the query obtained by removing allwhereclauses
from Q. A less heretic notion of type-error can now be defined, by
changingQ′ into where-drop(Q′) in our definition (from Section 3):

REMARK 2. Where-dropping FE-Query Correctness: A query Q
is correct w.r.t. a set of valid substitutionsR if, for eachnon-()
subquery Q′ in Q, there existsρ∈R such that, when Q is evaluated
underρ, where-drop(Q′) evaluates to a non-empty sequence.

Since anyQ′ appearing in thewherecondition is a subquery ofQ,
this definition does not ignore where clauses altogether. It checks
that no navigation-error is hidden inside a where clause, but, when
the correctness of the whole FLWR expression is considered, the
filtering action of thewhereclause is ignored.

While we are more attracted by the where-dropping notion of cor-
rectness, the relationship between the two alternatives is subtle, and
we believe it is worth investigating. Anif then elseconstruct would
raise similar issues.

The presence of awhere(or if then else) clause would have another
important (and orthogonal) effect on the type system: the language
would lose monotonicity. Consider the following query:

for $x in a[] where not empty($y) return $x

When the value of $y grows from an empty to a non-empty se-
quence, the semantics of the query goes down from non-empty
to empty. Hence, Lemma 10 stops holding, and we lose semi-
completeness of type-inference (Theorem 14) and completeness of
error-checking (Theorem 16). This is not really a problem. We did
not define a complete system over the monotone core because we
hoped to extend completeness to a realistic language; indeed, no
complete semantic analysis can be decidable on a Turing-complete
language. Completeness over the core is important because it is a
formal way to measure the precision of the type system.

We ignored issues related to “document order”, such as the fact
that any path expression, in XQuery, returns its result in document
order. If the type of the expression has the shape(T1 | . . . | Tn)∗,
where all theTi ’s are tree types, the type does not change when the
sequence is re-ordered. Otherwise, let us use UpperTreesE(T) to
denote the set of the tree types of the trees that can be found at the
top level of a forest of typeT:

UpperTreesE(T) M= {U | T→E
e U, U is a tree type,

and not existe′, l ,e′′. e= e′.l .e′′}

the typeT of a path expression can be weakened to its supertype
(U1 | . . . |Un)∗, where

{U1, . . . ,Un}= UpperTreesE(T),

without compromising Theorems 13, 14, and 16. This supertype
does not carry any information on the order of the trees.

We ignore reverse axis (parent, ancestor. . .). The current version
of XQuery assigns trivial types to these axes, and we can do nothing
better unless we change some of our fundamental assumptions. We
ignore node identity and the issue of reference vs. copy semantics,
because they have very little effect on the type system. We ignore
the issue of predefined functions, (recursive) function definition and

invocation, and validation, because we think that they may be dealt
with using standard techniques.

To sum up, we do not expect problems in the extension of our tech-
niques to a full-scale language, although this will have to be care-
fully studied. The resulting system will be sound but not complete,
which is the only property one can aim to when a complete lan-
guage is treated. However, it would still be the only type system
which is complete on the core language, and the only type system
which has been consciously designed to deal with both existential
and universal errors, and, specifically, to deal with navigation er-
rors.

8 Conclusions and Future Work

We have presented a type system that performs both result analysis
and navigation-correctness analysis for a minimal query language
for tree-shaped data.

We have first given a precise definition of navigation-errors, and
discussed its merits in relation with some possible alternatives. We
introduced a first type system, which is sound and quite precise.
We then introduced a more expensive type system that, when ap-
plied to schemas that satisfy a mild restriction on the alternation
between∗ and recursion, performs a correct and complete error-
checking. This type system validates the claim that our notion
of navigation-error is both meaningful for the programmer and
amenable to machine-checking.

We defined the notions of universal and existential correctness, and
defined a framework that can be used to check both families of er-
rors.

Since our type system is based on extensive use of case-analysis,
we want now to study techniques that help reducing the overall
computational complexity. Our key result, the fact the no splitting
is needed below a∗, is already significant, since most subqueries
have a typeT∗, but we believe that in many other situations type-
splitting can be either avoided or performed lazily, hence making
our type-system efficiently implementable over realistic programs
and schemas.

9 Acknowledgments

The CDuce team (V́eronique Benzaken, Giuseppe Castagna, and
Alain Frisch) contributed to this work with useful comments about
type-splitting. A discussion with Phil Wadler was deeply influential
for reaching our definition of query correctness.

10 References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semistuctured Data.Journal of Digital Libraries, 1(1), pages 68–
88, April 1997.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking XML Views
of Relational Databases. InProceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, 16-19 June 2001, Boston, Massachusetts, USA,
Proceedings. IEEE Computer Society, 2001, pages 421–430, 2001.

[3] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with Data Val-
ues: Typechecking Revisited. InProceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USA, 2001.

[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. InProceedings of the eighth ACM SIGPLAN international
conference on Functional programming, pages 51–63. ACM Press, 2003.

[5] V. Benzaken, G. Castagna, and C. Miachon. CQL: a Pattern-based Query Lan-
guage for XML. InProceedings of 20th Bases de Données Avanćees (BDA)
(2004), 2004.

[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. Technical report, World Wide Web
Consortium, May 2003. W3C Working Draft.

[7] P. Buneman, S. Davidson, and D. Suciu. Programming constructs for unstruc-
tured data. InProceedings of 5th International Workshop on Database Program-
ming Languages, Gubbio, Italy, September 1995.

[8] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases. Technical report, World Wide Web Consortium, Nov 2003.
W3C Working Draft.

[9] D. Colazzo. Path Correctness for XML Queries: Characterization and Static
Type Checking. PhD thesis, Dipartimento di Informatica, Università di Pisa,
2004.

[10] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types For Correctness of
Queries Over Semistructured Data. InProceedings of the Fifth International
Workshop on the Web and Databases (WebDB 2002), Madison, Wisconsin, June
6-7, 2002, 2002.

[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst
2002.

[12] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Siḿeon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. Tech-
nical report, World Wide Web Consortium, Aug. 2003. W3C Working Draft.

[13] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a
Web-site management system.SIGMOD Record (ACM Special Interest Group
on Management of Data), 26(3):4–11, September 1997.

[14] H. Hosoya and B. C. Pierce. XDuce: An XML Processing Language, 1999.
Preliminary Report.

[15] D. Lee, M. Mani, and M. Murata. Reasoning about XML Schema Languages us-
ing Formal Language Theory. Technical report, IBM Almaden Research, 2000.
Technical Report - IBM Almaden Research.

[16] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. In
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 11–22. ACM Press, 2000.

[17] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures. Technical report, World Wide Web Consortium, May 2002.
W3C Recommendation.

[18] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (Third Edition). Technical report, World Wide
Web Consortium, Feb 2004. W3C Recommendation.

