Types for Path Correctness of XML Queries

Dario Colazzo Giorgio Ghelli Paolo Manghi Carlo Sartiani
Dipartimento di Informatica - Universita di Pisa
Via Buonarroti 2, Pisa, Italy

{colazzo,ghelli,manghi,sartiani } @di.unipi.it

Abstract state that it is a static error for any expression other than the empty-
sequence expression to have the empty type. Since a static error-
If a subexpression in a query will never contribute data to the query checking system is only a tool toward an error-prevention aim, we
answer, this should be regarded as an error. This principle has beerstart by defining which error we are trying to prevent (Section 3).
recently accepted into mainstream XML query languages, but was The notion of correctness we definesidstential which means that
still waiting for a complete treatment. We provide here a precise a piece of code is correct if there exists at least one valid instance of
definition for this class of errors, and define a type system that is its free variables such that an undesirable condition (result empti-
sound and complete, in its search for such errors, for a core lan-ness, in our case) is avoided. This is in sharp contrast withitie
guage, under mild restrictions on the use of recursion in type defi- versal (or conservativg notions of correctness found in program-
nitions. In the process, we describe a dichotomy anexigtential ming languages, where a piece of code is correct if an undesired
anduniversaltype systems, which is useful to understand some un- event is avoided und@&veryvalid instantiation of its free variables.
usual features of our type system. This quantification switch has deep consequences on the nature of
the theory that one develops, as we will discuss in the paper.

Categories and Subject Descriptors:H.2.3 [Database Manage-

ment]: Languages-Query Languages Once we have defined the error, we define the type rules aimed to

prevent it. Our type system is based on a couple of technical tools,
the collections ofocationsof wrong subqueries (Section 4.2) and
type-splitting(Section 5). We prove that, at the price of a mild re-
striction on the use of recursion, our type system infers types that
provide both an upper and a lower bound for the actual values re-
turned by a query, and captures all and only the navigation-errors in
the query.

General Terms: Languages, Theory, Algorithms, Verification

Keywords: Type Correctness, XML Queries, XML Types.

1 Introduction

The completeness result is of course lost if the language is gener-
A type system for a query language usually fulfills two different alized to a realistic one, but is still interesting, because soundness
aims: computing a type for the query resutgult analysi} and results alone do not discriminate an interesting type-system from
flagging parts of the query that do not match the structure of the one that is completely trivial.
data €orrectness analysjssuch as the use of a field name that is ) o )
not present in the database schema. Result analysis and correctOur type system, although designed to deal witrezistentiaino-
ness analysis are inseparable in traditional languages, where ertion of correctness, can be used to cheaokversalnotions of cor-
rors prevent result generation. Query languages for semistructuredrectness at the same time. We base our analysis on a tiny language,
data (SSD) and XML are different, since wrong paths just gener- #XQ, based on the UnQL, Lorel, StruQL, XML-QL, Quilt, XQuery
ate empty pieces of result. For these languages, the type systeméand others) tradition [7, 1, 13, 6].
proposed up to now only analyze the result type, disregarding, to a

2 pXQ

large extent, the navigation-correctness problem [6, 16, 3].

This situation is now beginning to evolve. In our paper [10], we |xq is a minimal query language manipulating forests of ordered

presented a first notion of error, which was a stepping stone towardyrees. |t has been designed to be the minimal core of XQuery-like

the one we propose here, based on the intuition that a query is coranguages, similarly ta-calculus for functional languages, hence

rect if it maymatch some data. Along a similar line, the mostrecent \ye choose not to include features such asvthereclause, node

versions of XQuery (starting from the August 2003 Working Draft) jgentity, document order, recursive functions. In Section 7 we dis-
cuss how to extend this work to those features.

UXQ term and query grammar is shown below. Thérandt de-
note respectively forests and trees, amdnges over a set of labels
L. Furthermoreb denotes a leaf value of a base typeforest con-
catenation ‘, is associative, arjgl f = f,() = f.
Permission to make digital or hard copies of all or part of this work for personal or . . Lo .
classroom use is granted without fee provided that copies are not made or distributed A typical pXQ query consists of &inding section {et/for),
for profit or commercial advantage and that copies bear this notice and the full citation \where variables are bound, andraturn clause that builds the
on the first page. To copy otherwise, to republish, to post on servers or to redistribute results. Variables can be eithier-variablesor let-variables for-

to lists, requires prior specific permission and/or a fee.
ICFP’04, September 19-21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

variables(X,y,2) are bound to trees(items) by afor binder. let-
variables(x,y,2) are bound to forest§ by alet binder. This dis-



tinction simplifies the formal treatment, but is not crucial to our

approach.

Forests  f = (|t] f,f

Trees t = b | I[f]

Queries Q = () |b|1[Q|QQ|X]|x
| Xchild | | Xdos ::|

| forXin Qreturn Q
| let x::=QreturnQ

In the examples we will also use the XPath-like clau¢t and
Q//1, defined as:

Q/l 2 for Xin Q return Xchild : |
Q//! £ for Xin Qreturn Xdos :: |

The semantic§Q][, of a queryQ w.r.t. a substitutiorp is defined
in Table 2.1;p maps every for-variablefree inQ to a tree, and ev-
ery free let-variablexto a forest.[1et X ::= Q1 return Q] eval-
uatesQ in p extended with the binding— [Q1]p. [Mtetreeg ) Alt),
wheretreeg f) returns the sequence of treesfofis defined as the
forestA(ty),...,A(tn) if f =tg,...,tn, hence is() when f = ().
childr(t) returns the list of all children of a treléf] (it is unde-
fined overB), dog f) returns the list of aldescendants-or-self
alltrees in aforest. f::1 selects all trees ifi whose root is labeled
l.

We will need the operatio(Q)‘B, which, for any query andloca-

tion 3, locates the corresponding subquery. The locgtignjust a
path of 0's and 1's, and the functi¢®) g follows {3 in a walk down

the syntax tree of.

DEFINITION 1 ((Q)g:). (Q)|p denotes the subterm of the query
Q located by the locatiofs, which is a sequence 6fs and1's:

(Q)\s 2 Q

(1QDop 2 (Qp

(Qo, Qu)jip 2 (Q)p i€{0.1}
(for Xin Qp return Q1)jig £ (Q)p i€{0,1}
(letx:=Qoreturn Q1);ipg = (Q)p i€{0,1}
Qg 21 otherwise

We also defindocQ) = {B | (Q)jp #L}-

3 Query Correctness

W3C states that a subquery is wrong wlitsrtypeis empty but the
query is different from() [12]. We have first to explain why we

In this section we propose our notion, and show that it is pragmat-
ically acceptable, i.e. it is quite strict (stricter variants would rule
out some common jargon) but it is niio strict (every non-correct
query really has a problem). The next sections will show how this
notion is technically acceptable, in the sense that it is possible to
design a type system that matches it very precisely.

Assume the existence of two variablescofitacts and
$mobilecontacts (we use here $ to identify variables) with
types:

$contacts : (data[phone]...| | mobilel...]])+
$mobilecontacts : (data[mobile]...]])+

where| is a union type operator (i.e., either-or), ahdndicates an
arbitrary, non-empty, repetition, and consider the following queries:

Q1 : $contacts/fone

Q2 : $contacts/phone, $contacts/mobile

Qs : $contacts/phone

Qq : $contacts/fone,$contacts/mobile

Qs : for $c in $contacts
return ($c/phone,$c/mobile)

Qg : for $c in ($contacts,Pmobilecontacts)
return ($c/phone,$c/mobile)

Q1 is wrong, since it cannot match the data, whie is correct,
since it perfectly matches the schema, i.e. the query surely matches
data conforming to the given schema. Such queries lead to the sim-
plest definition of correctness: a query is correct if it always finds
some data, for every substitution of its free variables thaglil,

i.e. coherent with the known structural informatio@z, however,
shows that this view is over-restrictive: the query is completely rea-
sonable, but it may not match any data, in case we only have mo-
biles in the current database instance. This query is typical enough
to convince us that, in this context, we have to opt for an existen-
tial notion of correctness: a query is correcthire existsa valid
schema instance that is matched by the query. This is the notion we
studied in [10], under the name ‘weak correctness’.

Qg is troublesome. It is clearly wrong, since the first path cannot
match the data, however the whole query can return a non-empty
result, hence the whole quedpesmatch some valid schema in-
stance, and is hence ‘weak-correct'.

The point is that the non-matching subquery does not generate, ac-
cording topXQ semantics, a ‘no-match-found error’ which propa-
gates up from $ontacts/fone to the whole result. Moreover, we
would notwant such behavior, otherwise the subqueries of the good
queryQ> would raise and propagate that error as well, for example
when no $obile is in the database. In a programming language
with error propagation we can say that something goes wrong iff
the whole program returns ‘error’. Here, instead, we have to talk
about the result of every subquery. We hence arrive at the following
notion of correctness (where nghmeans ‘syntactically different

cannot just adopt this as the definition of navigation-incorrecthess. from ()’):

If a type system is used to identify a class of errors, the error must be DEFINITION 2. Foreach-Exist (FE) Query Correctness: A query

defined first (e.g., a core-dump is an error), then the type rules mustQ is correct w.r.t. a set of valid substitutiom if, for eachnon-)

be introduced, and finally the adherence of the type-system findingssubquery Qin Q, there existp € ® such that, when Q is evaluated

with the semantic errors must be evaluated. A notion of error that underp, Q' evaluates to a non-empty sequence.

depends on the type rules under definition prevents the investiga-

tion of this fundamental adherence question. For this reason, weAs desired, under this characterizatio)> and Qs above

start the investigation with the definition of a notion of navigation- are correct, whileQ; and Q4 are not. QueryQg, which

correctness that only depends on the language semantics, namelyorresponds to a typical XQuery jargon, is correct as well,

on the semantics of a subquery to be empty, rather than on its typeif we apply the existential quantification to the bindings

to be empty. of the variables bound byfor: at least one binding for

$c exists (under a valid substitution forcéntacts and
LActually, W3C documents do not advertise this statement as a $mobilecontacts) that makes &/phone productive. Qs is cor-

notion of error, but only as a type rule. rect a fortiori.




I'I'able 2.1.uXQ semantics

[blo b [X]p < p(x) [Xlp £p(x)
[0Te £0) [Qu.Q2lp = [Qulp: [Q2lp Qe =1l
[Xchild: 1], 2 childr([x]p):: | [1et x::= Q return QzJlp £ [Qalp x-fau],
[xdos ::1]p 2 dog([X]p):: 1 [for Xin Q1 return Qo]p 2 Mtetree [Qu],) [Q2llpxt
dogb) 20 childr(b) 21 bl 20
dog[f]) £1[f],dog f) childr(I[f]) 2 f flzl 21f]
dos(() 20 01 £0)
dog f, /) £ dog(f),dog(f’) (F, 61 2 f1, 61
m[f]:: 1 2 0 m=# |

Once one accepts that correctness, in this context, has to be exisFE-correctness can be formally captured in terms of substitution

tentially quantified on substitutions and universally on subqueries,
there is still space to consider a last variation, #xésts-foreach
version, where the quantification order is exchanged:

REMARK 1. Exist-Foreach (EF) Query Correctness: A query Q
is correct w.r.t. a set of valid substitutior if there existp € R
such thatfor eachnon{) subquery Qin Q, when Q is evaluated
underp, Q evaluates to a non-empty sequence.

While FE-correctness only requires that each subquery makes sense

w.r.t. a different substitution, this stricter version requires the exis-

tence of at least one database that exploits every subquery. This

variation is equivalent to FE-correctness on que€esQ, but it
differs on querie€)s-Qg. In these queries, there exists no single
substitution for $ that makes both&/phone and & /mobile pro-
ductive at the same time. Sin@ andQg are sensible queries, and

extension. A nor() subquery(Q)g is correct if there exisp € K.
andp’ € Ext(B, Q, p) such that](Q) gl # ()- Indeed, if such a
substitution cannot be foundQ) s is useless to the whole query,
and is hence incorrect.

We first define the setriticalLocs(Q) of the locations of) where
we will look for pieces of wrong code.

CriticalLocqQ) S
{B | ((Q)\B = (Xchild:l) v (Q)\B = (Xdos 1))} U
{B.O| (Q)p=forXin QpreturnQi}

correspond to XQuery usage patterns, we conclude that the exist-CriticalLocs(Q) does not coincide withocgQ) because, at least,

foreach version of correctness would be too strict for our purposes.

all locations that reach a subquery that)jsnust not be tested for
non-emptiness. But we can also observe thattasubquery evalu-

So, we have shown that our notion rules out some wrong queriesates to() if and only if thereturn subquery does, hence, once we
and that its most natural immediate strengthening is too strict. have indicated that theeturn subquery has a problem, the same

Hence, we have shown that our notion is ‘maximally strict’.

We have now to show that our notion is arguably not too strict, since
it only flags queries that really have a problem. This is simple: by
definition, if a queryQ is not FE-correct, a nofy subquery@’
exists, such that for appe ®, Q' evaluates to an empty sequence.
Hence, we have a nof)-piece of code that is equivalent t and
warning the programmer makes obviously sense.

To formalize FE-correctness we defiat(p, Q, B), the set of all
valid substitutions that will be used to evaluate the subqu@jy

when Q is evaluated undep. These substitutions correspond to
p extended with the bindings introduced by each traveisador
for. Ext(p, Q, B) is not just a singleton since each subquery in the
scope of afor X in Qg Is evaluated once for each tree[iQo]p.

Since[Qq], may be the empty foresExt(p, Q, B) may be empty
as well.

DEFINITION 3. Substitution Extension

Ext(p,Q.) £ {p}
Ext(p, let X ::= Qo return Qq, 1.8)

£ Ext((p.x— [Qlp). Qu. B)
Ext(p, for X in Qg return Q1, 1.5)

2 Utetrees{[[Qo]]p) EXt((p,Yl—>t), Q1, B)
otherwise:(Q);j # L = Ext(p, Q,i.B) = Ext(p, (Q);, B)

information about the wholget subquery is redundant. A similar
consideration holds for @, Q1 subquery: once the subqueri@s
andQq have been checked, any information about the fact that the
whole Qp, Q; evaluates td) is redundant. After a complete analy-
sis, one realizes that only errors located in subqueries from which
the programmer explicitly startedesai1d/dos navigation or aor
iteration should be considered.

We can now formalize query correctness.

DEFINITION 4. Correctness of Q w.r.tR: Let R be a set of sub-
stitutions for the free variables of a query Q. Q is correct wR}.
iff:
VB e CriticalLocs(Q).
FpeR. I cExt(p, Q,B). [(Qply # )

Dually, Q has an error at patl € CriticalLocsQ) iff:

vpeR. VP €Ext(p, Q, B). [(Qplp = )
(Observe that Exp, Q, B) = 0 implies that Q has an error .)

While this notion of (navigation-)correctness is existential, one may
still extendpXQ with other operations that more naturally lead to

a universal notion of correctness, as happens with operations that
modify persistent data. In this context, a piece of code would be
correct if it were navigation-correct for at least one substitution and
update-correct for every substitution.



4 Type System
4.1 Type Environments and Types

We adopt, essentially, XDuce's type language [14]. Types and type
environments are defined as follows:

Types T empty forest type
base type
product type
union type
element type
repetition type
type variable

Environments E

o X=T,

An element type with empty contehj()] will always be abbrevi-
ated ad|[]. A type environmenE is a sequence of type definitions
of the formX = T where no type variable is bound to two types;
E(X) denotes the type bound ¥oby E.

We restrict td []-guarded type environments, that are environments
where onlyl[|]-guarded vertical recursion is allowed, asir=1[X |
()] for example; we forbid equations liké = X | () andX = X,Y.

Our type rules (Table 4.1) are based on judgments of the form:

judgments J:= E; kg Q:(T;S) |
E;THg XinT — Q:(T; )

INE; T Q: (T; S), the typeT is the result type oR, and defines
an upper bound for the actual set of values@the role ofs and
B will be discussed shortly.

To analyzefor X in Qg return Q, we compute a typd; for

Q1 (Table 4.1, rule ¥PEFOR) and use the judgmertt; I g
Xin Ty — Q2 : (T -) to compute the type 0@, through a
case-analysis on the tygde (rules (TYPEIN. . .)). By rule (TYPE-
INELSPLITTING), case-analysis stops when a tree typg| is
met, thereford [|-guardedness oE implies that recursive type-
variables do not make case-analysis loop forever. RulerEF
INELSPLITTING), and rule (TYPELETSPLITTING), use the func-
tion Split=(T), to be discussed later. For now, we simply define

Splite(T) ={T}.

Our typing judgments also return an error Setwhich contains

a set of locations with shagga, such that, for each, the sub-
query ofQ ata is not FE-correct. This is a sharp departure from
the traditional approach, where the result of error-checking is just a
boolean. We believe booleans are not enough, in a system that com-
bines case-analysis with subquery quantification. Consider, for ex-

The lack of horizontal recursion is counterbalanced by the presence@mple, the following queries over8ntacts : (data[phonel...]] |

of the Kleene star operater. This restriction is canonical, and

makes the type language as expressive as regular tree languages
[15, 11], hence expressive enough to capture the essence of DTD

and XML Schema [15, 18, 17].

Type semantics is standard] g is the minimal function from types
to sets of forests that satisfies the following monotone equations
(the function is well-defined by Knaster-Tarski theorem):

[0le = {0}

[Ble = (b}

[T.Te 2 {f.¢ | fe[Tle. f'e[T]e}
[TITe 2 [Tleul[T]e

ITle = {[f]] fe[Tle}

[T+]e 2 {0, f,....fn | n>0, fic[T]e}
[X]e 2 [EX)]e

An environmentE is well-formed only if it isl[]-guarded and de-
fines type with non-empty semantics, i.e. empty-type definitions
like X = I[X] are not allowed. This condition admits an easy syn-
tactic test (see [9] for details). The non-emptiness condition is not
essential, but simplifies the type rules. In a nutshel; i, andT

may be empty, ther: T I~ for ¥ in X return Q may be incorrect
just becausd is empty, and the type rules would have to check
this. A typeT is well-formed in an environmeii if every variable

in T is defined inE.

4.2 Analysis offor and Locator Sets

The type assignments for the free variables of a query are defined

by means ofrariable environmentE of the form:

Variable Environments ' == ()| x: T, | x:T,T

A variable environmenk is well-formed, w.r.t. an environmei,
if no variable is defined twice, if every type is well-formed kn
and if every for-variable is associated to a tree typéT('] or B).

data[mobilel[...]])+.

Qs : for $c in $contacts

return ($c/phone,$c/mobile)
Q7 :for $c in $contacts

return ($c/fone,$c/mobile)

Because of universal quantification on subqueries (Definition 4),
a query (Q,Q) is FE-incorrect iff eitherQ or Q is. Be-
cause of existential quantification on substitutions, a query
for yin Xreturn Q is FE-incorrect iffQ is incorrect for every
binding ofy. Hence, a case-analysis-based type checking algorithm
would compute the error-checking function H®) as follows:

Erfge,(1y1,) (Q7)
= Ave(r,, 1} (ErgeT ($¢/fone) v Errge. 7 ($¢/mobile))

As expected Q7 is deemed wrong because for evéliyat least
one of &/fone and % /mobile is wrong. Unfortunately, the cor-
rect queryQs is deemed wrong as well: since each of the sub-
caseslata[phone|...]] anddata[mobilel...]] makes one of the sub-
queries incorrect, the external conjunction returns true.

Erfge (1,7,) (Qs)
= ATe(1,.1} (Erfge.T ($¢/phong V Errge. 7 ($¢/mobile))

The problem cannot be solved by playing with the boolean op-
erators, since they exactly correspond to the quantifications in
the definition of FE-correctness. However, we can generalize
booleans to sets of locations, and use the following equations,
where ErrLeafQ) returns the location o whenQ is wrong.

Erfge: (1,/1,) (Qs)
=Mrem,ny ({ErrLeakt($c/phong}tu
{ErrLeafy 1 ($c/mobile})
Errge:(1ym,) (Q7)
=Nre(n1y ({ErrLeaker($c/fone)}u
{ErrLeafy 1 ($c/mobile})



This time Er(Qs) is the intersection of two different singletons  Tarski theorem:
of locations, hence is empty. This corresponds to the fact that no

subquery is always returning an empty result, hence no subquery is O~e() L true
incorrect. However, E(Qy) is the intersection of two sets that both I[T] ~e () A false
contain the location of &/ fone. This signifies that, for every well- A
typed substitution for & the subquery &/fone is always empty, B~e () j false
hence the subquery is incorrect. TU~() = T~e(0AU~e()
Tere() 2 Tre()
A

N , TIU~e() = Tr~e(AU~E()
The type rules are listed in Tables 4.1 and 4.2. We describe them X A E(X
by referring to the example. ~e () = E(X)~e()

Rule (TYPEFOR) starts the case-analysis, as previously discussed, Correctness of this definition is proved by the following theorem.
propagates the error sét, and adds an err@.0 if the type ofQ;

only contains the empty foresg (s a current-location parameter | cyma 1 (EMPTY-FORESTFTYPE CHECKING)

propagated and updated by the rules). It uses the auxiliary judg- _ ; ; ;
mentT ~g (), which checks whethdT [ = [()]e, and is defined il;ogany well-formed environment E and type T well-formed

below?
T~e() & [Tle={0}

Rules (TrpelNUNION) and (TyPEINCONC) perform the case

analysis, and only put i those locations that are wrong in both

The judgmenE F T ::1 = U is defined by the rules in Table 4.2.
branches.

LEMMA 2 (TERMINATION OF TYPE FILTERING). For any la-
bel I, type environment E well-formed and types T and U, the back-
ward application of the type rules tolE T :: | = U terminates.

Rule (TYPEINELSPLITTING) stops the case-analysis, inserts the
assumptiork : m[T] in I, and falls back to standard type-checking
(recall that we assume8plitz(T) = {T}). At this point, rule
(TyPECHILD) is applied. It requires the type @&fto be a tree type
m(T'], usesE + T'::1 = U (defined below) to restrict the content
type T’ to the tree types with structuté ], and puts an error lo-
cationp in S iff the restricted typeJ is equivalent to the typé) EFTl=U & [Ule={f:l]| fe[T]e}
(which is an easy test). Rule {PEDOS) is similar, but, instead of

using the content typ®', it extracts all the node typg#Jy,...,Un} .

that are reachable frof, using the function Tree$T) definedbe- 4.3  Properties of the Type System

low, and defines a new typd’ = (Uy | ... | Up)*. U’ is the type of

LEMMA 3 (TYPEFILTERING CHECKING). For any label I,
well-formed type environment E and type T well-formed in E:

any forest that only contains nodes whose type is one obtise We provisionally assumed th&plitz(T) = {T}, which results in
hence is an appropriate type for the forest of all descendants of aa completely standard (PPELET) rule. This is sufficient to obtain
tree of typeT. The type ofxdos :: | is obtained by restricting’ the canonical ‘soundness’ property (Theorem 4): types are upper
to the tree types with structut@.]. Rule (TYPELETSPLITTING) bounds for the set of all possible results. (This implies that this
is standard, since we are assuming ®Bglitz (T) = {T}. We will type system can be used to cheskiversalnotions of correctness,
later relax this assumption. though we will not exemplify this fact here.)

We now define the auxiliary function Tregd'), the predicate DErINITION 7. R(E,I'): For any well-formed type environment
T ~g (), and the auxiliary judgmen&s+ T :: | = U. E andl” well-formed in E, we define the set of valid substitutions as

RE,N={p | x—fepeXx:Telrrfe[T]e
DEFINITION 5. Subtrees Type Extraction: For any E well-formed _( . )=tel . ( . [Tle))
and T such that E- T Def, we define Treg$T) as follows (well- ~ Wherex is either a for-variable or a let-variable.

defined by Knaster-Tarski Th.):

THEOREM4 (UPPERBOUND). For any well-formed
environment E[" well-formed in E, and well-formed Q:
Trees:(()) 20 E; M- u E,l u
; (U5 0) A pe M) = S
Tes® 2 {B) pQ:(Ui-) APERET) = [Qloe[Ule
Trees(I[T]) £ {I[T]}UTreeg(T) _

T TU A g TUT U The next property one expects is some form of ‘well typed terms
reeg(T,U) N reeg(T) UTreeg(U) never go wrong’ property, that specifies that every run-time error is
Treeg (Tx) = Trees(T) detected by the type system. But in this context we believe that one

T TIU) 2 71 TUT U should first look for the opposite implication ‘we will never bother
reeg(T |U) A reeg (T) UTreeg (V) you with a false alarm’. We expect that a type system based on our
Trees:(X) = Treeg(E(X)) proposal would be used as an auxiliary tool in a programming envi-

ronment based on a commercial language, and that the programmer

DEFINITION 6. Empty-Forest-Type Checking: For any well- Would be allowed to ignore its error messages. As a consequence,
formed environment E and type T well-formed in E, we define MOSt programmers would justignceé the error messages, if there
T ~g () as the minimal function (assumirialse < true) that is the doubt that they do not correspond to real errors, but are just a

respects the following set of equations, well-defined by Knaster- figment of the type rules.

Hence we believe that, in this context, the essential ‘sound-
ness’ property of error-checking is that expressed by Theorem 5,

2The type() is not to be confused with the empty type. Itis a which goes the other way around with respect to the standard
singleton type, which only contains the empty forest. ‘progress+subject reduction’ combination.




I'I'able 4.1.Query Type Rules

(TYPEEMPTY)
WHRE; Ttg 0:(0:0)

gl
Eirkg 0:(0:0)

(TYPEVARLET)
X:T el WHE; T g x:(T; 0))

E; Mg x:(T; 0)

(TYPEELEM)
E;MFpo Q:(T;5)

E:Mkp QI (I[T]; )

(TYPELETSPLITTING)
E;Thpo Qi (T )
Splitz(T1) = {A1,...,An}

E; I x:AiFg1 Q2 (Ui; S)

(TYPEATOMIC)
WHE; I b: (B; 0))

E; It b:(B;0)

(TYPEVARFOR)
X:T € WHE; kg x:(T; 0)

E; Mg x:(T; 0)

(TyPEFOREST)
E;lFpo Qu:(T1; $1)
E;lMkp1 Q2 (T2 $2)

E;Thg Q,Qz: (Th, T2; $1U52)

(TYPEFOR)
E;lFpo Qu:i(T1; $1)
E; T FB XinTy — Qg2: (Tz; 52)
S = if Ty ~g () then{B.0} elsed

E kg let x:= Qrreturn Qz: (Ur | ... |Un; SUNiZ1 nSi)

(TYPEINEMPTY)
WF(E; I''Fg Xin () — Q:((); B.CriticalLocgQ)))

E;Thg Xin () — Q:((); B.CriticalLocs(Q))

(TYPEINELSPLITTING)
Splite (M[T]) = {Aq, ..., An}
E; T, X: A Fp Q: (Uly SI)
E;Thg XinmT] — Q:(Uz|... |Un; Nizp.nS)

(TyPEINCONC)
E;Mkg XinT — Q:(T'; 51)
E; kg XinU — Q: (U, %)
E;ltg XinT,U — Q:(T",U; $1n%2)

(TYPEINVAR)
EX)=T
E;MgXinT — Q:(U;9)
E; Mg XinX — Q:(U; 8)

(TYPECHILD NOMATCH)
WHE; I'tg Xchild::l:(U; 5))
X:Tel NT=B
E; 'tpg Xchild:l:((); B)

(TYPECHILD)

WHE; ' g Xchild::l:(U; $))

X:TeErANT=mT|

EF T :l=U

S = if U ~g () then{B} elsed
S Xchild::l: (U;S5)

E; I'tpg for Xin Q return Q2 : (Tz; S1US2U.S)

(TYPEINATOMIC)
E;X:BFg Q: (U; 5)
E;[tHg XinB — Q: (U; )

(TYPEINUNION)
E;TFg XinTy — Q: (T4; 81)
E; kg XinT, — Q: (TZ’; $2)
E; I FB Xin Ty ‘ T, — QZ (T]f | TZ/; 51ﬁ52)

(TYPEINSTAR)

E; Mg XinT — Q:(U; )
E; Mg XinT* — Q: (Ux; .5)

(TYPEDOSNOMATCH)
WF(E; I' Fg Xchild:1:(U; S))
x:Tel NT=B
E; I'tpg Xdos :1:((); B)

(TyPeDOS)
WF(E; I' Fg Xdos 21 : (U} 5))
x:Tel AN T=m[T']
{U1,...,Un} = Treeg (m[T’])
U'=(Ur]... |Up)x
EFU l=U
S = if U ~g () then{B} elsed

E; I'tg Xdos:1:(U; $)

I'I'able 4.2 Filter Type Rules

(MATCH)

EFI[T] 1 =1[T]

(FORESTFILT)
EFTul=T E-U:l=U’
EFT,U:l=T, U/

(UNIONFILT)
EFTul=T E-U:l=U’
EFT|UzI=T U

(NOMATCHFILT)
T=BVT=mT]

EFT:l=()
(STARFILT)
EFT:I=U

EF Tl =Ux

(VARFILT)

EFEX):l=U

EFX:l=U




THEOREM 5. (Soundness of Existential Error-Checking) For any inferred type can be used in the standard way, so that a universally-
well-formed environment H, well-formed in E, and query Q: wrong subexpression will not match any type rule. For example,
we may have an intege¥ operator and the following rule.
E;lkg Q:(U; 8 ANBaes =

i - (TyPE+)
= Q has an error att w.r.t. R (E,I) E: [Fgo Q: (Int; S)
| | . _ E;Mkpa Q: (Int; 8"
4.4 Existential vs. Universal Error-Checking E:Mhg Q+Q : (Int; SUS')

It is now time to cite some standard theorems that one | githerQ or Q' has a type that is different fromt, the expression

may expect to hold, and which do not. Recall query ,: : i i ;
$contacts/phone from Section 3, and observe that it stops be- mt”‘nTolt type-check, nor wil it type-check if one of them has a type

ing correct if one substitutes$ntacts with a query, or a term, of
type (datamobild...]])+, although this is a subtype of the original
type. This means that the canonisalbsumptiorand substitution
properties fail for this type system.

In such a system, the Upper Bound Theorem would imply the tra-
ditional Error-Soundness theorem, going the other way round with
respect to Theorem 5.

PROPERTY1 (SUBSUMPTION). In a type system that only  T.eorem 6. (Soundness of Universal Error-Checking) For any

checks a universally quantified notion of correctness; iKTT is a B ; _ : .
subtype relation such that & T = [T']e C [T]e, then v(;t:ell formed environment H, well-formed in E, and well-formed
E;THe Q:(U; 0) A (x:T)el A E;rg Q:(U; ) =
AE; T Qi (T 0) AT/ <T = Q has no universal-error w.r.tR (E,I")

(where Q: (-; 0) means that Q has no static type error) implies

5 Type-Splittin
E;Tke Q{x—Qp}: (U0 AU <U yp P 9

5.1 Motivation and Definition
PROPERTY2 (WELL-TYPED SUBSTITUTION). In a type sys-

tem that checks a universally quantified notion of correctness, We provisionally assumed th&plitz(T) = {T}. This simple def-
. C- _ inition is enough to obtain soundness of type checking and error-
BiMFe Q:(U:0), peR(ET), and [flp =p(x) checking. These are the canonical properties that are proved for
(where f is a term of the subgramm@r | b | 1[f] | f, f') implies any type system, but they are not very informative: any system that
associates the universal type to any expression, and never finds any
E;Mhe Q{x—f}:(U; 0). existential error, enjoys them as wélFor the core-languageXxQ,

we can actually aim for a much stronger property: a type system
that iscompletein a sense to be made precise later, and that is able

Subsumptiomndsubstitutionare consequences of the universal na- catcheveryFE-error. (No other proposed type system enjoys this
ture of the errors one looks for in traditional type system. There, property of “completeness over the core”.)

every instantiation of a variable with a type-correct value is guar-
anteed not to fail, hence, if we substitute the variable with a type-

' - O Our provisional type system is not up to this aim. It is not precise
correct expression, no error will arise. P yPe sy P p

enough when, for example, there are variables that occur more than

. . . once (on-linearvariables) and with a union type. For example,
Subsumption derives from the universal nature of the checked er-.nsider the (artificial) typ& = datgmobild]« | phond]«], and
rors as well: if no value in a type creates problems, a smaller type o query '

creates no problem a fortiori.
o ) ) ] ) x/mobile,x/phone.
Substitution and subsumption are so deeply ingrained in the tech-
nigues we use to design type systems and to prove their propertiesWhenx has typeX, this query yields either a sequence of elements
that their failure implies that nothing should be taken for granted. mobil€] or a sequence of elemerggbond]. Instead, as in XQuery,
For example, the fact that a type is just an upper bound of the setour type system infers a tygenobild]«, phond]x), which also con-
of values returned by a query (Theorem 4) creates no problem in atains sequences with bothobil€g] and phond] elements.
system that enjoys subsumption: whatever can be proved using this
upper-approximation would be true a fortiori if one used a better Our provisional type system does not guarantee completeness of
approximation (i.e., a subtype). On the other hand, with an existen- error-checking either. For example, consider the typeca[] | b[]]
tial notion of error, when types become smaller, more errors appear,and the query:

hence an upper-bound approximation is going to mask some prob-
lems. Qg =forxiny/areturny/b

In the end, we have been able to design a framework where thewherey is of typeY. (This code returns a sequenceyob iff y
pieces fit together, but some unusual features will show up. The has a childa, and returnsg) otherwise.) The query is FE-incorrect,
fact that our notion of ‘soundness of error-checking’ (Theorem 5) as there is no substitution that makes the subqygbyyield a not-
goes the other way round with respect to canonical type systems isempty result: ify is of typecfa[]] theny /b cannot return any tree,

a first example. and ify is of typec[b[]] theny/a is empty, henceg /b will not be
evaluated at all. Nevertheless, our provisional type system validates
4.5 Combining Universal and Existential 3In the traditional view, soundness means: well-typed programs

never go wrong. This is enjoyed by any type system that consider
The machinery we presented can be actually used to check bothevery program as ill-typed, since it finds every universal error in
existential and universal notions of correctness. To this aim, the every program.



the query as correct. This is because the two usgsaoé deemed

query, may be worth studying. However, we claim that a simpler

acceptable by exploiting two separate, and incompatible, branchessolution is acceptable in practice, based on a mild restriction on the

of the union type ofy. (Similar phenomena happen in all related
type systems we are aware of, including the XQuery type system.)

use of recursion. We restrict to environmeBtsnamelyx-guarded
environments, for which recursion is guarded bytsgpe construc-
tor, hence ruling out th¥ type above (see [9] for details). Under

We solve these problems by defining a type system that, when athis restriction, error-completeness is obtained by unfolding recur-
variable with a union type is introduced, performs a case-analysis sion untilx is met, and “pulling out” only the union type construc-
on the different cases of the union, even when the union type oper-tors that are found outside thgDefinition 8).

ator is hidden inside the type (aséfa]] | b[]]). In our setting, this
amounts to defining a non-trivial version of tBelit() function.

We will prove that the resulting type system detects all FE-errors,

Hence, we have to prove that an assumptionyikee[a[X] | b[X]]),
where union types are guarded fydoes not need to be split any
further. Splitting was needed, for que@g, to detect a situation

and infers a type that provides both an upper and a lower bound forwhere the correctness 0Qs); depended on the existence of two

the set of all possible query results (Theorem 14).

mutually incompatiblgathsc/a andc/b inside the type of. The
key observation is the fact that these paths are not incompatible

Of course, the existence of any kind of correct and complete static wheny has typec[(a] | b[])+], sincec(a[],b[]] is a legitimate value
analysis also shows that the language is, in some sense, poorfory. The non-existence of incompatible paths in types where union

Specifically, our result relies on a monotonicity propertypiQ
(Lemma 10) that would not hold in most realistic extensions of the

language. Still, the existence of a core where the analysis is com-

is guarded by is formalized in Lemma 12, and Theorem 16 shows
that this property is enough to guarantee error-completeness.

plete is an important result, because it formally measures the quality we claim that our restriction is “mild”. Indeed, it is respected by

of the match between our notion of error and our type system.

all the schemas reported in the W3C document “XML query use
cases” [8].

The error-complete approach is based on enumerating the branches

of the union types of typed variablesp(itting the type), performing

an independent analysis for each branch, and combining the resultsDEFINITION 8. Splitz (T): If E is x-guarded, then:

The amount of splitting is governed by the funct®plitz (T) (Def-
inition 8), which rewritesl to asef{Ty,...,Tq} suchthafly | ... | T,

is equivalent toT. Essentially,Splitz(T) rewritesT in order to
make| be the outermost type operator. For example, tjpg | b[]]

is split into{c[a]]], c[b[]]}, and the querfs presented above is an-
alyzed once witty : c[a]]] and once withy : c[b[]]. The subquery
(Qg)‘l is (correctly) flagged as wrong, since the location 1 is in the

error set of both runs of the analysis.

By splitting a type more and more finely, a more precise type analy-

sis can be obtained, at the price of a more expensive type-checking
process, since the rest of the query is checked once for every addend

generated by splitting.

Our key result is the fact that splitting can be stopped in front-of
types Gplite (T+) = {Tx}), and still the new type system enjoys the

Splite(()) = {0}
Splitg (B) £ {B}
Splitg (Ux) £ {Ux}
Splitg (X) £ Splitg (E(X))
Splite (T | U) 2 Split (T) USplite (U)
Splite (1[T]) = {I[A] | A€ Split(T)}
Split=(T,U) 2
2 {(A,B) | Ae Split=(T) AB € Splitz (U)}

completeness properties formalized by Theorem 16 below. Hence,sp“tE (T) is well-defined by Knaster-Tarski theorem. Hfis x-

for example:

Splitz ((datalphone|...] | mobilel...]])x)
= {(data[phone|...] | mobile[...]])*}

Splitz (phone|...] | mobilel...])
= {phone|...]; mobilel...]}

Splitz (@[ (b[], c[]) | (d[],&[})])
= {a[b[],c{l]; ald(],{l]}-

The definition ofSplitz (T) is non-trivial because of recursive type
variables. Consider the type= a[Y] | b[Y] | () and a type assump-
tiony:Y. Every time we unfold/, new instances dfappear, which
have to be “pulled out” bplitz (T ), and which generate new cases
to analyze. We would like to unfoM just once, and to analyze the
query just three times, trying: a[Y], y: b[Y] andy: (). But, con-
sider the following generalization &s, where(/a)" stands fom
consecutive occurrences (.

Q"=forxiny(/a)"/areturny(/a)*/b

To catch the errolY must be unfolded 4 1 times. This means that
we cannot decide how deepfyhas to be unfolded before looking
at the query under consideration.

A more complex type system, where unfolding depends on the

guardedSplitz (T) can be computed by a standard top-down recur-
sive implementation of the definition above:guardedness dt
implies that thex case will break any potential infinite loop due to
the recursive definition of a type variable.

Splitting preserves type semantics.

LEMMA 7. For eachx-guarded environment E and type T defined
inE:

[T]e Uaespiit (1) [Ale

5.2 Simulation and Query Monotonicity

To characterize the precision of the type system, we define now a
pre-order relation on forests C f/, forest simulation This pre-
order compares forests as if they were sets of trees instead of se-
quences, so that, for exampég], a[| C a[] anda(], b[] C bf[],a[], but
implies path inclusion, so that #/b is a path off and f C f/,
thena/b is a path off’ as well. Simulation has the property that,

if a query is correct when run with = f and f C f/, then the
guery is correct when run witl = f/. Simulation allows us to
formally specify that our type inference technique is precise ‘up-to-
simulation’, and is a key tool in our proof of error-completeness.



DEFINITION 9. Forest Simulation £ f/: Simulation fC f’ is the
smallest relation on forests that respects the following conditions:

bChb
|[f;|_] EHfz] = fi1C fo
fCf < Vtetreegf). 3t etreegf’). tCt

LEMMA 8. Foreach f and f:

(fCPAT£()) = 7#0

Lemma 10 states thaXQ queries are monotone with respectio
extended to substitutions in the obvious way:

PP “qer Vxedomp). p(x) Cp'(x).

We are not talking here about the usual (trivial) set-of-values mono-
tonicity property, that states that, if the set of values that the variable
$xis allowed to range over increases, then the set of values that ca
be assumed by the query result increases as well. We are statin
here a much stronger property that specifies that queries are mono
tone with respect to a pre-order that is defined on values (forests, in
this case), something similar to strictness properties for functional
languages. This strong property is not needed in order to prove

soundness results, but is crucial for completeness.
Query monotonicity depends on monotonicity of axis steps.

LEMMA 9 (MONOTONICITY OF AXIS STEPS.

vi f/. fCf = f:

LEMMA 10 (QUERY MONOTONICITY).
vQ.p.p. PP = [Qlp C [Qly

Query monotonicity implies monotonicity of substitution exten-
sion.

LEMMA 11 (EXTENSION MONOTONICITY).

For any well-formed query Q and pair of substitutions
and p, such that F(Q) C dom(p1) = dom(py) and p1 C pa,
VB € Locq Q).

Vp' € Ext(p1, Q, B). 3p” € Ext(p2, Q, B). p' C p”

Finally, Lemma 12 shows that, after splitting, all the types we get
are closed for finit€-upper-bounds. Very informally, this captures
the notion of ‘no mutual exclusion’ among paths, and implies that,
if we use substitutions based on differdtis in different branches

r(::]LFHEOREM 14

LEMMA 12. For any type A defined in a-guarded environment
E, if Splite (A) = {A} then,

Vf,...,fn€[Ale. 3If €[Ale. iC fi=1...n

5.3 Soundness and Completeness of Type In-
ference and Error Checking

The system enjoys soundness and completeness of type inference
and error-checking. The full proofs can be found in [9].

THEOREM13 (UPPERBOUND). For each

well-formed E, and” well-formed in E:
E;THg Q:(U; ) ApeR(ET) = [Q]p < [U]e

query  Q,

We can finally prove that, wheB is x-guarded, type inference is
complete up-to-simulation, and error-checking is complete.

(LOWERBOUND). For each

~-guarded E, and” well-formed in E:
E;lp Q: U;.) = Vie[UJe. peR(ET). FC[Qlp

query  Q,

THEOREM15 (SOUNDNESS OFERROR-CHECKING). Foreach
query Q,x-guarded E, and” well-formed in E:

E;THg Q:(58) =
= (B.o €S = Qhasanerroratt w.rt.  (E,I))

THEOREM16 (COMPLETENESS OFERROR CHECKING). For
each query Qx-guarded E, and” well-formed in E:

E;TH Q:(5S) =
= (Qhasanerrorap w.rt. R (E,l') = B.aes)

5.4 The Cost of Case-Analysis

Our type system uses case-analysis to type-check for-iteration,
and to examine the alternative types generated by type-splitting
when new variables are inserted into the environment. This
case-analysis approach is not the only possibility to type-check
for Xin Q1 return Qp. XQuery, for example, promotes the type
of Q1 to a quantified disjunction of tree types [12], and then ana-
lyzesQ, just once, associatingwith the disjunctive type. While
this makes type checking more efficient, it makes it far less precise.
For example, ifx is a variable of type|a[],b[],c[]], the subquery

of for yin X/ * returny (wherex matches any label) would be
analyzed once under the assumptjan(a]] | b[] | c[])+, becausg

may assume one of tt&], b], c[] types (hence tha]] | b]] | c[]) and

y will be evaluated more than once (hence #e The query will

then have typéa(] | b[] | c[])+, and thus, its use in a context where
the typea[], b[],c[| is expected, would raise a static error. While this
can be mitigated by the use of some dynamic typing, we think that
a type system where record types are treated with a greater preci-

of a typing proof, we can then combine all these branches, becausesion is definitely worth studying. (In our type system, the query is
one upper-bound of thosk-based substitutions exists that is ac- assigned its exact typ], b[], c[].)

ceptable as well. (You do not find this lemma in the canonical type

papers, because it is strictly related with the existential interpreta- Our techniques are, in principle, quite expensive: the natural imple-
tion of typing.) This is the key lemma that allows us to prove that mentation of nested case-analysis is a nested loop, whose execution
this type system is “complete”, i.e. that, if a typeis inferred for time is exponential with the nesting level.

a queryQ, every element o) is actually a possible result f@p,

moduloC (Theorem 14). The combination of soundness and com- However, we have examined many queries and always found that
pleteness of type inference gives us a soundness-and-completenegbey can be type-checked without nested case-analysis, thanks to
property for error-checking as well: our type system discovers all their adherence to some restrictions on the shape of the query and
and only the FE-errors of the analyzed query (Theorem 15 and The-of the involved types. In this section we describe these conditions,
orem 16). and explain why they make type-checking feasible.



We start with for-iteration case-analysis, assuming that no type-
splitting takes place.

We say that a type is label-deterministic iff, in its syntax tree, it
is never the case that, after expanding recursive types with their
definitions, two subterms[T] and1[U] are found with the same
label1 but two different content-typesandu. Label-deterministic
types are extremely common; every type defined by a DTD is label-
deterministic.

In a nutshell, assuming that no type-splitting takes place, the follow-
ing query still requires an exponential time to be type-checked, be-
cause the subquery that starts withr $x2 has to be type-checked
twice, once under the assumptiprl : a1 [T1], and once under the
assumptiorsx1:b1[U1], and every othe$xi duplicates the needed
time as well:

for $x1 in ( al[...], bl[...] )
%5; Sxn in ( an[...], bnl[...] )
return ($x1,...,5xn)

However, if the type ofsx1 only had one tree type at the top
level, for example if it wereal[T1], or al[T1]*, or al[T1] |
(al[T1],al[T1]), then the subquery could only be type-checked
once, under the assumptiérl:al[T1], hence this variable would
not contribute to the exponential grow of type-checking complex-

ity.4

Hence, the following query can be type-checked efficiently, if all
the free variables have label-deterministic types, and if the final ex-
pressiore is either for-free or has in turn the same shape:

for $x1 in S$yl/a//b/c

fé£ $xn in Syn/c/*/e
return E($x1,...,5xn)

Intuitively, the type of$yl/a//b/c is a combination of instances
of a unique type:[T] using |’, ), and ‘*": the c[] comes from
the final step/c of the path, and every is associated with the
samer since the type ofy1 is label-deterministic. Hence, the rest

<!ELEMENT content (#PCDATA | anesthesia | prep
| incision | action | observation)*>
anesthesia (#PCDATA)>

prep ( (#PCDATA | action)* )>
incision ( (#PCDATA | geography

| instrument)* )>

action ( (#PCDATA | instrument )* )>
observation (#PCDATA)>

geography (#PCDATA)>

instrument (#PCDATA)>

<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT
1>

In this DTD, union is intensively used to specify element-contents.
However, it is always-guarded. Hence, each element type reached
by case-analysis is never actually split, sirsgglite (m[(T)*]) =
m[(T)«]. Actually, we have found a few schemas where union is
not x-guarded. We report here the only such example from [8].

<!ELEMENT
<!ELEMENT

bib (book* )>

book (title, (author+ |editor+ ),
publisher, price )>

book year CDATA #REQUIRED >
author (last, first )>
editor(last, first, affiliation )>
title (#PCDATA )>

last (#PCDATA )>

first (#PCDATA )>

affiliation (#PCDATA )>
publisher (#PCDATA )>

price (#PCDATA )>

<!ATTLIST
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

The union (author+ | editor+ ) is notx-guarded, but its two
immediate componentsuthor+ andeditor+ are. By looking at
repositories of schemas over the Web we have verified that when
union is notx-guarded then it either involves a fewguarded types

(as above) or types that contain a very small number of nested types.
Hence, splitting always produces very few types. An example of
types with low degree of nesting of netguarded types is given

by the following DTD, which describes time stamps used in Unix
systems management.

<!ELEMENT TimeStamp (DateTime |

(Seconds, Microseconds?))>
(#PCDATA) >
(#PCDATA) >

<!ELEMENT DateTime
<!ELEMENT Seconds

of the query can be type-checked just once, under the assumptior!ELEMENT Microseconds (#PCDATA)>

$x1:c[T]. The type ofsyl/a//b/c can be efficiently computed as
well. Everys$yi with i > 1 may be either a free variable or it may
be $x§ with j < i, hence we also have to observe that all{he’s
are associated with label-deterministic types.

This class of queries is formally defined in [9]. This class is big
enough to include most of the queries presented in [8]. If a query
is out of this class because it contains just a couple of ‘exotic’ it-

The other cases we have found of mejuarded use of union types
are not far from this one. All of them feature a very low degree of
nesting. We suspect that, in general, deeply nested-gotarded
unions are difficult to work with in practice, hence are avoided by
schema designers.

We plan further investigations about the patterns, in types and

erations, the performance of the type-checking algorithm degradesqueries, that we have discovered, since several applications may

gracefully. Of course, if the query systematically differs from that
query, and is deeply nested, type checking becomes unfeasible.

for-iteration. By analyzing the types used in [8] and other reposi-

tories over the Web, we have verified that, in the vast majority of

cases, whenever union is used to specify an element-content, the
union is x-guarded. Therefore, in these cases, type-splitting be-
haves as the identity mapping, i.e. types are not split. For example,
consider the following DTD that we borrow from [8]:

<!DOCTYPE report [
<!ELEMENT report (section*)>
<!ELEMENT section (title, content)>
<!ELEMENT title (#PCDATA )>

4In the third cased1(T1] | (al[T1],al[T1])), the trivial al-
gorithm would actually type-check the subquery three times under
the same assumptiagrxl:al[T1], but this can be easily amended
using standard memoization techniques.

profit from these regularities.

6 Related Work

ur Previous WorkThe work we presented in [10] was a first step
oward the system we have here. In that work we compared the
universal and existential notions of correctness, but the notions of
weak and strong correctness we proposed were, respectively, too
weak and too strong. Weak correctness accepted queries such as
Qg : $contacts/fone, $contacts/mobile from Section 3, while
strong correctness refused queries [P $contacts/phone.

XDuce XDuce [14] is a typed, functional, Turing complete pro-
gramming language. It is based on an ML-like pattern language
that implements @ane-matctsemantics, i.e. every pattern, instead
of collecting every matched piece of data (as in standard query lan-
guages), only binds the first match. XDuce is nearer to a program-
ming language than to a query language, but we consider it here



since it is an example of typed language for XML that explicitly be discarded too lightly. For a programmer, knowing that a condi-

provides a notion of type correctness. XDuce suppotirigersal tion is uniformly false is as useful as knowing that a subquery is

notion of correctness for patterns: functions are correct if and only always empty. Its undecidability in realistic languages is not really

if their bodies specify a matching pattern (a function case) for all a problem, since any type-checking algorithm is approximate in a

possible alternatives described by the input type. As discussed inreal language.

the paper, we believe that this notion of correctness, although well

suited for a programming language, is too restrictive for an XML For an alternative definition, let us define, for each quéry

query language. wheredrop(Q) as the query obtained by removingatereclauses
from Q. A less heretic notion of type-error can now be defined, by

CDuce CDuce [4] is a language that derives from XDuce but adopts changingQ’ into wheredrop(Q') in our definition (from Section 3):

a more sophisticated type system, featuring function types, intersec-

tion, and negation types. CDuce is not specialized for XML, butthe REMARK 2. Where-dropping FE-Query Correctness: A query Q

typical XDuce idioms can be easily encoded. CDuce performs so- is correct w.r.t. a set of valid substitutior® if, for eachnon<)

phisticated correctness analysis, but it adopts the same universallysubquery ®in Q, there existp € & such that, when Q is evaluated

quantified definition of correctness as XDuce: type checking en- underp, where-droQ’) evaluates to a non-empty sequence.
sures that if a function is well typed thenerypossible input value

is matched by at least a branch pattern in the function body. We are
working with the CDuce team to extend our approach to that lan-

guage and the derived query language CQL [5], and the preliminary
results are very promising.

Since anyQ' appearing in thevherecondition is a subquery d,

this definition does not ignore where clauses altogether. It checks
that no navigation-error is hidden inside a where clause, but, when
the correctness of the whole FLWR expression is considered, the
) ) i filtering action of thewhereclause is ignored.

XQuery XQuery type inference [12] recursively infers a type for

every subexpression, starting from the types known for the input \yjje we are more attracted by the where-dropping notion of cor-
variables. As we discussed in Section 4, it does not perform type e tness; the relationship between the two alternatives is subtle, and

case-analysis, which makes type inference faster, but makes the iny;e pelieve it is worth investigating. Aifithen elseconstruct would
ferred types less precise. Very recently, a new rule has been addeqgjse similar issues.

to XQuery type system that states that it is a static error for any

expression other than the empty-sequence expression to have the‘rhe presence of ahere(or if then elsg clause would have another

empty type. This new rule is not sufficient to achieve error-checking ;.. 5rtant (and orthogonal) effect on the type system: the language
completeness, because of the minor precision of XQuery type infer- would lose monotonicity. Consider the following query:
ence. If the system were extended with union-types case-analysis in ' )

order to have a higher precision, then the error-reporting approach for $x in a] where not empty($y) return $x
should be extended with some technique related to our locations-set
approach. When the value of $ grows from an empty to a non-empty se-

quence, the semantics of the query goes down from non-empty

In the previous versions of the standard, no navigation-error- {0 €mpty. Hence, Lemma 10 stops holding, and we lose semi-
checking was performed. As we stated in the introduction, even Completeness of type-inference (Theorem 14) and completeness of
in absence of explicit navigation-error-checking, the inferred type ©rror-checking (Theorem 16). This is not really a problem. We did
can point out the presence of navigation-problems, but with some Nt define a complete system over the monotone core because we
limits. When no match is possible for a subquery, the type sys- Noped to extend completeness to a realistic language; indeed, no
tem will typically (but not always) assign an empty-sequence type complete semantic analysis can be decidable on a Turing-complete
to that subquery. This empty-sequence type may become the fi-lAnguage. Completeness over the core is important because it is a
nal type of the query, hence telling the programmer that something formal way to measure the precision of the type system.

went wrong. But if the subquery is inside an element constructor
that accepts empty content, or is combined with an expression with
a non-empty type as inetror,Q”, then the final type of the query
will not be an empty-sequence, and the error may be completely
hidden.

We ignored issues related to “document order”, such as the fact
that any path expression, in XQuery, returns its result in document
order. If the type of the expression has the sh@Re ... | Tn)x,
where all theT;’s are tree types, the type does not change when the
sequence is re-ordered. Otherwise, let us use Uppegd(Egso

k-pebbles proposaDan Suciu et al. develop a formal framework  genote the set of the tree types of the trees that can be found at the
for the definition of result analysis tools[16, 2]. These papers de- o, |evel of a forest of typd :

fine some upper bounds to what can be accomplished by result type
analysis. Our results do not contradict these, since we study here a A E ;
language that is weaker than k-pebbles automata. UpperTrees(T) ={U | ;n;%('i ’ezslz/a' .tre?;?e“fzj &)

7 pXQ and XQuery

pXQ, although inspired by XQuery, omits many important features,

the typeT of a path expression can be weakened to its supertype
(U1 ]...|Un)x, where

which we briefly discuss here. {U1,...,Un} = UpperTrees(T),
We did not consider avhereclause in our version of the FLWOR ~ Without compromising Theorems 13, 14, and 16. This supertype
construct. In the presencewhere the identification of navigation- ~ does not carry any information on the order of the trees.

errors with constant emptiness of a subquery becomes questionable.

Consider the following query. We ignore reverse axipérent ancestor..). The current version

for $x in af| where Condition return $x of XQuery assigns trivial types to these axes, and we can do nothing

better unless we change some of our fundamental assumptions. We

This query is always empty if, and only if, the express@ondition ignore node identity and the issue of reference vs. copy semantics,
is always false. Hence, we have an FE-erro€ifinditionis always because they have very little effect on the type system. We ignore

false. Such a notion of type error sounds heretic, but it should not the issue of predefined functions, (recursive) function definition and



invocation, and validation, because we think that they may be dealt [6]
with using standard techniques.

To sum up, we do not expect problems in the extension of our tech- [7]
niques to a full-scale language, although this will have to be care-
fully studied. The resulting system will be sound but not complete,
which is the only property one can aim to when a complete lan-
guage is treated. However, it would still be the only type system
which is complete on the core language, and the only type system
which has been consciously designed to deal with both existential (9]
and universal errors, and, specifically, to deal with navigation er-
rors.

8]

(10]

8 Conclusions and Future Work

[11]
We have presented a type system that performs both result analysis
and navigation-correctness analysis for a minimal query language
for tree-shaped data.

(12]
We have first given a precise definition of navigation-errors, and
discussed its merits in relation with some possible alternatives. We
introduced a first type system, which is sound and quite precise.
We then introduced a more expensive type system that, when ap-
plied to schemas that satisfy a mild restriction on the alternation
betweenx and recursion, performs a correct and complete error-
checking. This type system validates the claim that our notion
of navigation-error is both meaningful for the programmer and
amenable to machine-checking.

(13]

(14]

(18]

16
We defined the notions of universal and existential correctness, and[ ]
defined a framework that can be used to check both families of er-
rors. [17]
Since our type system is based on extensive use of case-analysis,
we want now to study techniques that help reducing the overall [18]
computational complexity. Our key result, the fact the no splitting

is needed below a, is already significant, since most subqueries
have a typ€Tl x, but we believe that in many other situations type-
splitting can be either avoided or performed lazily, hence making
our type-system efficiently implementable over realistic programs
and schemas.

9 Acknowledgments
The CDuce team (®¥ronique Benzaken, Giuseppe Castagna, and
Alain Frisch) contributed to this work with useful comments about

type-splitting. A discussion with Phil Wadler was deeply influential
for reaching our definition of query correctness.

10 References

[1

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semistuctured Datiournal of Digital Libraries, 1(1) pages 68—
88, April 1997.

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking XML Views

of Relational Databases. Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, 16-19 June 2001, Boston, Massachusetts, USA,
Proceedings. IEEE Computer Society, 20pdges 421-430, 2001.

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with Data Val-
ues: Typechecking Revisited. Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23,
2001, Santa Barbara, California, USR001.

V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. IRroceedings of the eighth ACM SIGPLAN international
conference on Functional programmingages 51-63. ACM Press, 2003.

[2

13

[4

5

V. Benzaken, G. Castagna, and C. Miachon. CQL: a Pattern-based Query Lan-
guage for XML. InProceedings of 20th Bases de Dées Avanees (BDA)
(2004) 2004.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and 8o08im
XQuery 1.0: An XML Query Language. Technical report, World Wide Web
Consortium, May 2003. W3C Working Draft.

P. Buneman, S. Davidson, and D. Suciu. Programming constructs for unstruc-
tured data. IProceedings of 5th International Workshop on Database Program-
ming LanguagesGubbio, Italy, September 1995.

D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases. Technical report, World Wide Web Consortium, Nov 2003.
W3C Working Draft.

D. Colazzo. Path Correctness for XML Queries: Characterization and Static
Type Checking PhD thesis, Dipartimento di Informatica, Univessidi Pisa,
2004.

D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types For Correctness of
Queries Over Semistructured Data. Pmoceedings of the Fifth International
Workshop on the Web and Databases (WebDB 2002), Madison, Wisconsin, June
6-7, 2002 2002.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-1lille3.fr/tata, 1997. release October, 1rst
2002.

D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Sireon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. Tech-
nical report, World Wide Web Consortium, Aug. 2003. W3C Working Draft.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for a
Web-site management systerf8IGMOD Record (ACM Special Interest Group
on Management of Data?6(3):4—11, September 1997.

H. Hosoya and B. C. Pierce. XDuce: An XML Processing Language, 1999.
Preliminary Report.

D. Lee, M. Mani, and M. Murata. Reasoning about XML Schema Languages us-
ing Formal Language Theory. Technical report, IBM Almaden Research, 2000.
Technical Report - IBM Almaden Research.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML Transformers. In
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systenmgges 11-22. ACM Press, 2000.

H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures. Technical report, World Wide Web Consortium, May 2002.
W3C Recommendation.

F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (Third Edition). Technical report, World Wide
Web Consortium, Feb 2004. W3C Recommendation.



