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Abstract

A part of a query that will never contribute data to the query answer should be regarded as
an error. This principle has been recently accepted into mainstream XML query languages,
but was still waiting for a complete treatment. We provide here a precise definition for
this class of errors, and define a type system that is sound and complete, in its search for
such errors, for a core language, under mild restrictions on the use of recursion in type
definitions. In the process, we describe a dichotomy among existential and universal type
systems, which is essential to understand some specific features of our type system.

1 Introduction

A type system for a query language usually fulfills two different aims: computing
a type for the query result (result analysis), and flagging parts of the query that
do not match the structure of the data (correctness analysis), such as the use
of a field name that is not present in the database schema. Result analysis and
correctness analysis are inseparable in traditional languages, where errors prevent
result generation. Query languages for semistructured data (SSD) and XML are
different. They work by traversing paths on the tree or graph representation of
data; when a path does not match the data in the database, its evaluation returns
an empty result, but no exception is raised. For these languages, the type systems
proposed up to now only analyze the result type, disregarding, to a large extent,
the navigation-correctness problem (Boag et al., 2003; Milo et al., 2000; Alon et al.,
2001b).

This situation is now changing. Although result analysis remains the most studied
issue, there is a growing interest on tools to statically identify those query fragments
that cannot contribute to the query result; this information has also been shown
to be useful for query optimization (Guerra et al., 2005). In our paper (Colazzo
et al., 2002), we took some first steps in this direction by presenting a notion of
error, based on the intuition that a query is correct if it may match some data.
In this paper we formalize that intuition through a type system, and we prove
the soundness and completeness of our construction. A significant subset of the
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results we prove here has been already announced in the conference version of this
paper (Colazzo et al., 2004), but part of the formal construction, and all the proofs,
were missing.

Concurrently with our investigations (starting from the August 2003 Working
Draft), the W3C XML Query Working Group extended the type system of XQuery1

by stating that it is a static error for any expression other than the empty-sequence
expression to have the empty type (Draper et al., 2003). However, this is quite dif-
ferent from our definition of static error; unlike the W3C, we start by defining which
error we are trying to prevent (Section 3), in terms of dynamic query semantics,
and then we define a corresponding type system.

To keep the size of formal proofs tolerable, we base our analysis on a tiny abstract
language, µXQ, based on the UnQL, Lorel, StruQL, XML-QL, Quilt, XQuery (and
others) tradition (Buneman et al., 1995; Abiteboul et al., 1997; Fernandez et al.,
1997; Boag et al., 2003). µXQ is not intended as a model for full XQuery, since
many essential XQuery features are left out. We believe the techniques we present
here could be extended to full XQuery, but we will only discuss how to extend
µXQ with a where clause, because it is the most important feature that µXQ is
missing, and because its addition has important consequences on the properties of
the system.

The notion of correctness we define is existential, which means that a piece of
code is correct if there exists at least one valid instance of its free variables such
that an undesirable condition (result emptiness, in our case) is avoided. This is
in sharp contrast with the universal notions of correctness verified by traditional
type-systems, where a piece of code is correct if an undesired event is avoided under
every valid instantiation of its free variables. This quantification switch has deep
consequences, which we will discuss in the paper.

Once we have defined the errors, we define the type rules and the type system
aimed to prevent them. The type system for path correctness is based on a couple of
original technical tools, the collections of locations of wrong subqueries (Section 4.1)
and type-splitting (Section 5). We prove that, at the price of a mild restriction on
the use of recursion, this type system infers types that provide both an upper and,
in some sense, a lower bound for the actual results returned by a query, and captures
all and only the navigation-errors in the query (soundness ad completeness). Also,
although designed to deal with an existential notion of correctness, the defined type
system can be used to check universal notions of correctness at the same time.

We prove that our type system is sound. Soundness is all what is usually proved
about a type system, but soundness alone does not discriminate an interesting type-
system from one that is not very precise, such as one that conservatively rejects
every single program. Proving both soundness and completeness, hence showing
that the type system flags all and only the pieces of wrong code, would be opti-
mal, but is usually unattainable, because the fact that a piece of code is “wrong”
is undecidable on any realistic language. However, we have been able to isolate a
rather expressive kernel language, µXQ, where we can prove our type system to
be both sound and complete. Of course, completeness is lost when the language
is generalized to a realistic one. This is not a limitation, since one cannot aim to
completeness over a full-fledged language. Our objective was to extend the usual

1 XQuery is the standard query language for XML data developed by the W3C.
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“soundness only” results to “soundness everywhere and completeness on a signifi-
cant kernel”, and we have been able to fulfill it, and for a quite large kernel.

A where clause is the most obvious feature that µXQ is missing. Our type system
can be soundly extended to a wider language fragment comprising where clauses;
only a weaker form of completeness holds for this extension.

Paper Outline The paper is structured as follows. In Sections 2 and 3 we describe
the µXQ query language and discuss our notion of path correctness for µXQ queries.
Section 4 describes a first version of the type system, which we prove to be sound.
Section 5 refines the type system with the notion of type splitting, used to make
error detection and type inference more precise. We prove that this refined type
system is complete. In Section 6 we study the cost of our approach. In Section 7 we
discuss some possible extensions. In Section 8 we compare our approach with other
proposals, and, in particular, with the XQuery type system. Section 9 concludes
the paper.

Accompanying Material Complete proofs of the main theorems can be found on
the web, following the link supplementary material from the on-line abstract of this
paper, in the journal site.

2 µXQ

µXQ is a minimal query language manipulating ordered forests. The language was
specifically designed as a minimal setting where query correctness for XML query
languages could be studied. Thus, µXQ mirrors the minimal core of XQuery-like
languages, but drops features such as the where clause, node identity, recursive
functions (and many others). In Section 7 we shall discuss the effect of adding some
of these features to our language.

2.1 The Data Model

µXQ term and query grammar is shown below. There, f and t denote respectively
ordered forests and ordered trees, and l ranges over a set of tag names L (a tree l[f ]
represents an XML item tagged by 〈l〉 ,whose content is f). Furthermore, b denotes
a leaf value, which we assume ranging over String, the set of all possible string
values (essentially corresponding to PCDATA values in the DTD jargon). The ‘,’
operator denotes ordered forest concatenation, and () is the empty forest.

Forests f ::= () | t | f, f

Trees t ::= b | l[f ]

In the data model forest concatenation is associative, and the empty forest is its
neutral element, hence the equations of Table 2.1 hold.

Table 2.1. Data model equations

(f1, f2), f3 = f1, (f2, f3)

f, () = (), f = f
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Table 2.2. Data model accessors

dos(())
M
= () dos(f, f ′)

M
= dos(f), dos(f ′)

dos(b)
M
= b dos(l[f ])

M
= l[f ], dos(f)

childr(b)
M
= () childr(l[f ])

M
= f

() :: NodeTest
M
= () (f, f ′) :: NodeTest

M
= f :: NodeTest, f ′ :: NodeTest

b :: l
M
= () l[f ] :: l

M
= l[f ] m[f ] :: l

M
= () m 6= l

b :: node()
M
= b m[f ] :: node()

M
= m[f ]

b :: text()
M
= b m[f ] :: text()

M
= ()

On trees, we define the accessor childr(t) which returns the ordered list of all
children of t. On forests, we also define the accessor dos(t1, . . . , tn), which returns
the ordered list of all descendants of ti’s roots, including ti’s roots themselves (dos
stands for descendant-or-self ).

We also define a filter operator f :: NodeTest, which returns every tree at the top
level of f that satisfies the test NodeTest. A test NodeTest is either l, selecting all
trees with an l label, node(), selecting all trees, or text(), which only selects base
values b.

2.2 Type Language and Type Environments

We adopt, essentially, XDuce’s type language (Hosoya & Pierce, 2000). This differs
from XQuery type system since the latter is based on named typing (Siméon &
Wadler, 2003). We choose a pure structural approach since it makes the formal
treatment slightly more elegant, and because the structural approach constitutes
the foundation of the named approach. We believe that the difference is not essential
in this context, since the two approaches mainly differ on subtyping, and we do not
deal with subtyping here.

Types and type environments are defined as follows:

Types T ::= () empty forest type
| B base type
| l[T ] element type
| T, T product type
| T | T union type
| T∗ repetition type
| X type variable

Environments E ::= ()
| X =T, E

B is the base type of all String values. An element type with empty content
l[()] will always be abbreviated as l[]. A type environment E is a sequence of type
definitions of the form X = T where no type variable is bound to two types; E(X)
denotes the type bound to X by E.
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The following definition introduces well-formedness of types.

Definition 2.1 (E ` T Def)
We say that a type T is well-formed in an environment E, and denote it as E `
T Def, if every variable in T is defined in E.

We restrict to l-guarded type environments, which are environments where only
l-guarded vertical recursion is allowed (Definition 2.2). For example, we forbid equa-
tions such as X = X | () and X = X, Y , but allow equations such as X = l[X | ()].

The lack of horizontal recursion is counterbalanced by the presence of the Kleene
star operator ∗. This restriction is canonical, and makes the type language as ex-
pressive as regular tree languages (Lee et al., 2000; Comon et al., 1997), hence
expressive enough to capture the main type mechanisms of DTD and XML Schema
(Siméon & Wadler, 2003; Lee et al., 2000; Yergeau et al., 2004; Thompson et al.,
2002).

To enforce this restriction, we require every definition of a variable X to be
connected to every use of the same variable by a ‘chain’ of operators, one of which
has to be an element type constructor l[ ]. This is formalized by means of the
relation T →E

e U defined in Table 2.3. For example, if E is X = (m[U ])∗, V , then
l[X] →E

l.X.∗.m U holds, which means that we can reach U from l[X] by crossing l,
expanding X, and crossing ∗ and m (observe that (T,U) | V →E

ε U : we do not
track sequencing and union). Tracking of type names X and ∗ will be exploited
later, while characterizing schemas for which we provide complete type analysis.

Table 2.3. Label-Star-Variable Chains “e” and the E-reachability relation “T →E
e U”

Label-Star-Variable Chains

e ::= ε
| l.e
| ∗.e
| X.e

(e.e′).e′′ = e.(e′.e′′)

e.ε = ε.e = e

E-reachability

l[T ] →E
l T U, T →E

ε U U, T →E
ε T

T∗ →E
∗ T U | T →E

ε U U | T →E
ε T

(X = T ∈ E) ⇒ X →E
X T (T →E

e A ∧ A →E
e′ U) ⇒ T →E

e.e′ U

Definition 2.2 (l-guarded Environments)
E is l-guarded if E ` T Def for each X = T ∈E, and, for each chain e:

X →E
e X ⇒ ∃ l ∈ L : e = e′.l.e′′

The rules of our type system unfold recursive types until a tree type is met, hence
l-guardedness of environments is essential to guarantee termination of these rules.

Type semantics is standard: J KE is the minimal function from types to sets of
forests that satisfies the following monotone equations (the function is well-defined
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by Knaster-Tarski theorem (Tarski, 1955)).

J()KE
M= {()}

JBKE
M= {b | b ∈ String}

Jl[T ]KE
M= {l[f ] | f ∈JT KE}

JT, T ′KE
M= {f, f ′ | f ∈JT KE , f ′∈JT ′KE}

JT | T ′KE
M= JT KE ∪ JT ′KE

JT∗KE
M= {(), f1, . . . , fn | n ≥ 0, fi∈JT KE}

JXKE
M= JE(X)KE

We can now define well-formedness of environments.

Definition 2.3 (Well-Formed Environments)
E is well-formed if it is l-guarded and, for each X defined in E, its semantics is not
empty: JXKE 6= ∅.

In well-formed environments, empty types are disallowed; for example, we do not
allow empty definitions like X = l[X]. The non-emptiness condition is not essential,
but simplifies the type rules.

Checking type emptiness is easy. For any E, we have JXKE = ∅ if and only if
empty(X)E , where empty(T )E is the greatest function (assuming false < true)
that satisfies the following set of equations. empty(X)E can be evaluated for all
X’s defined in E in polynomial time, using the standard algorithm: assign true
to empty(X)E , for every X, scan all definition in E to see whether some X can
be actually assigned false, repeat the scan until the solution stabilizes (cleverer
algorithms are actually known).

empty(())E = false

empty(B)E = false

empty(l[T ])E = empty(T )E

empty(T, T ′)E = empty(T )E ∨ empty(T ′)E

empty(T | U)E = empty(T )E ∧ empty(U)E

empty(T∗)E = false

empty(X)E = empty(E(X))E

2.3 Query Language

A typical µXQ query, as shown below, consists of a binding section (let/for),
where variables are bound, and a return clause that builds the results. Variables
can be either for-variables or let-variables. for-variables (x, y, z) are bound to trees
t (items) by a for binder. let-variables (x, y, z) are bound to forests f by a let
binder.

Queries Q ::= () | b | l[Q] | Q, Q | x | x

| x child :: NodeTest | x dos :: NodeTest
| for x in Q return Q

| let x ::= Q return Q

NodeTest ::= l | node() | text()
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Table 2.4. µXQ semantics

JbKρ
M
= b JxKρ

M
= ρ(x)

JxKρ
M
= ρ(x) J()Kρ

M
= ()

JQ1, Q2Kρ
M
= JQ1Kρ, JQ2Kρ Jl[Q]Kρ

M
= l[JQKρ]

Jx child :: NodeTestKρ
M
= childr(JxKρ) :: NodeTest

Jx dos :: NodeTestKρ
M
= dos(JxKρ) :: NodeTest

Jlet x ::= Q1 return Q2Kρ
M
= JQ2Kρ,x7→JQ1Kρ

Jfor x in Q1 return Q2Kρ
M
=

Q
t∈trees(JQ1Kρ)JQ2Kρ,x7→t

This distinction between let and for variable simplifies the formal treatment, since
it allows us to syntactically ensure that child :: NodeTest and dos :: NodeTest
are always applied to a tree, but is not crucial to our approach.

We use the same notation for data model instances and language terms. In this
way, the notation is kept lighter, and will always be disambiguated by the context,
as in the sentence “the term l[b], () denotes the tree l[b]”.

In the examples we will also use the XPath-like clauses Q / l and Q // l, defined
as follows:

Q / l
M
= for x in Q return (x child :: l)

Q // l
M
= for x in Q return for y in (x dos :: node()) return (y child :: l)

The semantics JQKρ of a query Q w.r.t. a substitution ρ is defined in Table 2.4.
The valuation ρ maps every free for-variable x into a tree, and every free let-

variable x into a forest. A binder Jlet x ::= Q1 return Q2Kρ evaluates Q2 in ρ ex-
tended with the binding x 7→JQ1Kρ. The iterator for x in Q1 return Q2 evaluates
Q2 once for each tree t in JQ1Kρ, and combines the result using forest concatena-
tion ‘ , ’. In detail, trees(f) returns the sequence of trees at the top level of f , and∏

t∈trees(f) A(t) is defined as the forest A(t1), . . . , A(tn), where f = t1, . . . , tn (hence
is () when f = ()). childr(t), dos(t), and f :: NodeTest, are defined in Table 2.2.

2.4 Locations and Subqueries

In the sequel, we will need the operation (Q)|β , which uses a location β to identify
a subquery of Q. The location β is just a path of 0’s and 1’s, and the function (Q)|β
follows β in a walk down the syntax tree of Q.

Definition 2.4 ((Q)|β)

(Q)|β denotes the subterm of the query Q located by the location β, which is a
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sequence of 0’s and 1’s:

(Q)|ε
M= Q

(l[Q])|0.β
M= (Q)|β

(Q0, Q1)|i.β
M= (Qi)|β i∈{0, 1}

(for x in Q0 return Q1)|i.β
M= (Qi)|β i∈{0, 1}

(let x ::= Q0 return Q1)|i.β
M= (Qi)|β i∈{0, 1}

(Q)|β
M= ⊥ otherwise

We also define Locs(Q) as the set of meaningful locations for a query Q: Locs(Q) =
{β | (Q)|β 6=⊥}.

3 Query Correctness

3.1 Motivating Example

XQuery definition states that a subquery is wrong when its type is empty but the
query is different from the empty query () (Draper et al., 2003). We have first to
explain why we cannot just adopt this as the definition of navigation-incorrectness.

If a type system is used to identify a class of errors, the error must be defined first,
in terms of dynamic semantics (e.g., a core-dump is an error), then the type rules
must be introduced, and finally the adherence of the type-system findings with the
semantic errors must be evaluated. On the contrary, XQuery definition depends on
the type rules; such a dependency makes it impossible to discuss the relationship
between semantic errors and errors as caught by the type rules. For this reason, we
start the investigation with the definition of a notion of navigation-correctness that
only depends on the language semantics, namely, on the semantics of a subquery
to be empty, rather than on its type to be empty.

In this section we propose our notion, and show that it is pragmatically accept-
able, i.e. it is quite strict (stricter variants would rule out some common jargon)
but it is not too strict (every non-correct query really has a problem). The next
sections will show how this notion is technically acceptable, in the sense that it is
possible to design a type system that matches it very precisely.

Assume the existence of two variables $contacts and $mcontacts (we use here
$ to identify variables) with types:

$contacts : (data[phone[...] | mobile[...]])+
$mcontacts : (data[mobile[...]])+

where | is a union type operator (i.e., either-or), and + indicates an arbitrary,
non-empty, repetition, and consider the following queries:

Q0 ≡ $mcontacts/phone
Q1 ≡ $contacts/fone
Q2 ≡ $contacts/phone, $contacts/mobile
Q3 ≡ $contacts/phone
Q4 ≡ $contacts/fone, $contacts/mobile
Q5 ≡ for $c in $contacts

return ($c/phone, $c/mobile)
Q6 ≡ for $c in ($contacts, $mcontacts)

return ($c/phone, $c/mobile)
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Q0 and Q1 are wrong, since they cannot match the data, while Q2 is correct,
since the query surely matches data conforming to the given schema. Such queries
lead to the simplest definition of correctness: a query is correct if it always finds
some data, for every substitution of its free variables that is valid, i.e. coherent
with the known structural information. Q3, however, shows that this view is over-
restrictive: the query is completely reasonable, but it may not match any data, in
case we only have mobiles in the current database instance. This query is typical
enough to convince us that, in this context, we have to opt for an existential notion
of correctness: a query is correct if there exists a valid schema instance that is
matched by the query. This is the notion we studied in (Colazzo et al., 2002), under
the name ‘weak correctness’.

Q4 is troublesome. It is clearly wrong, since the first path cannot match the data.
However, although a subquery never matches any data, the whole query can return
a non-empty result, hence the whole query has the ability to return some data, and
is hence ‘weak-correct’.

The point is that the non-matching subquery does not generate, according to µXQ
semantics, a ‘no-match-found error’ which propagates up from $contacts/fone
to the whole result. Moreover, we would not want such behavior, otherwise the
subqueries of the good query Q2 would raise and propagate that error as well, for
example when no mobile is in the database. In a programming language with error
propagation we can say that something goes wrong if and only if the whole program
returns ‘error’. Here, instead, we are forced to explicitly define correctness of a query
as the lack of problems in the query and in each of its subqueries. We hence arrive
at the following notion of correctness (where non-() means ‘syntactically different
from ()’):

Definition 3.1 (Foreach-Exist (FE) Query Correctness - informal definition)
A query Q is correct w.r.t. a set of valid substitutions R if, for each non-() subquery
Q′ in Q, there exists ρ ∈ R such that, when Q is evaluated under ρ, Q′ evaluates
to a non-empty sequence.

As desired, under this characterization, Q2 and Q3 above are correct, while Q1

and Q4 are not. Query Q6, which corresponds to a typical XQuery jargon, is correct
as well, if we apply the existential quantification to the bindings of the variables
bound by for: at least one binding for $c exists (under a valid substitution for
$contacts and $mcontacts) that makes $c/phone productive. Q5 is correct a for-
tiori.

Once one accepts that correctness, in this context, has to be existentially quanti-
fied on substitutions and universally on subqueries, there is still space to consider
a last variation, the exists-foreach version, where the quantification order is ex-
changed:

Remark 3.2 (Exist-Foreach (EF) Query Correctness)
A query Q is correct w.r.t. a set of valid substitutions R if there exists ρ ∈ R such
that, for each non-() subquery Q′ in Q, when Q is evaluated under ρ, Q′ evaluates
to a non-empty sequence.

While FE-correctness only requires that each subquery makes sense w.r.t. a dif-
ferent substitution, this stricter version requires the existence of at least one data-
base that exploits every subquery. This variation is equivalent to FE-correctness
on queries Q1-Q4, but it differs on queries Q5-Q6. In these queries, there exists no
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single substitution for $c that makes both $c/phone and $c/mobile productive at
the same time. Since Q5 and Q6 are sensible queries, and correspond to XQuery
usage patterns, we conclude that the exist-foreach version of correctness would be
too strict for our purposes.

So, we have shown that our notion rules out some wrong queries and that its most
natural immediate strengthening is too strict. Hence, we have shown, informally,
that our notion is ‘maximally strict’, in the design space that we explored.

We have now to show that our notion is arguably not too strict, i.e. that it only
flags queries that really have a problem. This is simple: by definition, if a query Q
is not FE-correct, a non-() subquery Q′ exists, such that for all ρ∈R, Q′ evaluates
to an empty sequence. Hence, we have a non-() piece of code that is equivalent to
(), and warning the programmer makes obviously sense.

3.2 FE-correctness

To formalize FE-correctness we define Ext(ρ, Q, β), the set of all valid substitutions
that will be used to evaluate the subquery (Q)|β when Q is evaluated under ρ.
These substitutions correspond to ρ extended with the bindings introduced by
each traversed let or for. Ext(ρ, Q, β) is not just a single substitution since each
subquery in the scope of a for x in Q0 is evaluated once for each tree in JQ0Kρ.
Since JQ0Kρ may be the empty forest, Ext(ρ, Q, β) may be empty as well.

Definition 3.3 (Substitution Extension)

Ext(ρ, Q, ε) M= {ρ}
Ext(ρ, let x ::= Q0 return Q1, 1.β) M= Ext((ρ, x 7→JQ0Kρ), Q1, β)
Ext(ρ, for x in Q0 return Q1, 1.β) M=

⋃
t∈trees(JQ0Kρ) Ext((ρ, x 7→ t), Q1, β)

otherwise: (Q)|i 6= ⊥ ⇒ Ext(ρ, Q, i.β) M= Ext(ρ, (Q)|i, β)

We now define the set CriticalLocs(Q) of the locations of Q where we will look
for pieces of wrong code. According to what stated in previous sections, a first
definition could be CriticalLocs(Q) M= {β | (Q)|β 6= ()}, as when (Q)|β is (),
β must not be tested for non-emptiness. However, we can refine the definition of
CriticalLocs(Q) by observing that a let subquery evaluates to () if and only if the
return subquery does, hence, once we have indicated that the return subquery
has a problem, the same information about the whole let subquery is redundant.
Hence, we also exclude let subqueries from CriticalLocs(Q). A similar consideration
holds for a (Q0, Q1) subquery: once the subqueries Q0 and Q1 have been checked,
any information about the fact that the whole Q0, Q1 evaluates to () is redundant.
A complete analysis shows that only (x child :: NodeTest) and (x dos :: NodeTest)
subqueries, and the first argument of a for iteration need be considered.

CriticalLocs(Q) M= {β | ((Q)|β = (x child :: NodeTest)
∨ (Q)|β = (x dos :: NodeTest))} ∪

{β.0 | (Q)|β = for x in Q0 return Q1}

We can now make Definition 3.1 completely formal, as follows.

Definition 3.4 (Correctness of Q w.r.t. R)
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Let R be a set of substitutions for the free variables of a query Q. Q is FE-correct
w.r.t. R if and only if:

∀β∈CriticalLocs(Q). ∃ρ∈R. ∃ρ′∈Ext(ρ, Q, β). J(Q)|βKρ′ 6= ()

Dually, Q has an error at the location β∈CriticalLocs(Q) if and only if:

∀ρ∈R. ∀ρ′∈Ext(ρ, Q, β). J(Q)|βKρ′ = ()

(Observe that Ext(ρ, Q, β) = ∅ implies that Q has an error at β.)

3.3 Type-Checking Existential and Universal Correctness

Our notion of navigation-correctness is existential, while the traditional notions of
correctness are universally quantified. We needed some time to identify this quan-
tification switch, to appreciate its consequences, and to understand the boundaries
of the design space that it opens up. We report in this section what we learned,
which can be synthesized as follows.

• A piece of code may be considered correct if it always runs with no run-time
problem (universal correctness) or if it sometimes runs with no run-time
problem (existential correctness).
• A type-checker may be overflagging—if a piece of code is not correct then it

will flag it—or underflagging—if it flags a piece of code then the code is not
correct.
• A type-checker may, in principle, infer types that are upper-bounds or that

are lower-bounds for the actual set of values that may be returned by an
expression.
• Traditional conservative type-checkers perform an overflagging type-checking

of a universal notion of correctness, hence ensuring that “well-typed pieces of
code will never go wrong”. To this aim, they need to infer upper-bounds.
• We will propose here a non-intrusive type-checker that performs an underflag-

ging type-checking of an existential notion of correctness. This combination
is still based on upper-bounds. This means that one can combine in the same
upper-bounds based type-system the overflagging type-checking of a universal
notion of correctness with the underflagging type-checking of an existential
notion of correctness.

Let us start again.
We have first to distinguish between run-time problems and code-problems. For

example, we may consider the execution of a division by zero as a run-time problem
of interest. Then, we may either focus on the code-problem presented by those pieces
of code that perform a division by zero for any possible computational context (in
our case, for any possible value of their free variables), or we may focus on the
code-problem presented by those pieces of code for which a computational context
exists such that the code will perform a division by zero. Usually, one says that
the code has a problem if there exists a context which will generate the run-time
problem, but in the previous section we have seen that the opposite choice may make
sense. Of course, when the definition of code-error is existentially quantified (exists
a context where the code meets a run-time error), the definition of code-correctness
is universally quantified (for every context the code meets no run-time error). In
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this case we talk about “universal notion of correctness”, whose violations we call
“universal errors”. Every type system we know adopts this notion of code-error.

When a type system is added to the picture, a second choice is presented. If type-
checking is static and decidable, it is usually impossible to flag as type-errors all
and only the pieces of code with a code-problem. Hence, one has to choose between
an overflagging and an underflagging type system. An overflagging type system
guarantees that if a piece of code has a code-problem then it will be considered
type-wrong. An underflagging type system guarantees that if a piece of code is
considered type-wrong then it has a code-problem. Overflagging and underflagging
are not one the negation of the other; they are dual properties which are difficult
to combine, in the same way as soundness and completeness are.

Traditional type-systems are overflagging. Overflagging type-checking of a uni-
versal notion of correctness implies that, if a piece of code is type-correct, then it
is code-correct and if it is code-correct then it will never have run-time problems.
Hence, with such a strict combination, well-typed terms never go wrong. Overflag-
ging is the natural property to look for when a type system is aimed at a universal
notion of correctness.

When correctness is existential, the choice between an overflagging and an under-
flagging type system is slightly less obvious. However, in the case we are studying
here, we believe that being underflagging is the essential virtue. Type-checking is
optional in XQuery. Whoever used lint2 knows that, if an optional error-checking
tool gives some false alarms, programmers tend to ignore its alarms altogether.
Moreover, ignoring a piece of dead code seems less of a problem than forcing a
programmer to rewrite a piece of good code because of a false alarm.

A type system usually infers a type for any expression, and uses the inferred
type in the error-checking process; to simplify the discussion, we will identify a
type with a set of values. The type inferred for an expression approximates the set
of the values that may be returned by that expression. More precisely, the type
may be guaranteed to contain the set of all possible values, or to be contained in
such set; we talk of upper-bound approximation in the first case, and lower-bound
in the second.

Every type-system we are aware of takes the upper-bound approach, or aims at
computing both upper and lower-bound, as we do here. The upper-bound approach
is preferred for many reasons, the most important one being that types as upper-
bounds go well together with overflagging checking of universal correctness. If the
type is an upper-bound, a type sentence n : {1, 2} allows a type checker to deduce
that 1/n will never raise a divide-by-zero error, which is the information needed
to perform overflagging type-checking of the universal correctness condition “never
divide by zero”. However, underflagging verification of universal correctness needs
lower-bounds. Assume that n : T . To actually prove that 1/n is not universally
correct we must prove that 0 is among the values that can be assumed by Q.
This is implied by 0 ∈ T only if T is a lower-bound. In the same way, lower-
bounds are needed for the overflagging checking of existential correctness. The
query Q/b is FE-correct if Q can actually evaluate to a term l[f, b[f ′], f ′′], e.g.,
if a lower bound of its set of values contains {l[b[]]}. An upper-bound of the set
of values of Q cannot guarantee that Q may actually assume a value with shape

2 lint is a tool that helps a C programmer locating potential errors in the code
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l[f, b[f ′], f ′′], hence cannot guarantee the absence of an existential error, hence is
useless for overflagging type-checking. However, an upper-bound without a value
l[f, b[f ′], f ′′] guarantees the presence of an existential error, hence upper-bounds
allow underflagging type-checking in the existential case, and this is really what we
want here.

To sum up, upper-bound type-inference is good for overflagging type-checking of
universal correctness and for underflagging type-checking of existential correctness,
but is useless for the other two combinations. Dually, lower-bound type-inference is
good for overflagging type-checking of existential correctness and for underflagging
type-checking of universal correctness, but is useless for the other two combinations.
These are good news. Indeed, we want to study a type-system that checks both
existential and universal notions of correctness, because this is needed to understand
XQuery type systems, and also because this is really needed in any concrete XML
query language. Now we know that this combination is possible. Hereafter, we will
use sound error-checking as an abbreviation for “overflagging checking of universal
correctness and underflagging checking of existential errors”. We will use complete
error-checking for the dual combination of “underflagging checking of universal
correctness and overflagging checking of existential errors”. So our slogan now is:
upper-bounds for soundness, lower-bounds for completeness.

4 Type-checking

4.1 Judgements

To type-check a query we need type information about its free variables. The type
assignments for the free variables of a query are defined by means of variable envi-
ronments Γ of the form:

Variable Environments Γ ::= ()
| x : T,Γ
| x : T,Γ

Definition 4.1 (Well-Formed Γ)
A variable environment Γ is well-formed, w.r.t. an environment E, if no variable
is defined twice, if every type is well-formed in E, and if every for-variable x is
associated to a tree type (l[T ] or B).3

Our type rules are based on judgments of the form:

Judgments J ::= E; Γ `β Q : (T ; S)
| E; Γ `β x in T → Q : (T ; S)

In E; Γ `β Q : (T ; S), the type T is the result type of Q, and defines an upper
bound for the actual set of values for Q; the meaning of E; Γ `β x in T → Q :
(T ; S) and the role of S and β will be discussed shortly.

The definition of well-formed judgments is standard, and requires that every
variable is defined once and only once. We use FV (Q) and DV (Q) to denote the

3 Unions of tree types, such as l[T ] | l′[T ′], could be allowed, but this would make no difference,
since the rules for case-analysis are such that a for-variables is introduced in the environment
only when it is bound to a tree type.
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variables that are, respectively, free and defined in Q. We use def (Γ) to denote the
set of all variables defined in Γ.

Definition 4.2 (Well-Formed Judgments)
We say that the judgment J ≡ E; Γ `β Q : (T ; S) (or J ≡ (E; Γ `β x in T →
Q : (U ; S)) ) is well-formed, and write WF(J), if and only if:

• E is well-formed; Γ is well-formed in E; T is well-formed in E;
• If J ≡ (E; Γ `β Q : (T ; S)), then FV (Q) ⊆ def (Γ), DV (Q) ∩ def (Γ) = ∅

and Q is well-formed;
• If J ≡ (E; Γ `β x in T → Q : (U ; S)) then FV (Q) ⊆ (def (Γ) ∪ {x}),

DV (Q) ∩ (def (Γ) ∪ {x}) = ∅ and Q is well-formed.

The type rules of Section 4.2 are written so that they can only be used to prove
well-formed judgments. To this aim, whenever well-formedness of the conclusion
is not an immediate consequence of well-formedness of the premises, an explicit
premise WF(J) is added. This is a standard technique which makes proofs slightly
easier; WF(J) premises can be safely ignored while reading the rules.

The judgment E; Γ `β x in T → Q : (T ; S) is used to type-check for-
iteration. Recall that a query for x in Q1 return Q2 evaluates Q2 once for every
tree in the forest computed by Q1, by binding such tree to x. Accordingly, to
analyze for x in Q1 return Q2, we compute a type T1 for Q1 and use the auxiliary
judgment E; Γ `β.1 x in T1 → Q2 : (T2; ) to compute the type of Q2 through
a case-analysis on the type T1. So, for example, if T1 ≡ T | U (or T1 ≡ T,U), we
compute E; Γ `β.1 x in T → Q2 : (T ′; ) and E; Γ `β.1 x in U → Q2 : (U ′; )
and then T2 = T ′ | U ′ (resp. T2 = T ′, U ′). This process terminates when a tree
type Ttree is met, and typing proceeds with E; Γ, x : Ttree `β.1 Q2 : ( ; ); as a
consequence, thanks to l-guardedness of E, this process always terminates. As we
will see, although expensive, case-analysis is essential for type-inference precision,
hence to obtain a complete type system.

As we have seen, our typing judgments J also return an error set S, and have
a parameter β. The set S contains a set of locations with shape β.α, such that, if
J ≡ E; Γ `β Q : (T ; S) or J ≡ E; Γ `β x in T → Q : (U ; S), the subquery of Q
at α is not FE-correct. The location β specifies the position of the currently-checked
subquery inside the query where type-checking started with β = ε.

The collection of an error set is a sharp departure from the traditional approach,
where the result of error-checking is just a boolean. We believe booleans are not
enough, in a system that combines case-analysis with subquery quantification in
order to check an existential notion of correctness. Consider, for example, the fol-
lowing queries over $contacts : (data[phone[...]] | data[mobile[...]])+.

Q5 ≡ for $c in $contacts return ($c/phone, $c/mobile)
Q7 ≡ for $c in $contacts return ($c/fone, $c/mobile)

We perform type-checking by case-analysis, which means that the computation
of the errors of Q7, by an error-checking function Err$c:(T1|T2)(Q7), combines the
results of analyzing Q7 for $c : T1 and $c : T2(where T1 = data[phone[...]] and
T2 = data[mobile[...]]) with some operation Op1:

Err$c:(T1|T2)(Q7) = Op1
T∈{T1,T2}(Err$c:T (Q7))
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To check Q7 for T ∈ {T1, T2}, we check the two subqueries and combine the results
with some Op2, hence:

Err$c:(T1|T2)(Q7) = Op1
T∈{T1,T2}(Err$c:T ($c/fone) Op2 Err$c:T ($c/mobile))

By Definition 3.4, a query (Q,Q′) is FE-incorrect iff either Q or Q′ is, hence Op2

should be a disjunction. Substitutions are universally quantified in the definition of
FE-errors, hence Op1 should be a conjunction. Hence, a type-checking algorithm
based on case-analysis should compute the error-checking function ErrΓ(Q) as fol-
lows:

Err$c:(T1|T2)(Q7) =
∧

T∈{T1,T2}(Err$c:T ($c/fone) ∨ Err$c:T ($c/mobile))

As expected, this function flags Q7 as wrong, because for every Ti at least one of
$c/fone and $c/mobile is wrong. Unfortunately, the correct query Q5 is deemed
wrong as well: since each of the subcases data[phone[...]] and data[mobile[...]]
makes one of the subqueries incorrect, the conjunction below returns “true”.

Err$c:(T1|T2)(Q5) =
∧

T∈{T1,T2}(Err$c:T ($c/phone) ∨ Err$c:T ($c/mobile))

The problem cannot be solved by playing with the boolean operators, since they
just reflect the quantifications of Definition 3.4. However, we can generalize booleans
to sets of locations, and use the following definition, where ErrLoc(Q) returns the
locations associated to wrong subqueries of Q.

ErrLoc$c:(T1|T2)(Q5) =
⋂

T∈{T1,T2} ({ErrLoc$c:T ($c/phone)}∪
{ErrLoc$c:T ($c/mobile)})

ErrLoc$c:(T1|T2)(Q7) =
⋂

T∈{T1,T2} ({ErrLoc$c:T ($c/fone)}∪
{ErrLoc$c:T ($c/mobile)})

This time ErrLoc(Q5) is the intersection of two different singletons of locations,
hence is empty. This corresponds to the fact that no subquery is always returning
an empty result, hence no subquery is incorrect. However, ErrLoc(Q7) is the inter-
section of two sets that both contain the location of $c/fone. This signifies that, for
every well-typed substitution for $c, the subquery $c/fone is always empty, hence
the subquery is incorrect. Hence, sets of error-locations seem to be the right gen-
eralization of booleans to be adopted to perform case-analysis-based type-checking
of an existential notion of correctness.

4.2 Type Inference and Error Checking

The type rules are listed in Tables 4.1, 4.2 and 4.3. Table 4.1 and Table 4.2 show
the rules required to infer a query result type and errors; rules for case-analysis are
collected in Table 4.2.

Table 4.3 illustrates a set of rules required to filter a type according to a given
condition NodeTest. The rules are needed to type the XQuery-like operators dos
and child in (TypeChild) and (TypeDos). Finally, note that rules (TypeInEl-
Splitting) and (TypeLetSplitting) use the function SplitE(T ). These rules are
sound for any function SplitE( ) such that SplitE(T ) = {T1, . . . , Tn} ⇒ JT KE =
JT1 | . . . | TnKE . In this Section we simply define SplitE(T ) = {T}; in Section 5 we
will adopt a function that performs a finer splitting, in order to compute more
precise types.
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Rule (TypeFor) starts the case-analysis, as previously discussed, propagates
the error sets S1 and S2, and adds an error β.0 if the type of Q1 only contains
the empty forest. It uses the auxiliary judgment T ∼E (), which checks whether
JT KE = J()KE (see Definition 4.4). 4

Rule (TypeInUnion) performs case-analsys. When x is associated with a union
type (x in T1 | T2 → Q), the rule first infers two pairs (T ′

1; S ′1) and (T ′
2; S ′2)

for Q, by analyzing x in T1 → Q and x in T2 → Q, respectively. The final pair
inferred for Q is then (T ′

1 | T ′
2; S ′1 ∩S ′2), with S ′1 ∩S ′2 only containing the locations

that are wrong in both branches. Rule (TypeInConc) follows the same approach.
Rule (TypeInElSplitting) stops the case-analysis, inserts the assumption x :

m[T ] in Γ (recall that we assumed SplitE(T ) = {T}), and falls back to standard
type-checking.

Type unfolding performed by the rules for case-analysis stops when the empty-
forest type () or a tree type (l[T ] or B) is met (rules (TypeInAtomic) and
(TypeInElSplitting)). As already stated, termination of this unfolding is guar-
anteed by l-guardedness of E, which guarantees that only a finite number of name
expansions can be applied by the type rule (TypeInVar).

Rule (TypeLetSplitting) is standard, since we are assuming that SplitE(T ) =
{T}. We will later relax this assumption.

In the premises of rules (TypeChild) and (TypeDos), the axis argument x is
required to have a tree type. Note that this condition holds when the judgment is
well-formed (see Definition 4.2).

In rule (TypeChild) the type for x child :: NodeTest is computed by filtering,
according to NodeTest, the content of the tree type T , associated to x in Γ. Filtering
is performed by the auxiliary judgment E ` T ′ :: NodeTest⇒ U (see Table 4.3 for
definition).

In rule (TypeDos) the type U of x dos :: NodeTest is inferred by first computing
the type U ′ of the descendant-or-self nodes derivable from the values in T , where
T is the tree type associated to x in Γ. U ′ is generated as the ∗-guarded union
(U1 | . . . | Un)∗ of all types that are reachable from T , which are returned by the
function SubTreesE(T ) (see Definition 4.3). Finally, U is the result of filtering U ′

according to NodeTest.
Both rules (TypeChild) and (TypeDos) insert an error location β in S if and

only if the restricted type U is equivalent to the type (). Observe that applying
child to a for variable assigned to a base type, always returns an error.

Rules (TypeChild) and (TypeDos) use the auxiliary function SubTreesE(T )
and the predicate T ∼E (), defined below, and the auxiliary judgment E ` T ::
NodeTest⇒ U , defined in Table 4.3.

Definition 4.3 (Subtrees Type Extraction)

For any E well-formed and T such that E ` T Def, we define SubTreesE(T ) as

4 The type () is not to be confused with the empty type. It is a singleton type, which only contains
the empty forest.
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Table 4.1. Query Type Rules: type inference

(TypeEmpty)
WF(E; Γ `β () : ((); ∅))
E; Γ `β () : ((); ∅)

(TypeAtomic)
WF(E; Γ `β b : (B; ∅))
E; Γ `β b : (B; ∅)

(TypeVarLet)
x : T ∈ Γ WF(E; Γ `β x : (T ; ∅))
E; Γ `β x : (T ; ∅)

(TypeVarFor)
x : T ∈ Γ WF(E; Γ `β x : (T ; ∅))
E; Γ `β x : (T ; ∅)

(TypeElem)
E; Γ `β.0 Q : (T ; S)

E; Γ `β l[Q] : (l[T ]; S)

(TypeForest)
E; Γ `β.0 Q1 : (T1; S1)
E; Γ `β.1 Q2 : (T2; S2)

E; Γ `β Q1, Q2 : (T1, T2; S1 ∪ S2)

(TypeLetSplitting)
E; Γ `β.0 Q1 : (T1; S)
SplitE(T1) = {A1, . . . , An} E; Γ, x : Ai `β.1 Q2 : (Ui; Si)

E; Γ `β let x := Q1 return Q2 : (U1 | . . . | Un; S ∪
T

i=1...n Si)

(TypeFor)
E; Γ `β.0 Q1 : (T1; S1)
E; Γ `β.1 x in T1 → Q2 : (T2; S2) S = if T1 ∼E () then {β.0} else ∅

E; Γ `β for x in Q1 return Q2 : (T2; S1 ∪ S2 ∪ S)

(TypeChild)
WF(E; Γ `β x child :: NodeTest : (U ; S))
x : T ∈ Γ ∧ (T ≡ m[T ′′] ∨ T ≡ B)
T ′ = if T ≡ m[T ′′] then T ′′ else ()
E ` T ′ :: NodeTest ⇒ U
S = if U ∼E () then {β} else ∅

E; Γ `β x child :: NodeTest : (U ; S)

(TypeDos)
WF(E; Γ `β x dos :: NodeTest : (U ; S))
x : T ∈ Γ ∧ (T ≡ m[T ′] ∨ T ≡ B)
{U1, . . . , Un} = SubTreesE(T )
U ′ ≡ (U1 | . . . | Un)∗
E ` U ′ :: NodeTest ⇒ U
S = if U ∼E () then {β} else ∅

E; Γ `β x dos :: NodeTest : (U ; S)

follows (well-defined by Knaster-Tarski Theorem):

SubTreesE(()) M= ∅
SubTreesE(B) M= {B}
SubTreesE(l[T ]) M= {l[T ]} ∪ SubTreesE(T )

SubTreesE(T,U) M= SubTreesE(T ) ∪ SubTreesE(U)

SubTreesE(T∗) M= SubTreesE(T )

SubTreesE(T | U) M= SubTreesE(T ) ∪ SubTreesE(U)

SubTreesE(X) M= SubTreesE(E(X))
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Table 4.2. Query Type Rules: type inference by case analysis

(TypeInEmpty)
WF(E; Γ `β x in () → Q : ((); β.CriticalLocs(Q)))

E; Γ `β x in () → Q : ((); β.CriticalLocs(Q))

(TypeInElSplitting)
SplitE(m[T ]) = {A1, . . . , An} E; Γ, x : Ai `β Q : (Ui; Si)

E; Γ `β x in m[T ] → Q : (U1 | . . . | Un;
T

i=1...n Si)

(TypeInVar)
E(X) = T
E; Γ `β x in T → Q : (U ; S)

E; Γ `β x in X → Q : (U ; S)

(TypeInStar)

E; Γ `β x in T → Q : (U ; S)

E; Γ `β x in T∗ → Q : (U∗; S)

(TypeInAtomic)

E; Γ, x : B `β Q : (U ; S)

E; Γ `β x in B → Q : (U ; S)

(TypeInConc)
E; Γ `β x in T → Q : (T ′; S1)
E; Γ `β x in U → Q : (U ′; S2)

E; Γ `β x in T, U → Q : (T ′, U ′; S1 ∩ S2)

(TypeInUnion)
E; Γ `β x in T1 → Q : (T ′

1; S1)
E; Γ `β x in T2 → Q : (T ′

2; S2)

E; Γ `β x in T1 | T2 → Q : (T ′
1 | T ′

2; S1 ∩ S2)

The union of all types in SubTreesE(T ) contains exactly the subtrees of every
tree in U (Lemma 4.11). This entails that, if JT KE = JUKE , then⋃

T ′∈SubTreesE(T )

JT ′KE =
⋃

U ′∈SubTreesE(T )

JU ′KE

Definition 4.4 (Empty-Forest-Type Checking)
For any well-formed environment E and type T well-formed in E, we define T ∼E ()
as the minimal function (assuming false < true) that respects the following set
of equations, well-defined by Knaster-Tarski Theorem:

() ∼E () M= true

B ∼E () M= false

l[T ] ∼E () M= false

T,U ∼E () M= T ∼E () ∧ U ∼E ()

T | U ∼E () M= T ∼E () ∧ U ∼E ()

T∗ ∼E () M= T ∼E ()

X ∼E () M= E(X) ∼E ()
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Table 4.3. Filter Type Rules

(BaseNodeFilt)

E ` B :: node() ⇒ B

(BaseTextFilt)

E ` B :: text() ⇒ B

(BaseLabFilt)

E ` B :: l ⇒ ()

(TreeNodeFilt)

E ` l[T ] :: node() ⇒ l[T ]

(TreeTextFilt)

E ` l[T ] :: text() ⇒ ()

(TreeMatchLabFilt)

E ` l[T ] :: l ⇒ l[T ]

(TreeNoMatchLabFilt)
l 6= m

E ` m[T ] :: l ⇒ ()

(EmptyFilt)

E ` () :: NodeTest ⇒ ()

(ForestFilt)
E ` T :: NodeTest ⇒ T ′ E ` U :: NodeTest ⇒ U ′

E ` T, U :: NodeTest ⇒ T ′, U ′

(StarFilt)
E ` T :: NodeTest ⇒ U

E ` T∗ :: NodeTest ⇒ U∗

(UnionFilt)
E ` T :: NodeTest ⇒ T ′ E ` U :: NodeTest ⇒ U ′

E ` T | U :: NodeTest ⇒ T ′ | U ′

(VarFilt)
E ` E(X) :: NodeTest ⇒ U

E ` X :: NodeTest ⇒ U

Correctness and completeness of this definition is proved by the following lemma,
whose proof we omit.

Lemma 4.5 (Empty-Forest-Type Checking)
For any well-formed environment E and type T well-formed in E:

T ∼E () ⇔ JT KE = {()}

To type child :: NodeTest and dos :: NodeTest we use auxiliary judgments of the
following form:

E ` T :: NodeTest⇒ U

meaning that, for each f in T , the filtering f :: NodeTest is in U . These judgments
are defined in Table 4.3.

Lemma 4.6 (Termination of Type Filtering)
For any well-formed type environment E, and types T and U , the backward appli-
cation of the type rules to E ` T :: NodeTest⇒ U terminates.

Lemma 4.7 (Type Filtering Checking)
For any well-formed type environment E and type T well-formed in E:

E ` T :: NodeTest⇒ U ⇔ JUKE = {f :: NodeTest | f ∈ JT KE}

We conclude this section with a list of properties that will be used later on.

Definition 4.8 (Subtree Relation)
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We say that the tree t is a subtree of f , written t ∈st f , if and only if

∃f1, f2. dos(f) = f1, t, f2

Lemma 4.9
For any E well-formed and T such that E ` T Def and for each tree t:

(∃f ∈ JT KE . t ∈st f) ⇔ (∃U. T →E
e U ∧ t ∈ JUKE ∧ (U ≡ l[T ′] ∨ U ≡ B))

Lemma 4.10
For any E well-formed and T such that E ` T Def, and for any U :

T →E
e U ∧ (U ≡ l[T ′] ∨ U ≡ B) ⇔ U ∈ SubTreesE(T )

Lemma 4.11
For any well-formed E and T such that E ` T Def, for each tree t:

(∃f ∈ JT KE . t ∈st f) ⇔ (∃U. U ∈ SubTreesE(T ) ∧ t ∈ JUKE)

Lemma 4.12 (Soundness of DOS Type)
For any well-formed E and T such that E ` T Def and

SubTreesE(T ) = {U1, . . . , Un}
U ≡ (U1 | . . . | Un)∗

then:
∀f ∈ JT KE . dos(f) ∈ JUKE

4.3 Soundness of result analysis and error-checking

We provisionally assumed that SplitE(T ) = {T}, which results in a completely
standard (TypeLet) rule. This is sufficient to obtain the canonical property that
types are upper bounds for the set of all possible results (Theorem 4.14), which is
the basis of the soundness results, namely the underflagging property for a type-
checker for existential correctness and the overflagging property for a type-checker
for universal correctness.

Soundness is the canonical properties that is proved for any type system, but is
not very informative: any system that associates the universal type to any expres-
sion, and never finds any existential error, enjoys them as well. While soundness
is usually the only property that a type-system enjoys, we will show in the next
section that our system is also complete, in a sense that will be defined.

To formalize and prove soundness we need the following definition.

Definition 4.13 (R(E,Γ))
For any well-formed type environment E and Γ well-formed in E, we define the set
of valid substitutions as:

R(E,Γ) = {ρ | (∃f. (χ 7→f) ∈ ρ ⇔ ∃T. (χ : T ) ∈ Γ)
and ((χ 7→f) ∈ ρ and (χ : T ) ∈ Γ ⇒ f ∈ JT KE) }

where χ is either a for-variable or a let-variable.

As Γ is well-formed in E well-formed, the set R(E,Γ) is never empty. Hence, for
any well-formed judgment E; Γ `β Q : (T ; S), R(E,Γ) is not empty.
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Theorem 4.14 (Upper Bound)
For any well-formed environment E, Γ well-formed in E, and query Q:

E; Γ `β Q : (U ; ) ∧ ρ∈R(E,Γ) ⇒ JQKρ ∈ JUKE

The upper-bound property allows us to prove soundness of error-checking, i.e.
the fact that, whenever a piece of code is flagged as type-wrong, it really suffers of
an FE-error (the underflagging property).

Theorem 4.15 (Soundness of Existential Error-Checking)
For any well-formed environment E, Γ well-formed in E, and query Q:

E; Γ `β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

4.4 Subtyping and Substitution

It is now time to cite some standard theorems that one may expect to hold, and
which do not, because of our existential error-checking approach. Recall query
$contacts/phone from Section 3, and observe that it stops being correct if one
substitutes $contacts with a query, or a term, of type (data[mobile[...]])+, al-
though this is a subtype of the original type. This means that the canonical type-
specialization and term-substitution properties fail for this type system.

Property 4.16 (Type-Specialization for Overflagging Systems)
In an overflagging type-system for a universally quantified notion of correctness, if
T ′ ≤ T is a subtype relation such that T ′ ≤ T ⇒ JT ′KE ⊆ JT KE , then

E; Γ, x : T `ε Q : (U ; ∅), E; Γ `ε Q1 : (T ′; ∅), and T ′ ≤ T

(where Q : ( ; ∅) means that Q has no static type error) implies

E; Γ `ε Q{x← Q1} : (U ′; ∅) ∧ U ′ ≤ U

Property 4.17 (Term-Substitution for Overflagging Systems)
In an overflagging type-system for a universally quantified notion of correctness:5

E; Γ, x : T `ε Q : (U ; ∅) and f ∈JT KE ⇒ E; Γ `ε Q{x← f} : (U ; ∅).

Type-specialization and term-substitution are consequences of the conservative
nature of traditional type system. There, every instantiation of a variable with a
type-correct value is guaranteed not to fail, hence, if we substitute the variable with
a type-correct expression, no error will arise.

Type-specialization derives from the conservative nature of the type system as
well: if no value in a type creates problems, a smaller type creates no problem a
fortiori.

However, a form of term-substitution and type-specialization holds for non-intru-
sive type-systems as well, with the essential difference that the set of errors is
increased by the act of reducing the set of the values that a variable may assume.
Hence, these properties assume a structure like that of properties 4.18 and 4.19

Property 4.18 (Type-Specialization for Underflagging Systems)

5 We use here the fact that every semantic object f ∈JT KE also belongs to the syntax. We could,
instead, use a canonical injection from JT KE into the syntax, but this seems an unnecessary
complication.
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In an underflagging type-system for an existentially quantified notion of correctness,
if T ′ ≤ T is a subtype relation such that T ′ ≤ T ⇒ JT ′KE ⊆ JT KE , then

E; Γ, x : T `ε Q : (U ; S), E; Γ `ε Q1 : (T ′; S ′), and T ′ ≤ T

implies
E; Γ `ε Q{x← Q1} : (U ′; S ′′), U ′ ≤ U, (S ∪ S ′) ⊆ S ′′

Property 4.19 (Term-Substitution for Underflagging Systems)
In an underflagging type-system for an existentially quantified notion of correctness:

E; Γ, x : T `ε Q : (U ; S) and f ∈JT KE

⇒ ∃S ′ ⊇ S. E; Γ `ε Q{x← f} : (U ; S ′),

We are not going to prove these properties. This subsection was only meant to
illustrate that the switch from the universal to the existential approach has some
delicate consequences.

5 Type-Splitting

5.1 Motivation and Example

We provisionally assumed that SplitE(T ) = {T}. This simple definition is enough
to obtain soundness of type checking and error-checking. These are the canonical
properties that are proved for any type system, but they are not very informative,
as we noticed already. For the core-language µXQ, we can actually aim for a much
stronger property: a type system that infers types which are both lower-bounds
and upper-bounds, hence is able to catch all and only the FE-errors. In a word, a
type-system that is both sound and complete.

Our provisional type system is not up to this aim. It is not precise enough
when, for example, there are variables that occur more than once (non-linear vari-
ables) and with a union type. For example, consider the (artificial) type X =
data[mobile[]∗ | phone[]∗], and the query

x/mobile, x/phone.

When x has type X, this query yields either a sequence of elements mobile[] or a
sequence of elements phone[]. Instead, as in XQuery, our type system infers a type
(mobile[]∗, phone[]∗), which also contains sequences with both mobile[] and phone[]
elements.

Our provisional type system does not guarantee completeness of error-checking
either. For example, consider the type Y = c[a[] | b[]] and the query:

Q8 ≡ for x in y/a return y/b

where y is of type Y (this code returns a sequence y/b if and only if y has a child
a, and returns () otherwise). The query is FE-incorrect, as there is no substitution
that makes the subquery y/b yield a not-empty result: if y is of type c[a[]] then y/b
cannot return any tree, and if y is of type c[b[]] then y/a is empty, hence y/b will not
be evaluated at all. Nevertheless, our provisional type system validates the query as
correct. This is because the two uses of y are deemed acceptable by exploiting two
separate, and incompatible, branches of the union type of y. (Similar phenomena
happen in all related type systems we are aware of, including the XQuery type
system.)
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5.2 Definitions

We will define a type system which detects all FE-errors, and infers a type that
provides both an upper and a lower bound for the set of all possible query results
(Theorem 5.22).

Of course, the existence of any kind of correct and complete static analysis also
shows that the language is, in some sense, poor. Specifically, our result relies on a
monotonicity property of µXQ (Lemma 5.7) that would not hold in most realistic
extensions of the language. Still, the existence of a core where the analysis is com-
plete is an important result, because it formally measures the quality of the match
between our notion of error and our type system.

The error-complete approach is based on enumerating the branches of the union
types of typed variables (splitting the type), performing an independent analysis
for each branch, and combining the results. The amount of splitting is governed
by the function SplitE(T ) (Definition 5.2), which rewrites T to a set {T1, . . . , Tn}
such that T1 | . . . | Tn is equivalent to T . Essentially, SplitE(T ) rewrites T in order
to make | be the outermost type operator. For example, type c[a[] | b[]] is split into
{c[a[]], c[b[]]}, and the query Q8 presented above is analyzed once with y : c[a[]] and
once with y : c[b[]]. The subquery (Q8)|1 is (correctly) flagged as wrong, since the
location 1 is in the error set of both runs of the analysis.

By splitting a type more and more finely, a more precise type analysis can be
obtained, at the price of a more expensive type-checking process, since the rest of
the query is checked once for every addend generated by splitting.

Our key result is the fact that splitting can be stopped in front of ∗-types
(SplitE(T∗) = {T∗}), and still the new type system enjoys the completeness prop-
erties formalized by Theorem 5.27. Hence, for example:

SplitE((data[phone[...] | mobile[...]])∗) = {(data[phone[...] | mobile[...]])∗}

SplitE(phone[...] | mobile[...]) = {phone[...]; mobile[...]}

SplitE(a[ (b[], c[]) | (d[], e[]) ]) = {a[b[], c[]]; a[d[], e[]]}.

For an intuitive understanding of this result, consider that splitting was needed
for query Q8 because of the presence of the two mutually incompatible paths c/a and
c/b inside the type of y. For the query Q8, an assumption like y : (c[a[] | b[]])∗, where
union is guarded by ∗, does not need to be split any further. The key observation is
the fact that paths c/a and c/b are not incompatible when y has type c[(a[] | b[])∗],
since c[a[], b[]] is a legitimate value for y, and for this value, for instance, both
y/a and y/b find a match and make the query yield the not empty result c[b[]].
Moreover, with y : (c[a[] | b[]])∗ the query has type (c[b[]])∗, which is an exact type
for Q. Lemma 5.11 provides a formalization of the intuition that incompatible paths
cannot exist in types where union is guarded by ∗.

The actual definition of SplitE(T ) is non-trivial because of recursive type vari-
ables. Consider the type Y = a[Y ] | b[Y ] | () and a type assumption y : Y . Every
time we unfold Y , new instances of | appear, which have to be “pulled out” by
SplitE(T ), and which generate new cases to analyze. We would like to unfold Y
just once, and to analyze the query just three times, trying y : a[Y ], y : b[Y ] and
y : (). But, consider the following generalization of Q8, where (/a)n stands for n
consecutive occurrences of /a:

Qn ≡ for x in y(/a)n/a return y(/a)n/b



24 Dario Colazzo et al.

This query yields the empty sequence under each valid substitution for y. In order
to infer the empty sequence type for this query, Y must be unfolded n + 1 times
before splitting and performing separate analysis. This means that we cannot decide
how deeply Y should be unfolded without looking at the query under consideration.

This example may suggest that a more complex type system, where unfolding
depends on the query, may be worth studying. But this seems hard to obtain. In
the following example, indeed, splitting after any finite unfolding does not solve the
problem, because of the presence of descendant-or-self.

Q′ ≡ for x in y//a
return ( for z in x/a return x/b )

(y is still of type Y = a[Y ] | b[Y ] | ()).
The solution we propose, instead, is based on a mild restriction on the use of

recursion in type environments, which, as we will show, seems to be acceptable in
practice.

We rule out types as the Y type above by requiring that any environment be
∗-guarded, which means that recursion is guarded by a ∗ type constructor,

Definition 5.1 (∗-guarded Environments)
E is ∗-guarded if it is well-formed and:

∀X. ∀e. X →E
e X ⇒ ∃e′, e′′. e = e′.∗.e′′

We claim that our restriction is “mild”. Indeed, it is respected by all the schemas
reported in the W3C document “XML Query Use Cases” (Chamberlin et al., 2003).

Under this restriction, SplitE(T ) unfolds recursion until ∗ is met, and “pulls out”
all and only the union type constructors that are found outside any ∗. Hence, the
Split function (Definition 5.2) always produces a finite set of types, and induces a
type-system that computes lower-bounds and is complete (Theorems 5.22 and 5.27).

Definition 5.2 (SplitE(T ))
If E is ∗-guarded, then:

SplitE(()) M= {()}
SplitE(B) M= {B}

SplitE(U∗) M= {U∗}
SplitE(X) M= SplitE(E(X))

SplitE(T | U) M= SplitE(T ) ∪ SplitE(U)
SplitE(l[T ]) M= {l[A] | A ∈ SplitE(T )}
SplitE(T,U) M= {(A,B) | A ∈ SplitE(T ) ∧B ∈ SplitE(U)}

SplitE(T ) is well-defined by Knaster-Tarski theorem. If E is ∗-guarded, SplitE(T )
is finite and can be computed by a standard top-down recursive implementation
of the definition above: ∗-guardedness of E implies that the ∗ case will break any
potential infinite loop generated by the recursive definition of a type variable.

Splitting preserves type semantics.

Lemma 5.3
For each ∗-guarded environment E and type T defined in E:

JT KE =
⋃

A∈SplitE(T )JAKE
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From now on, we stop assuming SplitE(T ) = {T}, and start assuming that
SplitE(T ) is defined as shown in Definition 5.2. No type rule changes. The resulting
type system is called type-splitting system.

5.3 Simulation and Query Monotonicity

To characterize the precision of the type-splitting system, we define now a pre-
order relation on forests, noted as v, and called forest simulation. This pre-order
compares forests as if they were sets of trees instead of sequences, so that, for
example, a[], a[] v a[] and a[], b[] v b[], a[]; and implies path inclusion, so that if a/d
is a path of f and f v f ′, then a/d is a path of f ′ as well.

We will prove that query semantics is monotone with respect to v, and that,
if a query is correct when run with y = f and f v f ′, then the query is correct
when run with y = f ′ as well; these are the only properties that v must enjoy.
The relation v ignores the fact that trees are ordered, and does not distinguish
among base values; this reflects the fact that our notion of error is only related to
the existence of paths, which do not depend on sibling order nor on base values.

Definition 5.4 (Forest Simulation f v f ′)
Simulation f v f ′ is the smallest relation on forests that respects the following
conditions:

∀b1, b2 ∈ B. b1 v b2

∀ l. ∀f1, f2. l[f1] v l[f2] ⇔ f1 v f2

∀f1, f2. f1 v f2 ⇔ ∀t ∈ trees(f1). ∃t′ ∈ trees(f1). t v t′

Reflexivity and transitivity of v easily follow by its definition.

Lemma 5.5
For each f and f ′:

(f v f ′ ∧ f 6= ()) ⇒ f ′ 6= ()

Lemma 5.7 states that µXQ queries are monotone with respect to v extended to
substitutions in the obvious way:

ρ v ρ′ ⇔def ∀χ ∈ dom(ρ). ρ(χ) v ρ′(χ).

We are not talking here about the usual (trivial) set-of-values monotonicity prop-
erty, that states that, if the set of values that the variable x is allowed to range over
increases, then the set of values that can be assumed by the query result increases
as well. We are stating here a much stronger property that specifies that queries
are monotone with respect to a pre-order that is defined on values (forests, in this
case). This strong property is not needed in order to prove soundness results, but
is crucial for completeness.

Query monotonicity depends on monotonicity of filtering and axis steps.

Lemma 5.6 (Monotonicity of Filtering, Childr and DOS )

1. ∀f, f ′. f v f ′ ⇒ f :: NodeTest v f ′ :: NodeTest
dos(f) v dos(f ′)

2. ∀t, t′. t v t′ ⇒ childr(t) v childr(t′)

Lemma 5.7 (Query Monotonicity)
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∀Q, ρ, ρ′. ρ v ρ′ ⇒ JQKρ v JQKρ′

Query monotonicity has the following corollary, which implies monotonicity of
substitution extension.

Corollary 5.8
Given a well formed query Q and a substitution ρ such that FV (Q) ⊆ dom(ρ)∪{χ}:

f1 v f2 ⇒
∏

t∈trees(f1)

JQKρ,χ7→t v
∏

t∈trees(f2)

JQKρ,χ7→t

Lemma 5.9 (Extension Monotonicity)
For any Q and pair of substitutions ρ1 and ρ2 such that FV (Q) ⊆ dom(ρ1) =

dom(ρ2) and ρ1 v ρ2, ∀β ∈ Locs(Q).

∀ρ′ ∈ Ext(ρ1, Q, β). ∃ρ′′ ∈ Ext(ρ2, Q, β). ρ′ v ρ′′

Finally, Lemma 5.11 shows that, after splitting a type T , all the types in SplitE(T )
are closed for finite v-upper-bounds. Very informally, this captures the notion of
‘no mutual exclusion’ among paths, and implies that, if we use substitutions based
on different fi’s in different branches (cases) of a typing proof, we can then combine
all these branches, because one upper-bound of those fi-based substitutions exists
that is acceptable as well (you do not find this lemma in the canonical type papers,
because it is strictly related with the existential notion of correctness). This is the
key lemma that allows us to prove that this type system infers a type which is a
lower-bound for the set of all possible results for Q, modulo v (Theorem 5.22).
The combination of upper and lower-bound properties gives us a soundness-and-
completeness property for error-checking as well: our type system discovers all and
only the FE-errors of the analyzed query (Theorem 5.25 and Theorem 5.27).

Lemma 5.11 is a corollary of the following lemma.

Lemma 5.10 (Closure of Split Types)
For any ∗-guarded environment E and type T well-formed in E, for any A ∈
SplitE(T ):

∀f1, f2 ∈ JAKE . ∃f ∈ JAKE . fi v f for i = 1, 2

Lemma 5.11
For any type A defined in a ∗-guarded environment E, if SplitE(A) = {A} then,

∀f1, . . . , fn ∈ JAKE . ∃f ∈ JAKE . fi v f for i = 1 . . . n

5.4 Soundness and Completeness of Error-Checking

Type-splitting type rules assume environments Γ to be strongly-∗-guarded, accord-
ing to the following definition.

Definition 5.12 ( strongly-∗-guarded Γ)
Γ is strongly-∗-guarded in E ∗-guarded if and only if, for every χ : T in Γ,
SplitE(T ) = {T}.
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Notice that, in a ∗-guarded type environment E, recursion is ∗-guarded, but a
type T that appears in an equation X = T may present non-∗-guarded unions, as in
T ≡ l[U∗ | V ∗]. In a strongly-∗-guarded variable environment Γ, instead, for every
variable definition χ : T , unions in T must be ∗-guarded, as in T = l[(U | V )∗],
because of the condition SplitE(T ) = {T}. .

Rules (TypeInElSplitting) and (TypeLetSplitting) are the only rules that
extend the environment Γ, and they preserve strongly-∗-guardedness, as, whenever
a not ∗-guarded union is met in the typing process, the union is split by these rules.

Observe that, in order to use type-splitting rules over a judgment containing a
∗-guarded environment E and a generic environment Γ, the latter has first to be
split in a finite number of strongly-∗-guarded environments, as defined below.

Definition 5.13 (Query Variables Environment Splitting)
For each Γ well-formed in a ∗-guarded type environment E, we extend splitting
to Γ in order to decompose it into a finite set of strongly-∗-guarded environments,
which we call SplitVEnv(Γ, E):

SplitVEnv((), E) M= ∅
SplitVEnv((Γ, x : T ), E) M= {Γ′, x : A | Γ′ ∈ SplitVEnv(Γ, E) ∧A ∈ SplitE(T )}

Lemma 5.14
For each ∗-guarded type environment E and Γ well-formed in E:⋃

Γ′∈SplitVEnv(Γ,E)

R(E,Γ′) = R(E,Γ)

The strongly-∗-guarded variable environments enjoy the property stated in Lem-
ma 5.15, which generalizes Lemma 5.11 from typed values to typed substitutions,
and is one of the crucial lemmas needed to prove the lower bound property in
Theorem 5.22.

Lemma 5.15
For any strongly-∗-guarded and well-formed Γ in a ∗-guarded type environment E,
and ρ1, . . . , ρn ∈ R(E,Γ), there exists ρ ∈ R(E,Γ) such that ρi v ρ for i = 1 . . . n.

Definition 5.16 (Typing by Splitting)
For any well-formed query Q, any ∗-guarded environment E and Γ well-formed in
E, we indicate with E; Γ β Q : (U ; S) the following facts:

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi `β Q : (Ui; Si) i = 1 . . . n

(3) U ≡ U1 | . . . | Un

(4) S =
⋂

i=1...n Si

The type-splitting system enjoys soundness and completeness of type inference
and error-checking. To prove these properties, we will use the following lemmas.

Lemma 5.17 (Invariance of Well-Formation)
For any well-formed judgement E; Γ `β Q : (U ; S) with Γ strongly-∗-guarded,
the backward application of the rules produces judgements that are well-formed as
well, and only contain strongly-∗-guarded environments.
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The following lemma is crucial to prove completeness of the type-splitting sys-
tems, as it proves a lower bound property for the particular case of dos(f). This
lemma is actually an extension of Lemma 4.12.

Lemma 5.18 (Soundness and Completeness of DOS Type)
For any E well-formed, T such that E ` T Def, and U such that

SubTreesE(T ) = {U1, . . . , Un}
U ≡ (U1 | . . . | Un)∗

then:

(1) ∀f ∈ JT KE . dos(f) ∈ JUKE

(2) ∀f ∈ JUKE . ∃{f ′1, . . . , f ′m} ⊆ JT KE . f v dos(f ′1, . . . , f
′
m)

(3) SplitE(T ) = {T} ⇒ ∀f ∈ JUKE . ∃f ′ ∈ JT KE . f v dos(f ′)

If we do not assume SplitE(T ) = {T}, then property

∀f ∈ JUKE . ∃f ′ ∈ JT KE . f v dos(f ′)

does not hold. Consider the type T ≡ c[a[] | b[]]. We have U ≡ (c[a[] | b[]] | a[] | b[])∗
and f = c[a[]], b[] ∈ JUKE . And for f there exists no f ′ ∈ JT KE such that f v dos(f ′).

The lemma below entails the upper bound property for the type splitting system;
as for the previous type-system, this is the basis for soundness of error checking.

Lemma 5.19
In the type splitting system, for each Q, ∗-guarded E, and Γ strongly-∗-guarded
and well-formed in E:

E; Γ `β Q : (U ; ) ∧ ρ ∈ R(E,Γ) ⇒ JQKρ ∈ JUKE

Theorem 5.20 (Upper Bound for the Type-Splitting System)
For each Q, ∗-guarded and well-formed E, and Γ well-formed in E:

E; Γ β Q : (U ; ) ∧ ρ ∈ R(E,Γ) ⇒ JQKρ ∈ JUKE

As anticipated, thanks to the strongly-∗-guardedness restriction, the type-split-
ting system is complete up to forest simulation v. Completeness is proved in The-
orem 5.22 and follows from the next lemmas, where we first consider the special
case where Γ is strongly-∗-guarded.

Lemma 5.21
In the type-splitting system, for each Q, ∗-guarded E, and Γ strongly-∗-guarded
and well-formed in E:

E; Γ `β Q : (U ; ) ⇒ ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v JQKρ

Theorem 5.22 (Lower Bound for the Type-Splitting System)
For each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ β Q : (U ; ) ⇒ ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v JQKρ

The lower and upper bound properties imply ()-precision, which will be crucial
for completeness of error-checking.

Corollary 5.23 (()-precision)
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In the type splitting system, for each Q, ∗-guarded E, and Γ strongly-∗-guarded
and well-formed in E, if E; Γ `β Q : (U ; ) then:

JUKE = {()} ⇔ ∀ρ ∈ R(E,Γ). JQKρ = ()

We are now ready to state the soundness and completeness properties of error-
checking for the type splitting system. We start with soundness, whose proof is
quite similar to that of soundness in the absence of splitting.

Lemma 5.24
In the type-splitting system, for each query Q, ∗-guarded E, Γ strongly-∗-guarded
and well-formed in E:

E; Γ `β Q : ( ; S) ⇒ (β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ))

Theorem 5.25 (Soundness of Error-Checking for the Type-Splitting System)
For each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

We can finally state the completeness property of error checking; as usual, the
proof is in the web supplementary material.

Lemma 5.26
In the type-splitting system, for each Q, ∗-guarded E, and Γ strongly-∗-guarded
and well-formed in E:

E; Γ `β Q : ( ; S) ⇒ (Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S)

Theorem 5.27 (Completeness of Error-Checking for the Type-Splitting System)
For each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ β Q : (U ; S) ∧Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S

6 The Cost of Case-Analysis

Case-analysis is central in our type systems, but it can make type checking rather
expensive. Essentially, type-checking time can be exponential in the size of queries
and types due to the possible presence of nested for queries.

Case analysis is caused by the (TypeIn*) rules used to type-check for itera-
tion and by the (Type*Splitting) rules used when the variable environment Γ is
extended with a new variable.

We start with discussing for-case-analysis. We recall that for queries are checked
by the following rule.

E; Γ `β.0 Q1 : (T1; S1)
E; Γ `β.1 x in T1 → Q2 : (T ′; S2)
S = if T1 ∼E () then {β} else ∅

E; Γ `β for x in Q1 return Q2 : (T ′; S1 ∪ S2 ∪ S)
(TypeFor)

The rules for the second premise decompose T1 in tree types and then type-check
Q2 once for each tree type at the top level of T1. So, if T1 ≡ l[m[X]] | (n[], B), then
Q2 is checked three times, with respect to the assumptions x : l[m[X]], x : n[], and
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x : B. Hence, when Q2 contains nested for queries, the number of cases to analyze
can be exponential in the depth of for nesting.

However, in practice, queries and types usually satisfy some properties that allow
a fast type checking. Namely, for-case-analysis is often performed on a type having
only one tree type at the top-level, hence there is only one case to iterate on.
Moreover, in most cases, type-splitting operations stop quite soon as union is often
∗-guarded (recall that SplitE(T∗) = {T∗}). As we will see, these facts allow one
easy optimization that drastically reduces the cost of case analysis.

We are now going to describe these properties of types and queries that allow fast
checking. As we will explain, these properties are extremely common, in the sense
that they are satisfied by most use cases we found described (almost all XQuery
use cases in (Chamberlin et al., 2003)). We will first discuss the for-case-analysis,
and then type-splitting case analysis.

It is important to notice that, when these properties are violated only by a small
subset of the types or the subqueries of a query, the query can still be type-checked
in a reasonable time. Type checking becomes infeasible only when these properties
are systematically violated.

The property of interest for types is given by the following definition.

Definition 6.1 (Label-Deterministic Types)
A type T well-formed in E is label-deterministic, with respect to E, if and only if
T →E

e m[U ] and T →E
e m[U ′] imply that U ≡ U ′

This property always holds for types defined by a DTD. XML Schema declarations
allow one to define types that are not label-deterministic, but this possibility is, in
practice, used for a minority of types.

This property is extended to environments type-by-type: each type has to be
label-deterministic, but different types may associate different content types to the
same label.

Definition 6.2 (Label-Deterministic Environments)
Given Γ well-formed in E, we say that Γ is label-deterministic, with respect to
E, or that (E,Γ) is label-deterministic, if and only if for each χ : T in Γ, T is
label-deterministic with respect to E.

The property is usually satisfied when type-checking starts, but it could be bro-
ken during type checking, when the environment Γ is extended by the application
of rules (TypeLetSplitting) and (TypeInElSplitting). This is not going to
happen, however, if the checked query satisfies another common property, that we
define now.

Definition 6.3 (Left-Path Queries)
A query Q is left-path if ∀β ∈ Locs(Q):

((Q)|β ≡ for x in Q1 return Q2 ∨ (Q)|β ≡ let x ::= Q1 return Q2)⇒

Q1 ≡ χ Step1 Step2 . . .Stepn

where Stepi is either /l or //l.

The left-path property is satisfied by almost all queries we found in the published
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use-cases. However, the iteration over paths ending with //node() or /node(), as
the ones below:

$x/tag1/.../tagn/node()
$x/tag1/.../tagn//node()

is sometimes met. We will discuss it shortly.
We can now prove that for label-deterministic types and left-path queries, type

checking can be efficiently performed by the type system based on for-case-analysis.
Afterward, we will discuss the further case-analysis introduced by type splitting.

In the sequel, we use the following definition:

Definition 6.4
We define UpperTreesE(T ) as the set of the tree types of the trees that can be
found at the top level of a forest of type T , formally:

UpperTreesE(T ) M= {U | T →E
e U, U is a tree type,

and not exist e′, l, e′′. e ≡ e′.l.e′′}

The following lemmas allow us to optimize for-case-analysis.

Lemma 6.5
Assume E; Γ `β Q : (T ; ), (E,Γ) is label-deterministic and

Q ≡ χ Step1 Step2 . . .Stepn

where Stepi is either /li or //li. Then T is label-deterministic. Moreover,

UpperTreesE(T ) ⊆ {ln[T ′]}

for some T ′, where ln is the label of Stepn.

Lemma 6.6
If E is ∗-guarded and T is well-defined and label-deterministic with respect to E,
then each A ∈ SplitE(T ) is label-deterministic with respect to E.

Lemma 6.7
If E; Γ `β Q : (T ; ) , (E,Γ) is label-deterministic and Q is left-path, then for
each judgement of shape

E′; Γ′ `β Q′ : (T ′′; S)
or

E′; Γ′ `β x in T1 → Q′ : (T ′′; S)
in the proof tree of E; Γ `β Q : (T ; ), the pair (E′,Γ′) is label-deterministic and
Q′ is left-path. Moreover, in the second case, T1 is label-deterministic.

The following lemma formalizes the desired optimization.

Lemma 6.8 (Label-Deterministic Analysis)
If E; Γ `β Q : (T ; ), (Γ, E) is label-deterministic and Q is left-path, then for
each judgement

E′; Γ′ `β for x in Q1 return Q2 : (T ′; S)

in the proof tree of E; Γ `β Q : (T ; S), we have

∃ T1,m, U. E′; Γ′ `β Q1 : (T1; ) ∧ UpperTreesE′(T1) ⊆ {m[U ]}
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The above lemma implies that each time a judgement

E′; Γ′ `β for x in Q1 return Q2 : (T ′; S ′)

is met while proving E; Γ `β Q : (T ; S), then case-analysis can be drastically
optimized. Indeed, by (TypeFor), E′; Γ′ `β for x in Q1 return Q2 : (T ′; S ′)
is proved by first proving E′; Γ′ `β.0 Q1 : (T1; S1) and then by performing
case-analysis on T1 to prove E′; Γ′ `β.1 x in T1 → Q2 : (T ′; S ′′). But, since
UpperTreesE′(T1) ⊆ {m[U ]}, the case-analysis always ends up with a tree type
m[U ] which is used by rule (TypeInElSplitting) to prove E′; Γ′, x : m[U ] `β.1

Q2 : (U ′; S2). This means that Q2 can be checked once, and then its type-proof
can be reused each time m[U ] is reached during case analysis over T1.

As we anticipated, the left-path condition is actually violated by some queries
that, although infrequent, are not completely unusual. For instance, in the XQuery
use cases node() is sometimes used in XPath expressions that are inside a left-
subquery of a for query. This forces the return clause to be checked a number of
times that may be linear in the size of the involved types. However, if this violation
is not nested, the slow down is linear rather than exponential, which is acceptable;
this covers all violations found in the use cases in (Chamberlin et al., 2003), but
it also holds for rather complex queries as those in the XMark benchmark set
(Schmidt et al., 2002). More generally, we believe that the class of queries with less
than, say, three nested node() steps is quite vast, and for this class our typing is
not exponential. We are, however, planning to implement the system and perform
some empirical testing, in order to confirm these beliefs.

We analyze now type-splitting, which is the second source of case-analysis.
Type-splitting, in practice, has a very limited cost. By analyzing types defined

in (Chamberlin et al., 2003) and in many other repositories over the Web, we
have realized that whenever union is used to specify element content, then union
is almost invariably ∗-guarded. This means that, during type-analysis, for a large
class of input types in these cases, type-splitting produces very few cases, since
splitting stops in front of T∗ types.

Consider, for example, the following DTD from (Chamberlin et al., 2003):

<!DOCTYPE report [
<!ELEMENT report (section*)>
<!ELEMENT section (title, content)>
<!ELEMENT title (#PCDATA )>
<!ELEMENT content (#PCDATA | anesthesia | prep

| incision | action | observation)*>
<!ELEMENT anesthesia (#PCDATA)>
<!ELEMENT prep ( (#PCDATA | action)* )>
<!ELEMENT incision ( (#PCDATA | geography

| instrument)* )>
<!ELEMENT action ( (#PCDATA | instrument )* )>
<!ELEMENT observation (#PCDATA)>
<!ELEMENT geography (#PCDATA)>
<!ELEMENT instrument (#PCDATA)>

]>

In this DTD, union is intensively used to specify element-contents. However, it
is always ∗-guarded. Hence, each element type reached by case-analysis is never
actually split, since SplitE(m[(T )∗]) = {m[(T )∗]}. Actually, we have found a few
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schemas where union is not ∗-guarded. We report here the only such example from
(Chamberlin et al., 2003).

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ |editor+ ),

publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first )>
<!ELEMENT editor(last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
<!ELEMENT last (#PCDATA )>
<!ELEMENT first (#PCDATA )>
<!ELEMENT affiliation (#PCDATA )>
<!ELEMENT publisher (#PCDATA )>
<!ELEMENT price (#PCDATA )>

The union (author+ | editor+ ) is not ∗-guarded, but its two immediate com-
ponents author+ and editor+ are. By looking at repositories of schemas over the
Web we have verified that when union is not ∗-guarded then it either involves a
few ∗-guarded types (as above) or types that contain a very small number of nested
types, as the DTD fragment below, which describes time stamps used in Unix sys-
tems management. Hence, splitting generally produces very few cases to analyze.

<!ELEMENT TimeStamp (DateTime | (Seconds, Microseconds?))>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Seconds (#PCDATA)>
<!ELEMENT Microseconds (#PCDATA)>

The other cases we have found of not ∗-guarded use of union types are not far
from this one. All of them feature a very low amount of nesting. We suspect that
deeply nested not ∗-guarded unions are difficult to work with in practice, hence are
avoided by schema designers.

We plan further investigations about the patterns, in types and queries, that we
have discovered, since several applications may profit from these regularities.

7 Extending µXQ

µXQ, although inspired by XQuery, omits many important features. We discuss
here some of them.

7.1 where clauses

In this section we extend µXQ’s FLWR constructs with a where clause. We shall
discuss how this extension affects the properties of soundness and completeness
that we proved previously.

We first extend the language syntax with a non-terminal P of predicates and
with a where P clause. We will now interpret a for or let construct with no where
clause as an abbreviation for a missing where true.
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Q ::= () | b | l[Q] | Q,Q | x | x

| x child :: NodeTest | x dos :: NodeTest
| for x in Q where P return Q

| let x := Q where P return Q

NodeTest ::= l | node() | text()

P ::= true | Q δ Q | P or P | not P

δ ::= = | <

If we extend the semantics, the type rules and the notions of CriticalLocs(Q)
and Ext(ρ, Q, ε) in the natural way, we obtain a type system that is sound, but
is not complete. Table 7.1 shows the new definitions of JQKρ, Ext(ρ, Q, ε) and
CriticalLocs(Q), while Corollary 7.7 is the corresponding soundness result. Observe
that our type rules do not require that Q and Q′ have related types in a comparison
Q δ Q′. This is an important issue, but is orthogonal to the navigation-correctness
problem that we study in this paper.

The type system is not complete for a couple of reasons. First of all, any query
whose condition is not satisfiable, like for x in Q where false return Q ′, is FE-
incorrect, even if it contains no wrong path. But such queries are correct in the
type system.

Completeness is also lost for a subtler, and more interesting, reason: because
the where clause makes the language lose its monotonicity. Consider the following
query:

Q0 ≡ for $x in a[] where not ($y = ()) return $x

Monotonicity would imply that f v f ′ ⇒ JQ0K$y7→f v JQ0K$y7→f ′ (Lemma 5.7). In
this case, instead, we have () v b[] but JQ0K$y7→() 6v JQ0K$y7→b[], since JQ0K$y7→() = a[]
and JQ0K$y7→b[] = (). Hence, Lemma 5.7 (monotonicity) does not hold any more,
and we lose the lower-bound property of type-inference (Theorem 5.22) and com-
pleteness of error-checking (Theorem 5.27), which depend on that lemma.

The fact that type-checking over the extended language is not complete is not
really a problem. We did not define a complete system over the monotone core be-
cause we hoped to extend completeness to a realistic language; indeed, no complete
semantic analysis can be decidable on a Turing-complete language. Nevertheless,
completeness over an important kernel that includes paths, element construction,
iteration, and query composition, is an essential property since these operators play
a major role in any significant piece of code.

Still, our type-system is complete, in a weaker sense, over the language extended
with where, provided that one adopts the appropriate notion of “path-errors”. In
other terms, we can define a notion of “path-errors” which exactly corresponds to
the pieces of code that are flagged by our type-system.

To justify this notion, consider the following queries, posed on the same schema
used in Section 3.

Q1 : for $c in $contacts where ($c/fone/text() = 1000) return $c/phone
Q2 : for $c in $contacts where (false) return $c/phone
Q3 : for $c in $contacts where ($c = data[fax[2000]]) return $c/phone
Q4 : for $c in $contacts where not($c/mobile = ()) return $c/phone
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Table 7.1. µXQ with where

New semantic clauses (the definition of JP Kρ is completely standard)

Jlet x := Q1 where P return Q2Kρ
M
= if JP Kρ,x7→JQ1Kρ then JQ2Kρ,x7→JQ1Kρ else ()

Jfor x in Q1 where P return Q2Kρ
M
=
Q

t∈trees(JQ1Kρ) (if JP Kρ,x7→t then JQ2Kρ,x7→t else())

Modified type rules (the other rules to type-check P conditions are standard)

(TypeLetWSplitting)
E; Γ `β.0 Q1 : (T1; S)
SplitE(T1) = {A1, . . . , An}
E; Γ, x : Ai `β.1 P : (Bool; S ′i)
E; Γ, x : Ai `β.2 Q2 : (Ui; Si; Wi)

E; Γ `β let x := Q1 where P return Q2

: (U1 | . . . | Un | (); S ∪ ∩i=1...nS ′i ∪ ∩i=1...nSi)

(TypeEq)
E; Γ `β.0 Q0 : (T0; S0)
E; Γ `β.1 Q1 : (T1; S1)

E; Γ `β Q0 = Q1 : (Bool; S0 ∪ S1)

(TypeFor)
E; Γ `β.0 Q1 : (T1; S0)
E; Γ `β.1 x in T1 → Q2 where P : (T2; S1)
S = if T1 ∼E () then {β.0} else ∅

E; Γ `β for x in Q1 where P return Q2 : (T2 | (); S0 ∪ S1 ∪ S)

New definition of CriticalLocs(Q)

CriticalLocs(Q)
M
= {β | ( (Q)|β = (x child :: NodeTest) ∨

(Q)|β = (x dos :: NodeTest))} ∪
{β.0 | (Q)|β = for x in Q0 where P return Q1}

Substitution extension

Ext(ρ, Q, ε)
M
= {ρ}

Ext(ρ, let x := Q0 where P return Q1, 2.β)
M
= if JP Kρ,x7→JQ1Kρ then Ext((ρ, x 7→JQ0Kρ), Q1, β) else ∅

Ext(ρ, for x in Q0 where P return Q1, 2.β)
M
=
S

t∈trees(JQ0Kρ) s.t. JP Kρ,x7→t=true Ext((ρ, x 7→ t), Q1, β)

otherwise: (Q)|i 6= ⊥ ⇒ Ext(ρ, Q, i.β)
M
= Ext(ρ, (Q)|i, β)

All these queries always return empty forests, hence are FE-incorrect. The first
has a path-error ($c/fone). The second and the third present unsatisfiable condi-
tions, but no wrong path. The fourth only presents sensible paths as well, but it
always returns an empty forest since the where condition stops any contacts with
$c/mobile = (), and the type of $c tells us that these stopped contacts are the
only ones that may contribute data to the result. One may argue that the “filtering
anomalies” in queries Q2, Q3, and Q4 would deserve some form of static detection,
and we are actually tempted to go in this direction, in some future. However, we
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believe that these “filtering anomalies” are FE-errors which should not be classified
as path-errors, and that their prevention should be studied separately.

In order to formally define a notion of path-error that corresponds to this intu-
ition, hence that only considers Q1 as path-wrong, we will define a transformation
where-drop(Q) that moves every subquery from the where-predicates P to new let
binders, and then removes what is left of the where clause. Any FE-error that re-
mains after this transformation is then defined to be a path-error. It is not difficult
to prove that our type-system is complete with respect to this subclass of FE-errors.
We are now going to formalize this.

The function where-drop(Q) is defined as the result of a two-steps process. In the
first step we repeatedly apply the following rewritings, until every P condition is
only applied to variables; the rewriting step is applied in any order, at any nesting
depth inside the query. The result is affected by the order we choose, but the
semantics of the result is not.6

Subquery extraction
for any non-variable Q′ such that Q′ δ Q′′ or Q′′ δ Q′ appears in P
and for some fresh variable y :

for x in Q0 where P return Q1

→ for x in Q0 return let y := Q′ where P{Q′ ← y} return Q1

let x := Q0 where P return Q1

→ let x ::= Q0 return let y := Q′ where P{Q′ ← y} return Q1

We then repeatedly apply the following transformations, everywhere inside the
query, until every where clause has been removed. In this case, the result does not
depend on the clause we start from.

Where cancellation
for x in Q0 where P return Q1 → for x in Q0 return Q1

let x := Q0 where P return Q1 → let x ::= Q0 return Q1

We present here an example of the where-drop( ) process. We omit return before
for and let, hence obtaining the usual syntax of FLWR expression.

for x in contacts
where x/fone = phone[13]
return x

⇒

for x in contacts
let z := x/fone,
let y := phone[13]
where z = y
return x

⇒

for x in contacts
let z := x/fone,
let y := phone[13]
return x

We can now define path-correctness as follows.

Definition 7.1 (Where-dropping path-correctness)
A query Q in the language extended with where is path-correct w.r.t. a set of valid
substitutions R if where-drop(Q) is FE-correct.

We can now observe some facts.

1. a subquery extraction step does not change query semantics;

6 This step could be avoided by restricting the syntax so that only variable comparisons are
allowed
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2. if where cancellation is performed starting from outermost clauses, every step
increases the query semantics, according to simulation order;7

3. if a subquery extraction step transforms Q into Q′, then any proof tree for
E; Γ `β Q : (T ; S) can be transformed into a proof tree for E; Γ `β Q′ :
(T ; S ′), where S and S ′ have the same cardinality;

4. if a where cancellation step, applied during the second phase, transforms Q
into Q′, and E; Γ `β Q : (T ; S), then E; Γ `β Q′ : (T ; S ′) holds, where S
and S ′ have the same cardinality;

5. JQKρ v Jwhere-drop(Q)Kρ;
6. E; Γ `β Q : (T ; S) implies that E; Γ `β where-drop(Q) : (T ; S ′), where S

and S ′ have the same cardinality.

From these observations, we get our results. The results are a bit weaker than
expected, since they do not actually relate the location where an error is found by
the type rules with the actual error location. This is a minor problem related to
the manipulations performed by where-drop( ).

Theorem 7.2 (Upper Bound)
For any well-formed environment E, Γ well-formed in E, and well-formed Q with
where clauses:

E; Γ β Q : (U ; ) ∧ ρ∈R(E,Γ) ⇒ ∃f ∈ JUKE . JQKρ v f

Theorem 7.3 (Soundness of Path-Error-Checking)
For any well-formed environment E, Γ well-formed in E, and query Q with where
clauses:

E; Γ β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has a path-error w.r.t. R(E,Γ)

Theorem 7.4 (Lower Bound)
For each query Q with where clauses, ∗-guarded E, and Γ well-formed in E, in the
type-splitting system:

E; Γ β Q : (U ; ) ⇒ ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v Jwhere-drop(Q)Kρ

Theorem 7.5
For each query Q with where clauses, ∗-guarded E, and Γ and well-formed in E:

E; Γ β Q : ( ; S) ⇒ (Q has a path-error w.r.t. R(E,Γ) ⇒ ∃α. β.α ∈ S)

Soundness and correctness with respect to path-errors immediately imply the re-
sult that we announced first, soundness with respect to FE-errors. We now state the
following lemma, which relates path-correctness with FE-correctness. The location
of the path-error and of the FE-error can be different, because of the where-drop( )
process.

Lemma 7.6
For each query Q with where clauses, if Q has a path-error at β ∈CriticalLocs(Q)
w.r.t. R, then Q has an FE-error.

As a corollary, we get soundness of type-checking with respect to FE-errors.

7 Actually, the semantics is also increased wrt the relation that specifies that f ≤ f ′ if f is
obtained by removing some subtrees from f ′, but simulation is enough for our purposes here.
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Corollary 7.7 (Soundness of FE-Error-Checking)
For any well-formed environment E, Γ well-formed in E, and query Q with where
clauses:

E; Γ β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an FE-error w.r.t. R(E,Γ)

The above rules completely ignore the errors related to the comparison of non-
comparable values. Currently, we are investigating a new kind of approach that
considers this aspects as well, and preliminary results are positive (Colazzo & Sar-
tiani, 2005).

7.2 Other issues

We ignored issues related to “document order”, such as the fact that any path
expression, in XQuery, returns its result in document order. If the type of the
expression has the shape (T1 | . . . | Tn)∗, where all the Ti’s are tree types, the type
does not change when the sequence is re-ordered. Otherwise, if T is the type of a
path expression and

{U1, . . . , Un} = UpperTreesE(T ),
then type T can be weakened to its supertype

(U1 | . . . | Un)∗

without compromising Theorems 5.20, 5.22, and 5.27. This supertype does not carry
any information on the order of the trees.

We ignore reverse axis (parent, ancestor, . . . ). The current version of XQuery
assigns trivial types to these axes, and we can do nothing better unless we change
some of our fundamental assumptions. We ignore node identity and the issue of
reference vs. copy semantics, because they have very little effect on the type system.
We ignore the issues of predefined functions, (recursive) function definition and
invocation, and validation, because we think that they may be dealt with by using
standard techniques.

To sum up, we do not expect problems in the extension of our techniques to a
full-scale language, although this will have to be carefully studied. The resulting
system will be sound but not complete, but soundness is the only property one can
aim to when a full language is treated.

8 Related Work

Our Previous Work The work we presented in (Colazzo et al., 2002) was a first
step toward the system we have here. In that work we compared the universal and
existential notions of correctness, but the notions of weak and strong correctness we
proposed were, respectively, too weak and too strong. Weak correctness accepted
queries such as Q4 : $contacts/fone, $contacts/mobile from Section 3, while
strong correctness refused queries like Q3 : $contacts/phone.

XDuce XDuce (Hosoya & Pierce, 2000) is a typed, functional, Turing complete
programming language. It is based on an ML-like pattern language that implements
a one-match semantics, i.e. every pattern, instead of collecting every matched piece
of data (as in standard query languages), only binds the first match. XDuce is
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nearer to a programming language than to a query language, but we consider it
here since it is an example of typed language for XML that explicitly provides
a notion of type correctness. XDuce supports a universal notion of correctness
for patterns: functions are correct if and only if their bodies specify a matching
pattern (a function case) for all possible alternatives described by the input type.
As discussed in the paper, we believe that this notion of correctness, although well
suited for a programming language, is too restrictive for an XML query language.

CDuce CDuce (Benzaken et al., 2003) is a language that derives from XDuce but
adopts a more sophisticated type system, featuring function types, intersection, and
negation types. CDuce is not specialized for XML, but the typical XDuce idioms can
be easily encoded. CDuce performs sophisticated correctness analysis, but it adopts
the same universally-quantified definition of correctness as XDuce: type checking
ensures that if a function is well typed then every possible input value is matched
by at least a branch pattern in the function body. We worked with the CDuce
team to extend our approach to that language and the derived query language
CQL (Benzaken et al., 2004), and we have shown that the approach formalized
here can also be used in programming paradigms rather different from that of
XQuery(Castagna et al., 2005).

XQuery XQuery type inference (Draper et al., 2003) recursively infers a type
for every subexpression, starting from the types known for the input variables. As
we discussed in Section 4, it does not perform type case-analysis, which makes
type inference faster, but makes the inferred types less precise. In the August 2003
Working Draft, the W3C XML Query Working Group added a new rule to the type
system of XQuery, stating that it is a static error for any expression other than the
empty-sequence expression to have the empty type. This rule is not sufficient to
achieve error-checking completeness, because of the minor precision of XQuery type
inference. If the system were extended with union-types case-analysis in order to
have a higher precision, then the error-reporting approach should be extended with
some technique related to our locations-set approach.

In the previous versions of the standard, no navigation-error-checking was per-
formed. As we stated in the introduction, even in absence of explicit navigation-
error-checking, the inferred type can point out the presence of navigation-problems,
but with some limits. When no match is possible for a subquery, the type system
will typically (but not always) assign an empty-sequence type to that subquery.
This empty-sequence type may become the final type of the query, hence telling
the programmer that something went wrong. But if the subquery is inside an el-
ement constructor that accepts empty content, or is combined with an expression
with a non-empty type as in “error,Q”, then the final type of the query will not
be an empty-sequence, and the error may be completely hidden.

XQuery type system is based on nominal types, while our type system is based on
structural types. The main difference between nominal and structural type systems
for XML is that the former, although slightly less elegant, admits much simpler,
and more efficient, subtype-checking algorithms. This is not very relevant to this
work, since we decided to ignore subtyping. We believe that our type rules would
require minimal modifications in order to express a nominal type-system, and our
results should not be affected. However, we leave the non-trivial proof of this fact
to future work.

Finally, we observe that case-analysis in the typing of XQuery for clauses was



40 Dario Colazzo et al.

first introduced in (Fernández et al., 2001), where completeness was claimed for
the basic case of path projection (e.g., $x/tag). As we have shown, case-analysis
is not sufficient to ensure completeness of result analysis and error-checking in the
more general case including sequence composition Q,Q′ and descendant-or-self axis;
type-splitting, instead, as formalized in Section 5, is able to ensure completeness.
Moreover, adopting case-analysis implies adopting locations-based error checking
techniques, as shown in Section 3.

k-pebbles proposal Dan Suciu et al. develop a formal framework for the definition
of result analysis tools (Milo et al., 2000; Alon et al., 2001a). These papers define
some upper bounds to what can be accomplished by result type analysis. Our
results do not contradict these, since we focus here on a language that is weaker
than k-pebbles automata.

9 Conclusions and Future Work

We have presented a type system that performs both result analysis and navigation-
correctness analysis for a minimal query language for tree-shaped data.

We have first given a precise definition of navigation-errors, and discussed its
merits in relation with some possible alternatives. We introduced a first type system,
which is sound and quite precise. We then introduced a more expensive type system
that, when applied to schemas that satisfy a mild restriction on the alternation
between ∗ and recursion, performs a correct and complete error-checking. This type
system validates the claim that our notion of navigation-error is both meaningful
for the programmer and amenable to machine-checking.

We defined the notions of universal and existential correctness, and defined a
framework that can be used to check both families of errors.

We discussed the fact that, although our type-system bases its precision on exten-
sive use of case-analysis, it seems not to be too expensive in practice. We described
just one optimization that should suffice in most situations; we are investigating
other optimizations to widen this result.

We discussed the extension of our results to a language with the features that
we did not include in µXQ. This discussion is very preliminary, and many details
should be verified. The first thing we would like to check is how our results would
be modified, if they were modified in any way, by the adoption of a nominal type
system.

We plan to implement an XQuery version of our type system. We would then
use that prototype to verify our assumptions about the feasibility of case-analysis
in practical cases.
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Appendix: Complete Proofs

Lemma 4.6 (Termination of Type Filtering) For any well-formed type environment
E, and types T and U , the backward application of the type rules to E ` T ::
NodeTest⇒ U terminates.

Proof
l-guardedness of E avoids infinite applications of rule (VarFilt), the only one that
could make rules diverge.

Lemma 4.7 (Type Filtering Checking) For any well-formed type environment E
and type T well-formed in E:

E ` T :: NodeTest⇒ U ⇔ JUKE = {f :: NodeTest | f ∈ JT KE}

Proof
By induction on the proof of E ` T :: NodeTest⇒ U .

Lemma 4.9 For any E well-formed and T such that E ` T Def and for each tree
t:

(∃f ∈ JT KE . t ∈st f) ⇔ (∃U. T →E
e U ∧ t ∈ JUKE ∧ (U = l[T ′] ∨ U = B))

Proof
(⇒) follows by induction on the structure of f . (⇐) follows by induction on the
length of e.

Lemma 4.10 For any E well-formed and T such that E ` T Def, and for any U :

T →E
e U ∧ (U = l[T ′] ∨ U = B) ⇔ U ∈ SubTreesE(T )

Proof
(⇒) follows by induction on the length of e, while (⇐) follows by induction on
|SubTreesE(T )|.

Lemma 4.11 For any well-formed E and T such that E ` T Def, for each tree t:

(∃f ∈ JT KE . t ∈st f) ⇔ (∃U. U ∈ SubTreesE(T ) ∧ t ∈ JUKE)

Proof
By Lemma 4.9 and Lemma 4.10.

Lemma 4.12 (Soundness of DOS Type) For any well-formed E and T such that
E ` T Def and

SubTreesE(T ) = {U1, . . . , Un}
U = (U1 | . . . | Un)∗

then:
∀f ∈ JT KE . dos(f) ∈ JUKE

Proof
Consider f ∈ JT KE with dos(f) = t1, . . . , tm. We have tj ∈st f for each j = 1 . . .m
(Definition 4.8). Hence, we can apply Lemma 4.11, obtaining that there exists
{Ui1 , . . . , Uim} ⊆ SubTreesE(T ) such that tj ∈ JUij KE for j = 1 . . .m. Now, since

SubTreesE(T ) = {U1, . . . , Un}
U = (U1 | . . . | Un)∗
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we have that JUKE contains all the forests obtained by combinations and repe-
titions of trees belonging to Ui ∈ SubTreesE(T ), and in particular it contains the
forest dos(f) = t1, . . . , tm, as tj ∈ JUij

KE with Uij
∈ SubTreesE(T ), for j = 1 . . .m.

Theorem 4.14 (Upper Bound) For any well-formed environment E, Γ well-formed
in E, and query Q:

E; Γ `β Q : (U ; ) ∧ ρ∈R(E,Γ) ⇒ JQKρ ∈ JUKE

Proof
We prove the statements:

• ∀ρ ∈ R(E,Γ).
E; Γ `β Q : (U ; ) ⇒ JQKρ ∈ JUKE

• ∀ρ ∈ R(E,Γ). ∀f ∈ JT KE .

E; Γ `β x in T → Q : (U ; ) ⇒
∏

t∈trees(f)JQKρ,x7→t ∈ JUKE

We proceed by induction on the proof tree and by cases on the last applied rule.
We only consider the main cases; the others are easier.

(TypeForest) In this case, we have E; Γ `β Q1, Q2 : (U1, U2; ) and the
following hypothesis:

E; Γ `β.0 Q1 : (U1; ) (1)
E; Γ `β.1 Q2 : (U2; ) (2)
∀ρ ∈ R(E,Γ). JQ1Kρ ∈ JU1KE (3)
∀ρ ∈ R(E,Γ). JQ2Kρ ∈ JU2KE (4)

We want to prove:

∀ρ ∈ R(E,Γ).JQ1, Q2Kρ ∈ JU1, U2KE

Observe that ∀ρ ∈ R (E,Γ):

JQ1, Q2Kρ = JQ1Kρ, JQ2Kρ

Therefore the thesis follows from (3) and (4).

(TypeLetSplitting) Recall that we are assuming SplitE(T ) = {T}. We have
E; Γ `β let x := Q1 return Q2 : (U ; ) and, by induction:

E; Γ `β.0 Q1 : (T1; ) (1)
E; Γ, x : T1 `β.1 Q2 : (U ; ) (2)
∀ρ ∈ R(E,Γ). JQ1Kρ ∈ JT1KE (3)
∀ρ ∈ R(E, (Γ, x : T1)). JQ2Kρ ∈ JUKE (4)

We want to prove that

∀ρ ∈ R(E,Γ). Jlet x := Q1 return Q2Kρ ∈ JUKE

To this aim, we recall that:

∀ρ ∈ R(E,Γ). Jlet x := Q1 return Q2Kρ = JQ2Kρ,x7→JQ1Kρ
(∗)

where, by (3), JQ1Kρ ∈ JT1KE . Hence ρ, x 7→ JQ1Kρ ∈ R(E, (Γ, x : T1)), from
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which, by (4) and induction,

JQ2Kρ,x7→JQ1Kρ
= Jlet x := Q1 return Q2Kρ ∈ JUKE

(TypeFor) In this case we have E; Γ `β for x in Q1 return Q2 : (U ; ) and
the following hypothesis:

E; Γ `β.0 Q1 : (U1; ) (1)
∀ρ ∈ R(E,Γ).JQ1Kρ ∈ JU1KE (2)
E; Γ `β.1 x in U1 → Q2 : (U ; ) (3)
∀ρ ∈ R(E,Γ). ∀f ∈ JU1KE .

∏
t∈trees(f)

JQ2Kρ,x7→t ∈ JUKE (4)

We want to prove:

∀ρ ∈ R(E,Γ). Jfor x in Q1 return Q2Kρ ∈ JUKE

Recall that ∀ρ ∈ R(E,Γ):

Jfor x in Q1 return Q2Kρ =
∏

t∈trees(f)

JQ2Kρ,x7→t

with
f = JQ1Kρ

By (2) we have f ∈ JU1KE , hence the case follows by (4).

(TypeInConc) In this case we have E; Γ `β x in T1, T2 → Q : (T ′
1, T

′
2; ) and

the following hypothesis:

E; Γ `β x in T1 → Q : (T ′
1; ) (1)

E; Γ `β x in T2 → Q : (T ′
2; ) (2)

∀ρ ∈ R(E,Γ). ∀f ∈ JT1KE .
∏

t∈trees(f)JQKρ,x7→t ∈ JT ′
1KE (3)

∀ρ ∈ R(E,Γ). ∀f ∈ JT2KE .
∏

t∈trees(f)JQKρ,x7→t ∈ JT ′
2KE (4)

We want to prove:

∀ρ ∈ R(E,Γ). ∀f ∈ JT1, T2KE .
∏

t∈trees(f)

JQKρ,x7→t ∈ JT ′
1, T

′
2KE

For any ρ ∈ R (E,Γ) and f = (f1, f2) ∈ JT1, T2KE with fi ∈ JTiKE :∏
t∈trees(f1,f2)

JQKρ,x7→t =
∏

t∈trees(f1)

JQKρ,x7→t ,
∏

t∈trees(f2)

JQKρ,x7→t

By (3) and (4) we have ∏
t∈trees(fi)

JQKρ,x7→t ∈ JT ′
i KE

and this proves the case since

JT ′
1, T

′
2KE = {f1, f2 | fi ∈ JT ′

i KE}

(TypeInElSplitting) Similar to (TypeLetSplitting) .

(TypeChild) It follows from Lemma 4.7.
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(TypeDos) We have J = E; Γ `β x dos :: NodeTest : (U ′; S) and the following
hypothesis:

WF(J) (1)
x : T ∈ Γ ∧ (T = m[T ′] ∨ T = B) (2)
{U1, . . . , Un} = SubTreesE(T ) (3)
U = (U1 | . . . | Un)∗ (4)
E ` U :: NodeTest⇒ U ′ (5)

By (1) we can apply Lemma 4.12, from which

∀f ∈ JT KE . dos(f) ∈ JUKE

and by Lemma 4.7

∀f ∈ JUKE . dos(f) :: NodeTest ∈ JU ′KE

Hence, the case is proved since

∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = dos(ρ(x)) :: NodeTest

with ρ(x) ∈ JT KE .

Theorem 4.15 (Soundness of Existential Error-Checking) For any well-formed
environment E, Γ well-formed in E, and query Q:

E; Γ `β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

Proof
We prove the following statements:

• E; Γ `β Q : (U ; S) ⇒
γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q) ∧Q has an error at α)
• E; Γ `β x in T → Q : (U ; S)⇒

γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q)∧
(∀f ∈ JT KE . for x in f return Q has an error at 1.α))

8

We proceed by induction on the proof tree and by case distinction on the last
rule applied. We prove only some of the main cases (see the Appendix for more
cases).

(TypeForest) We have E; Γ `β Q1, Q2 : (T1, T2; S1 ∪ S2) and the following
hypothesis

E; Γ `β.0 Q1 : (T1; S1) (1)
E; Γ `β.1 Q2 : (T2; S2) (2)
γ ∈ S1 ⇒ (γ = β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) (3)
γ ∈ S2 ⇒ (γ = β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ Q2 has an error at α) (4)

8 To be formally precise f should be defined as a term of a subgrammar () | b | l[f ] | f, f ′.
Although inelegant, for the sake of simplicity, we allow here a notation that mixes up syntax
and semantics.
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We want to prove that

γ ∈ S1 ∪ S2 ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q1, Q2) ∧Q1, Q2 has an error at α)

By γ ∈ S1 ∪ S2, (3) and (4):

γ = β.α ∧ α ∈ CriticalLocs(Q1, Q2)

It remains to prove that Q1, Q2 has an error at α. To this end, observe that by
γ = β.α ∈ S1 ∪ S2, we have that either α = 0.α′ ∧ α′ ∈ S1 or α = 1.α′ ∧ α′ ∈ S2.
Suppose we are in the first case (the second one is similar). In this case, by (3),
Q1 has an error at α′, and this means that Q1, Q2 has an error at α = 0.α′.

(TypeFor) We have E; Γ `β for x in Q1 return Q2 : (T2; S1 ∪S2 ∪S) and the
following hypothesis:

E; Γ `β.0 Q1 : (T1; S1) (1)
E; Γ `β.1 x in T1 → Q2 : (T2; S2) (2)
S = if T1 ∼E () then {β.0} else ∅ (3)
γ ∈ S1 ⇒ (γ = β.0.α ∧ α ∈ CriticalLocs(Q1) ∧Q1 has an error at α) (4)
γ ∈ S2 ⇒ (γ = β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ (∀f ∈ JT1KE . (5)

for x in f return Q2 has an error at 1.α))

We want to prove that ∀ γ

γ ∈ (S ∪ S1 ∪ S2) ⇒ (γ = β.α′ ∧ α′ ∈ CriticalLocs(for x in Q1 return Q2)
∧ for x in Q1 return Q2 has an error at α′

For any

γ ∈ (S ∪ S1 ∪ S2)

γ = β.α ∧ α ∈ CriticalLocs(for x in Q1 return Q2) follows from (3), (4) and
(5). To prove that for x in Q1 return Q2 has an error at α we distinguish three
possible cases: (i) α = 0, (ii) and α = 0.α′ and α′ ∈ CriticalLocs(Q1), and (iii)
α = 1.α′ and α′ ∈ CriticalLocs(Q2). Case (ii) does not pose particular problems
(proceed as for case (TypeForest)). In case (i) we have T1 ∼E (), hence, by
Lemma 4.5 and Theorem 4.14, we have JQ1Kρ = () for each ρ ∈ R(E,Γ), which
proves the case. It remains case (iii). We want to prove that

∀ρ ∈ R(E,Γ). ∀ρ′ ∈

 ⋃
t∈trees(JQ1Kρ)

Ext((ρ, x 7→ t), Q2, α′)

 . J(Q2)|α′Kρ′ = ()

To prove it we exploit hypothesis (5), and expand it as follows

∀ρ ∈ R(E,Γ). ∀f ∈ JT1KE .

∀ρ′ ∈
⋃

t∈trees(f) Ext((ρ, x 7→ t), Q2, α′). J(Q2)|α′Kρ′ = ()

This, together with JQ1Kρ ∈ JT KE (Theorem 4.14), proves the case.

(TypeDos) We have E; Γ `β x dos :: NodeTest : (U ; S) and the following



48 Dario Colazzo et al.

hypothesis:
WF(E; Γ `β x dos :: NodeTest : (U ; S)) (1)
x : T ∈ Γ ∧ (T = m[T ] ∨ T = B) (2)
{U1, . . . , Un} = SubTreesE(T ) (3)
U ′ = (U1 | . . . | Un)∗ (4)
E ` U ′ :: NodeTest⇒ U (5)
S = if U ∼E () then {β} else ∅ (6)

We want to prove that

γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest)∧
(x dos :: NodeTest has an error at α))

We first observe that it may be S = {β} or S = ∅. Moreover, CriticalLocs(x dos ::
NodeTest) = {ε}, which proves

γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest))

It remains to prove that S = {β} entails that x dos :: NodeTest has an error at
ε. x dos :: NodeTest has an error at ε if and only if

∀ρ ∈ R(E,Γ).∀ρ′ ∈ Ext(ε, x dos :: NodeTest, ρ). Jx dos :: NodeTestKρ′ = ()

Since Ext(ε, x dos :: NodeTest, ρ) = {ρ}, we have that x dos :: NodeTest has an
error at ε if and only if

∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = ()

Hence, we have to prove that

S = {β} ⇒ ∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = ()

We have S = {β} if and only if U ∼E (), which, by Lemma 4.5, implies that

JUKE = {()}

Therefore, by Theorem 4.14, we have proved the case.

Lemma 5.3 For each ∗-guarded environment E and type T defined in E:

JT KE =
⋃

A∈SplitE(T )JAKE

Proof
By induction on the cardinality of SplitE(T ) and by case distinction on the shape
of T .

Lemma 5.6 (Monotonicity of Filtering, Childr and DOS )

1. ∀f, f ′. f v f ′ ⇒ f :: NodeTest v f ′ :: NodeTest
dos(f) v dos(f ′)

2. ∀t, t′. t v t′ ⇒ childr(t) v childr(t′)

Proof
Property 1. follows by induction on the structure of f , while 2. easily follows by
definition of childr(t).
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Lemma 5.7 (Query Monotonicity)

∀Q, ρ, ρ′. ρ v ρ′ ⇒ JQKρ v JQKρ′

Proof
By case distinction and induction on the structure of Q. We consider only the main
cases.
Q = for x in Q1 return Q2. For substitutions ρ and ρ′ such that ρ v ρ′, we want
to prove

Jfor x in Q1 return Q2Kρ v Jfor x in Q1 return Q2Kρ′

By induction, we assume
JQ1Kρ v JQ1Kρ′ (∗)

This means
∀t ∈ trees(JQ1Kρ).∃t′ ∈ trees(JQ1Kρ′). t v t′

By definition of query semantics, the property to prove can be rewritten as:∏
t∈trees(JQ1Kρ)

JQ2Kρ,x7→t v
∏

t∈trees(JQ1Kρ′ )

JQ2Kρ′,x7→t

that is

∀t ∈ trees(
∏

t∈trees(JQ1Kρ)

JQ2Kρ,x7→t). ∃t
′ ∈ trees(

∏
t∈trees(JQ1Kρ′ )

JQ2Kρ′,x7→t). t v t
′

Consider
t ∈ trees(

∏
t∈trees(JQ1Kρ)

JQ2Kρ,x7→t).

For such a t we have that ∃ t′ ∈ trees(JQ1Kρ) such that t ∈ trees(JQ2Kρ,x7→t′).
By (*), for such a t′ there exists t′′ ∈ trees(JQ1Kρ′) with t′ v t′′. This entails
(ρ, x 7→ t′) v (ρ′, x 7→ t′′), hence by induction we can assume

JQ2Kρ,x7→t′ v JQ2Kρ′,x7→t′′

which, since t ∈ trees(JQ2Kρ,x7→t′), gives us

∃t′ ∈ trees(JQ2Kρ′,x7→t′′). t v t
′

Hence the case is proved by observing that t′′ ∈ trees(JQ1Kρ′) and that

t
′ ∈ trees(JQ2Kρ′,x7→t′′) ⇒ t

′ ∈ trees(
∏

t∈trees(JQ1Kρ′ )

JQ2Kρ′,x7→t)

Q = x child :: NodeTest. Directly follows from Lemma 5.6.
Q = x dos :: NodeTest. Directly follows from Lemma 5.6.

Corollary 5.8 Given a well formed query Q and a substitution ρ such that FV (Q) ⊆
dom(ρ) ∪ {χ}:

f1 v f2 ⇒
∏

t∈trees(f1)

JQKρ,χ7→t v
∏

t∈trees(f2)

JQKρ,χ7→t
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Proof
By Lemma 5.7.

Lemma 5.9 (Extension Monotonicity) For any Q and pair of substitutions ρ1 and
ρ2 such that FV (Q) ⊆ dom(ρ1) = dom(ρ2) and ρ1 v ρ2, ∀β ∈ Locs(Q).

∀ρ′ ∈ Ext(ρ1, Q, β). ∃ρ′′ ∈ Ext(ρ2, Q, β). ρ′ v ρ′′

Proof
By induction on the structure of Q, Lemma 5.7, and Corollary 5.8.

Lemma 5.10 (Closure of Split Types) For any ∗-guarded environment E and type
T well-formed in E, for any A ∈ SplitE(T ):

∀f1, f2 ∈ JAKE . ∃f ∈ JAKE . fi v f i = 1, 2

Proof
We first observe that for each A ∈ SplitE(T )

SplitE(A) = {A}

This entails that we can define a measure d*(A), over types obtained by splitting,
as follows:

d*(()) = 0
d*(B) = 0
d*(T ′∗) = 0
d*(l[T ′]) = 1 + d*(T ′)
d*(T ′, U ′) = 1 + d*(T ′) + d*(U ′)

Observe that d*(A) is not defined over union types, since A can not be a union
type. We then proceed by induction on d*(A).

If d*(A) = 0, the case A ≡ B is obvious, as, by definition of v, ∀b1, b2, b3 ∈ JBKE

we have b1 v b3 and b2 v b3. Here, the only interesting case is A = T ′∗. For this
case, given f1 and f2 in JAKE , observe that their composition f1, f2 still is in JAKE

and that f1 v f1, f2 and f2 v f1, f2.
If d*(A) > 0 the only interesting case is A = T ′, U ′. Consider f1 and f2 in

JT ′, U ′KE . We have

f1 = f1
1 , f2

1 ∧ f1
1 ∈ JT ′KE ∧ f2

1 ∈ JU ′KE

f2 = f1
2 , f2

2 ∧ f1
2 ∈ JT ′KE ∧ f2

2 ∈ JU ′KE

By induction we have that there exists f ′ ∈ JT ′KE and f ′′ ∈ JU ′KE such that

f1
1 , f1

2 v f ′

f2
1 , f2

2 v f ′′

hence f1
1 , f1

2 , f2
1 , f2

2 v f ′, f ′′. Since f1, f2 v f1
1 , f1

2 , f2
1 , f2

2 by transitivity of v we
have that f1, f2 v f ′, f ′′.

Lemma 5.11 For any type A defined in a ∗-guarded environment E, if SplitE(A) =
{A} then,

∀f1, . . . , fn ∈ JAKE . ∃f ∈ JAKE . fi v f i = 1 . . . n

Proof
By induction on n, Lemma 5.10, and transitivity of v.
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Lemma 5.14 (Query Variables Environment Splitting) For each ∗-guarded type
environment E and Γ well-formed in E:⋃

Γ′∈SplitVEnv(Γ,E)

R(E,Γ′) = R(E,Γ)

Proof
By induction on the length of Γ and by Lemma 5.3.

Lemma 5.15 For any ∗-guarded and well-formed Γ in a ∗-guarded type environ-
ment E, and ρ1, . . . , ρn ∈ R(E,Γ), there exists ρ ∈ R(E,Γ) such that ρi v ρ for
i = 1 . . . n.

Proof
By induction on the length of Γ and by Lemma 5.11.

Lemma 5.17 (Invariance of Well-Formation) For any well-formed judgement
E; Γ `β Q : (U ; S) with Γ ∗-guarded, the backward application of the rules
produces judgements that are well-formed as well, and containing ∗-guarded envi-
ronments.

Proof
It directly follows by the way rules (TypeInElSplitting) and (TypeLetSplitting)
are defined.

Lemma 5.18 (Soundness and Completeness of DOS Type) For any E well-formed
and T such that E ` T Def and

SubTreesE(T ) = {U1, . . . , Un}
U = (U1 | . . . | Un)∗

then:

(1) ∀f ∈ JT KE . dos(f) ∈ JUKE

(2) ∀f ∈ JUKE . ∃{f ′1, . . . , f ′m} ⊆ JT KE . f v dos(f ′1, . . . , f
′
m)

(3) SplitE(T ) = T ⇒ ∀f ∈ JUKE . ∃f ′ ∈ JT KE . f v dos(f ′)

Proof
(1) Similar to Lemma 4.12.
(2) Consider f ∈ JUKE with f = t1, . . . , tm. This implies that for each i = 1 . . .m

there exists U i ∈ SubTreesE(T ) such that ti ∈ JU iKE . By Lemma 4.11 we have
ti ∈st f ′i with f ′i ∈ JT KE for each i = 1 . . .m. Therefore, by observing that

dos(f ′1, . . . , f
′
m) = dos(f ′1), . . . , dos(f

′
m),

and by ti ∈st f ′i , we have that each dos(f ′i) can be decomposed in f1
i , ti, f

2
i

(Definition 4.8). Hence, each ti is at the top level of dos(f ′1, . . . , f
′
n) and this

implies
f = t1, . . . , tm v dos(f ′1, . . . , f

′
n)

(3) By (2) we know that for f ∈ JUKE there exist f ′1, . . . , f
′
m ∈ JT KE such that

f v dos(f ′1, . . . , f
′
m)

Since SplitE(T ) = T , by Lemma 5.11 there exists f ′ ∈ JT KE such that f ′i v f ′

for i = 1 . . .m. From this it easily follows that

f ′1, . . . , f
′
m v f ′
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Therefore, by Lemma 5.6, we have

f v dos(f ′1, . . . , f
′
m) v dos(f ′)

then by transitivity of v we conclude f v dos(f ′).

Lemma 5.19 (Upper Bound) In the type splitting system, for each Q, ∗-guarded
E, and Γ ∗-guarded and well-formed in E:

E; Γ `β Q : (U ; ) ∧ ρ ∈ R(E,Γ) ⇒ JQKρ ∈ JUKE

Proof
We prove the statements:

• ∀ρ ∈ R(E,Γ).
E; Γ `β Q : (U ′; ) ⇒ JQKρ ∈ JU ′KE

• ∀ρ ∈ R(E,Γ). ∀f ∈ JT KE .

E; Γ `β x in T → Q : (U ′; ) ⇒
∏

t∈trees(f)JQKρ,x7→t ∈ JU ′KE

We proceed by induction on the proof tree and by cases on the last applied rule.
We only consider the case (TypeLetSplitting). Case (TypeInElSplitting) is
similar to (TypeLetSplitting), while the other cases are essentially the same as
in the proof of Theorem 4.14.

(TypeLetSplitting) We have E; Γ `β let x := Q1 return Q2 : (U ′; ) and, by
induction:

E; Γ `β.0 Q1 : (T1; ) (1)
SplitE(T1) = {A1, . . . , An} (2)
E; Γ, x : Ai `β.1 Q2 : (Ui; i) i = 1 . . . n (3)
U ′ = U1 | . . . | Un (4)
∀ρ ∈ R(E,Γ). JQ1Kρ ∈ JT1KE (5)
∀ρ ∈ R(E, (Γ, x : Ai)). JQ2Kρ ∈ JUiKE i : 1, . . . , n (6)

We prove that

∀ρ ∈ R(E,Γ). Jlet x := Q1 return Q2Kρ ∈ JU ′KE

To this aim we recall that

∀ρ ∈ R(E,Γ). Jlet x := Q1 return Q2Kρ = JQ2Kρ,x7→JQ1Kρ
(∗)

where, by (5), JQ1Kρ ∈ JT1KE . Since (Lemma 5.3)

JT1KE =
⋃

i=1...n

JAiKE

we have that JQ1Kρ ∈ JAjKE for some j = 1 . . . n. Hence (ρ, x 7→ JQ1Kρ) ∈
R(E, (Γ, x : Aj)), from which, by (6), (4) and induction,

JQ2Kρ,x7→JQ1Kρ
∈ JUjKE ⇒ JQ2Kρ,x7→JQ1Kρ

∈ JU ′KE

Theorem 5.20 (Upper Bound for the Type-Splitting System) For each Q, ∗-guarded
and well-formed E, and Γ well-formed in E:

E; Γ β Q : (U ; ) ∧ ρ ∈ R(E,Γ) ⇒ JQKρ ∈ JUKE
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Proof
We first observe that, by Lemma 5.14, ρ ∈ R(E,Γ) implies

ρ ∈ R(E,Γ′)

with Γ′ ∈ SplitVEnv(Γ, E), and also observe that, by Definition 5.16, U = U ′ | U ′′

with E; Γ′ `β Q : (U ′; ). Hence, by Lemma 5.19 we have that JQKρ ∈ JU ′KE

which entails JQKρ ∈ JUKE , as JU ′KE ⊆ JUKE .

Lemma 5.21 (Lower Bound) In the type-splitting system, for each Q, ∗-guarded
E, and Γ ∗-guarded and well-formed in E:

E; Γ `β Q : (U ; ) ⇒ ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v JQKρ

Proof
We prove the following statements:

• ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ).
E; Γ `β Q : (U ; ) ⇒ f v JQKρ

• ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). ∃f ∈ JT KE .

E; Γ `β x in T → Q : (U ; ) ⇒ f v
∏

t∈trees(f)JQKρ,x7→t

We proceed by induction on the proof tree of the proved judgement and by cases
on the last rule applied. We only prove main cases.

(TypeLetSplitting) We have E; Γ `β let x := Q1 return Q2 : (U ; ) and

E; Γ `β.0 Q1 : (T1; ) (1)
SplitE(T1) = {A1, . . . , An} (2)
E; Γ, x : Ai `β.1 Q2 : (Ui; ) i = 1 . . . n (3)
U = U1 | . . . | Un (4)
∀f ∈ JT1KE . ∃ρ ∈ R(E,Γ). f v JQ1Kρ (5)
∀f ∈ JUiKE . ∃ρ ∈ R(E, (Γ, x : Ai)). f v JQ2Kρ i = 1 . . . n (6)

We want to prove

∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v Jlet x ::= Q1 return Q2Kρ

For any f ∈ JUKE , by (4) we have that f ∈ JUiKE for some i = 1 . . . n. Moreover,
by (6):

(∃ρ2 ∈ R(E, (Γ, x : Ai)). f v JQ2Kρ2) (7)

Since ρ2 ∈ R(E, (Γ, x : Ai)), we have

ρ2 = ρ2, x 7→f ′ (8)

with f ′ ∈ JAiKE and ρ2 ∈ R(E,Γ).
Now, since f ′ ∈ JAiKE ⇒ f ′ ∈ JT KE (Lemma 5.3), and by (5) we have that:

∃ρ1 ∈ R(E,Γ). f ′ v JQ1Kρ1 (9)

Hence, (7) and (8) imply that

f v JQ2Kρ2 = JQ2Kρ2,x7→f ′ (10)
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while (9) and (10) and Lemma 5.7 imply that

f v JQ2Kρ2,x7→JQ1Kρ1

Now, by Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ1 v ρ and ρ2 v ρ,
hence, by Lemma 5.7, we have:

f v JQ2Kρ2,x7→JQ1Kρ1 v JQ2Kρ2,x7→JQ1Kρ
v JQ2Kρ,x7→JQ1Kρ

By Jlet x ::= Q1 return Q2Kρ = JQ2Kρ,x7→JQ1Kρ
the case is proved.

(TypeFor) We have E; Γ `β for x in Q1 return Q2 : (T2; ) and the following
hypothesis:

E; Γ `β.0 Q1 : (T1; ) (1)
E; Γ `β.1 x in T1 → Q2 : (T2; ) (2)
∀f ∈ JT1KE .∃ρ ∈ R(E,Γ). f v JQ1Kρ (3)
∀f ∈ JT2KE . ∃ρ ∈ R(E,Γ). ∃f ′ ∈ JT1KE . f v

∏
t∈trees(f ′)JQ2Kρ,x7→t (4)

We want to prove that

∀f ∈ JT2KE . ∃ρ ∈ R(E,Γ).
f v Jfor x in Q1 return Q2Kρ

For any f ∈ JT2KE , by (4) we have

∃ρ2 ∈ R(E,Γ). ∃f ′ ∈ JT1KE . f v
∏

t∈trees(f ′)JQ2Kρ2,x7→t (5)

Since f ′ ∈ JT1KE , by (3) we have:

(∃ρ1 ∈ R(E,Γ).f ′ v JQ1Kρ1) (6)

From (5) and (6) and Corollary 5.8 it follows

f v
∏

t∈trees(f ′)

JQ2Kρ2,x7→t v
∏

t∈trees(JQ1Kρ1 )

JQ2Kρ2,x7→t

As in the previous case, by Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ1 v ρ,
ρ2 v ρ. Therefore, by Lemma 5.7 and Corollary 5.8, we have:

f v
∏

t∈trees(JQ1Kρ1 )JQ2Kρ2,x7→t v∏
t∈trees(JQ1Kρ)JQ2Kρ2,x7→t v∏
t∈trees(JQ1Kρ)JQ2Kρ,x7→t

By Jfor x in Q1 return Q2Kρ =
∏

t∈trees(JQ1Kρ)JQ2Kρ,x7→t the case is proved.
(TypeInStar) We have E; Γ `β x in T∗ → Q : (U∗; ) and the following

hypothesis:

E; Γ `β x in T → Q : (U ; )

We want to prove that:

(∀f ∈ JU∗KE . ∃ρ ∈ R(E,Γ). ∃f ′ ∈ JT∗KE . f v
∏

t∈trees(f ′)

JQKρ,x7→t)

Consider f ∈ JU∗KE ; this entails that f = f1, . . . , fn with fi ∈ JUKE , for i =
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1 . . . n. For each fi, by induction on E; Γ `β x in T → Q : (U ; ), we have

∃ρi ∈ R(E,Γ). ∃f ′i ∈ JT KE . fi v
∏

t∈trees(f ′i)

JQKρi,x7→t

By Lemma 5.15, there exists ρ ∈ R(E,Γ) such that ρi v ρ, for i = 1 . . . n. Hence,
by Lemma 5.7:

fi v
∏

t∈trees(f ′i)

JQKρi,x7→t v
∏

t∈trees(f ′i)

JQKρ,x7→t

Therefore we have:

f = f1, . . . , fn v
∏

t∈trees(f ′1)

JQKρ,x7→t, . . . ,
∏

t∈trees(f ′n)

JQKρ,x7→t

and the case is proved by observing that f ′1, . . . , f
′
n ∈ JT∗KE and that∏

t∈trees(f ′1)

JQKρ,x7→t, . . . ,
∏

t∈trees(f ′n)

JQKρ,x7→t =
∏

t∈trees(f ′1,...,f ′n)

JQKρ,x7→t

(TypeChild) It follows by Lemma 4.7.
(TypeDos) We have J = E; Γ `β x dos :: NodeTest : (U ′; ) and the following

hypothesis:
WF(J) (1)
x : T ∈ Γ ∧ (T = m[T ′] ∨ T = B) (2)
{U1, . . . , Un} = SubTreesE(T ) (3)
U = (U1 | . . . | Un)∗ (4)
E ` U :: NodeTest⇒ U ′ (5)

We prove that ∀f ∈ JU ′KE there exists ρ such that

f v Jx dos :: NodeTestKρ

Since x : T ∈ Γ and Γ is ∗-guarded (Lemma 5.17) we have SplitE(T ) = {T}.
Consider f ∈ JU ′KE ; since E ` U :: NodeTest⇒ U ′, by Lemma 4.7 we have

∃f ′ ∈ JUKE . f ′ :: NodeTest = f

For such f ′, since SplitE(T ) = {T}, by Lemma 5.18(3) we have that there exists
f ′′ ∈ JT KE such that f ′ v dos(f ′′). Now we apply filtering and Lemma 5.6 to
obtain

f = f ′ :: NodeTest v dos(f ′′) :: NodeTest
hence it remains to observe that f ′′ ∈ JT KE and, since Γ is not empty, there
exists a ρ ∈ R(E,Γ) such that ρ(x) = f ′′ and that Jx dos :: NodeTestKρ =
dos(f ′′) :: NodeTest, which gives

f v Jx dos :: NodeTestKρ.

Theorem 5.22 (Lower Bound for the Type-Splitting System) For each Q, ∗-guarded
E, and Γ well-formed in E:

E; Γ β Q : (U ; ) ⇒ ∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v JQKρ
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Proof
By hypothesis we have E; Γ β Q : (U ; ), that is

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi `β Q : (Ui; ) i = 1 . . . n

(3) U = U1 | . . . | Un

Therefore, for each f ∈ JUKE , there exists Ui and Γi ∗-guarded such that f ∈ JUiKE

and E; Γi `β Q : (Ui; ). Hence, by Lemma 5.21 we have

∃ρ ∈ R(E,Γi). f v JQKρ

Now, the thesis follows from R(E,Γi) ⊆ R(E,Γ) (Lemma 5.14).

Corollary 5.23 (()-precision) In the type splitting system, for each Q, ∗-guarded
E, and Γ ∗-guarded and well-formed in E, if E; Γ `β Q : (U ; ) then:

JUKE = {()} ⇔ ∀ρ ∈ R(E,Γ). JQKρ = ()

Proof
⇒ follows from Lemma 5.19. To prove ⇐ we observe that by E; Γ `β Q : (U ; )
and Lemma 5.21

∀f ∈ JUKE . ∃ρ ∈ R(E,Γ). f v JQKρ

That is, by the hypothesis ∀ρ ∈ R(E,Γ). JQKρ = ():

∀f ∈ JUKE . f v ()

and this means JUKE = {()}, since f v () if and only if f = ().

Lemma 5.24 In the type-splitting system, for each query Q, ∗-guarded E, Γ ∗-
guarded and well-formed in E:

E; Γ `β Q : ( ; S) ⇒ (β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ))

Proof
We prove the following statement:

• E; Γ `β Q : (U ; S) ⇒
γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q) ∧Q has an error at α)
• E; Γ `β x in T → Q : (U ; S)⇒

γ ∈ S ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q)∧
(∀f ∈ JT KE . for x in f return Q has an error at 1.α))

We proceed by induction on the proof tree and by case distinction on the last rule
applied. The proof differs from Theorem 4.15 only for cases (TypeLetSplitting)
and (TypeInElSplitting), which we prove below.

(TypeLetSplitting) We have

E; Γ `β let x := Q1 return Q2 : (U ; S ∪
⋂

i=1...n

Si)
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and

E; Γ `β.0 Q1 : (T1; S) (1)
SplitE(T1) = {A1, . . . , An} (2)
E; Γ, x : Ai `β.1 Q2 : (Ui; Si) i = 1 . . . n (3)
U = U1 | . . . | Un (4)
With respect to E and Γ: (5)
γ ∈ S ⇒ (γ = β.0.α ∧ α ∈ CriticalLocs(Q1) ∧Q1 has an error at α)
For i = 1 . . . n with respect to E and Γ, x : Ai: (6)
γ ∈ Si ⇒ (γ = β.1.α ∧ α ∈ CriticalLocs(Q2) ∧Q2 has an error at α)

We want to prove that ∀ γ

γ ∈ S ∪
⋂

i=1...n Si ⇒ (γ = β.α ∧ α ∈ CriticalLocs(let x ::= Q1 return Q2)
∧ let x ::= Q1 return Q2 has an error at α)

For any

γ ∈ S ∪
⋂

i=1...n

Si

γ = β.α ∧ α ∈ CriticalLocs(let x ::= Q1 return Q2) follows from (5) and (6).
To prove that let x ::= Q1 return Q2 has an error at α, we distinguish two
possible cases: (i) α = 0.α′ and α′ ∈ CriticalLocs(Q1), and (ii) α = 1.α′ and
α′ ∈ CriticalLocs(Q2). Case (i) is easy . We prove case (ii). To this end we use
hypothesis (6) and expand it as follows, for i = 1 . . . n:

∀ρ ∈ R(E,Γ, x : Ai). ∀ρ′ ∈ Ext(ρ, Q2, α′). J(Q2)|α′Kρ′ = () (7)

moreover, we have β.1.α′ ∈ Si.
We want to prove that let x ::= Q1 return Q2 has an error at α = 1.α′:

∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext((ρ, x 7→JQ1Kρ), Q2, α′). J(Q2)|α′Kρ′ = ()

By (7) we have just to prove that,

ρ ∈ R(E,Γ), ρ′ ∈ Ext((ρ, x 7→JQ1Kρ), Q2, α′) ⇒
∃i. ∃ρ ∈ R(E,Γ, x : Ai). ρ′ ∈ Ext(ρ, Q2, α′)

This reduces to prove that,

ρ ∈ R(E,Γ) ⇒ ∃i. ρ, x 7→JQ1Kρ ∈ R(E,Γ, x : Ai).

Such statement follows from Lemma 5.19:

∀ρ ∈ R(E,Γ). JQ1Kρ ∈ JT1KE

and by Lemma 5.3

JT1KE =
⋃

i=1...n

JAiKE

(TypeInElSplitting) We have E; Γ `β x in m[T ] → Q : (U ;
⋂

i=1...n Si) and
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the following hypothesis

SplitE(m[T ]) = {A1, . . . , An} (1)
E; Γ, x : Ai `β Q : (Ui; Si) (2)
U = U1 | . . . | Un (3)
γ ∈ Si ⇒ (4)

γ = β.α ∧
α ∈ CriticalLocs(Q) ∧
∀f ∈ JAiKE . for x in f return Q has an error at 1.α

We want to prove that

γ ∈
⋂

i=1...n Si ⇒ (γ = β.α ∧ α ∈ CriticalLocs(Q) ∧ (∀f ∈ Jm[T ]KE .

for x in f return Q has an error at 1.α))

By Lemma 5.3,
f ∈ Jm[T ]KE ⇒ ∃i. f ∈ JAiKE

Thus, for such i it holds that,

γ ∈
⋂

j=1...n Sj ⇒ γ ∈ Si

and the thesis follows by (4).

Theorem 5.25 (Soundness of Error-Checking for the Type-Splitting System) For
each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ β Q : (U ; S) ∧ β.α ∈ S ⇒ Q has an error at α w.r.t. R(E,Γ)

Proof
By hypothesis we have

(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi `β Q : (Ui; Si) i = 1 . . . n

(3) S =
⋂

i=1...n Si

and β.α ∈ S, hence β.α ∈ Si for i = 1 . . . n. Thus, by Lemma 5.24 we have that,
for i = 1 . . . n

Q has an error at α w.r.t. R(E,Γi))
that is

∃α ∈ CriticalLocs(Q). ∀ρ ∈ R(E,Γi). ∀ρ′ ∈ Ext(ρ, Q, β). J(Q)|αKρ′ = ()

Therefore, the thesis follows by Lemma 5.14:⋃
Γ′∈SplitVEnv(Γ,E)

R(E,Γ′) = R(E,Γ)

Lemma 5.26 In the type-splitting system, for each Q, ∗-guarded E, and Γ ∗-
guarded and well-formed in E:

E; Γ `β Q : ( ; S) ⇒ (Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S)
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Proof
We prove the statements:

• E; Γ `β Q : (U ; S) ⇒

(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧Q has an error at α) ⇒ γ ∈ S

• E; Γ `β x in T → Q : (U ; S)⇒

(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧
(∀f ∈ JT KE . for x in f return Q has an error at 1.α)) ⇒ γ ∈ S

We proceed by induction on the proof tree and by cases on the last rule applied.
We prove only some of the main cases (more cases can be found in the Appendix).

(TypeForest) We have E; Γ `β Q1, Q2 : (T1, T2; S1 ∪ S2) and the following
hypothesis

E; Γ `β.0 Q1 : (T1; S1) (1)
E; Γ `β.1 Q2 : (T2; S2) (2)
(γ = β.0.α ∧ α ∈ CriticalLocs(Q1) ∧ Q1 has an error at α) ⇒ γ ∈ S1 (3)
(γ = β.1.α ∧ α ∈ CriticalLocs(Q2) ∧Q2 has an error at α) ⇒ γ ∈ S2 (4)

We want to prove that

(γ = β.α ∧ α ∈ CriticalLocs(Q1, Q2) ∧Q1, Q2 has an error at α) (5)

implies
γ ∈ S1 ∪ S2

We proceed by contradiction. Suppose that

(∗) γ = β.α 6∈ S1 ∪ S2

By α ∈ CriticalLocs(Q1, Q2), we have two possible cases

(a) α = 0.α′ ∧ α′ ∈ CriticalLocs(Q1)
(b) α = 1.α′ ∧ α′ ∈ CriticalLocs(Q2)

We only consider case (a), the other one is similar. By (*) we have

β.0.α′ 6∈ S1

and this by γ = β.0.α′ ∧ α′ ∈ CriticalLocs(Q1) and the inductive hypothesis (3),
entails

(∗∗) Q1 has no error at α′

This entails that
Q1, Q2 has no error at α

by contradicting (5). Indeed, (**) means that ∃ρ ∈ R(E,Γ) and ∃ρ′ ∈ Ext(ρ, Q1, α′)
such that

J(Q1)|α′Kρ′ 6= ()
and since,

Ext(ρ, Q1, α′) = Ext(ρ, (Q1, Q2), 0.α′)
J(Q1)|α′Kρ′ = J(Q1, Q2)|0.α′Kρ′
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we have that
Q1, Q2 has no error at 0.α′.

(TypeLetSplitting) We have E; Γ `β let x := Q1 return Q2 : (U ; S∪
⋂

i=1...n Si)
and

E; Γ `β.0 Q1 : (T1; S) (1)
SplitE(T1) = {A1, . . . , An} (2)
E; Γ, x : Ai `β.1 Q2 : (Ui; Si) i = 1 . . . n (3)
U = U1 | . . . | Un (4)
With respect to E and Γ: (5)

(α ∈ CriticalLocs(Q1) ∧Q1 has an error at α) ⇒ β.0.α ∈ S
For i = 1 . . . n with respect to E and Γ, x : Ai: (6)
(α ∈ CriticalLocs(Q2) ∧Q2 has an error at α) ⇒ β.1.α ∈ Si

We want to prove that ∀ γ

(γ = β.α′ ∧ α′ ∈ CriticalLocs(let x ::= Q1 return Q2)
∧ let x ::= Q1 return Q2 has an error at α′) ⇒ γ ∈ (S ∪

⋂
i=1...n Si)

We proceed by contradiction. Assume that

γ = β.α′ ∧ α′ ∈ CriticalLocs(let x ::= Q1 return Q2)
∧ let x ::= Q1 return Q2 has an error at α′

and that:
γ = β.α′ 6∈ (S ∪

⋂
i=1...n

Si) (7)

Since α′ ∈ CriticalLocs(let x ::= Q1 return Q2), we can distinguish the follow-
ing two cases

(a) α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1)
(b) α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2)

In what follows, we consider each case separately and prove that in each one we
have a contradiction.
(a) We have α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1). Moreover, we have assumed

that let x ::= Q1 return Q2 has an error at location 0.α′′. This means that
∀ρ ∈ R(E,Γ).∀ρ′ ∈ Ext(ρ, let x ::= Q1 return Q2, 0.α′′).

J(let x ::= Q1 return Q2)|0.α′′Kρ′ = ()

Since
Ext(ρ, let x ::= Q1 return Q2, 0.α′′) = Ext(ρ, Q1, α′′)

and
(let x ::= Q1 return Q2)|0.α′′ = (Q1)|α′′

we have that Q1 has an error at α′′. This, by the inductive hypothesis (5)
entails that

β.0.α′′ ∈ S
which in turn entails

β.0.α′′ ∈ (S ∪
⋂

i=1...n

Si)
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which contradicts the assumption (7).
(b) We have α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2). Moreover, (7) entails

1.α′′ 6∈
⋂

i=1...n

Si

This means that there exists j ∈ {1, . . . , n} such that

1.α′′ 6∈ Sj

With respect to this j, by the inductive hypothesis (6) and with respect to
environments E and Γ, x : Aj , it follows that

Q2 has no error at α′′

This is equivalent to saying that there exists ρ ∈ R(E, (Γ, x : Aj)) and ρ′ ∈
Ext(ρ, Q2, α′′) such that

J(Q2)|α′′Kρ′ 6= ()
Since ρ ∈ R(E, (Γ, x : Aj)) and JAjKE ⊆ JT1KE(Lemma 5.3) we have

ρ = ρ, x 7→f ∧ f ∈ JT1KE

By hypothesis (1) and lower bound Lemma 5.21, we have

∃ρ′ ∈ R(E,Γ). f v JQ1Kρ′

Since Γ is ∗-guarded (Lemma 5.17), by Lemma 5.15 there exists ρ ∈ R(E,Γ)
such that ρ v ρ and ρ′ v ρ.
Now, if we consider the substitution

ρ1 = ρ, x 7→JQ1Kρ

we have
ρ v ρ1

since JQ1Kρ′ v JQ1Kρ, which follows by ρ′ v ρ and Lemma 5.7. Since ρ′ ∈
Ext(ρ, Q2, α′′) by assumption, by Lemma 5.9 there exists ρ′′ ∈ Ext(ρ1, Q2, α′′)
such that ρ′ v ρ′′. Therefore by Lemma 5.7, we have

J(Q2)|α′′K(ρ′) v J(Q2)|α′′K(ρ′′)

Hence, J(Q2)|α′′Kρ′ 6= (), and Lemma 5.5 imply that

J(Q2)|α′′Kρ′′ 6= ()

Now we observe that ρ′′ ∈ Ext(ρ1, Q2, α′′) and ρ1 = ρ, x 7→JQ1Kρ entail

ρ′′ ∈ Ext(ρ, let x ::= Q1 return Q2, 1.α′′)

hence

Ext(ρ1, Q2, α′′) = Ext(ρ, let x ::= Q1 return Q2, 1.α′′) (8)

Hence, the hypothesis that

for α′ = 1.α′′, let x ::= Q1 return Q2 has an error at α′

is contradicted by (8) and by

J(Q2)|α′′Kρ′′ = J(let x ::= Q1 return Q2)|1.α′′Kρ′′ 6= ()
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with ρ′′ ∈ Ext(ρ, let x ::= Q1 return Q2, 1.α′′).
(TypeFor) We have E; Γ `β for x in Q1 return Q2 : (T2; S1 ∪S2 ∪S) and the

following hypothesis:

E; Γ `β.0 Q1 : (T1; S1) (1)
E; Γ `β.1 x in T1 → Q2 : (T2; S2) (2)
S = if T1 ∼E () then {β.0} else ∅ (3)
(γ = β.0.α ∧ α ∈ CriticalLocs(Q1) ∧Q1 has an error at α) ⇒ γ ∈ S1 (4)
(γ = β.1.α ∧ α ∈ CriticalLocs(Q2) ∧ (5)
∧ (∀f ∈ JT1KE .for x in f return Q2 has an error at 1.α)) ⇒ γ ∈ S2

We want to prove that ∀ γ

(γ = β.α′ ∧ α′ ∈ CriticalLocs(for x in Q1 return Q2) ∧
∧ for x in Q1 return Q2 has an error at α′ ⇒ γ ∈ (S ∪ S1 ∪ S2)

We proceed by contradiction. Suppose that for a γ it holds:

γ = β.α′ ∧ γ′′ ∈ CriticalLocs(for x in Q1 return Q2)
∧ for x in Q1 return Q2 has an error at α′

and that,
γ = β.α′ 6∈ S ∪ S1 ∪ S2 (6)

Since α′ ∈ CriticalLocs(for x in Q1 return Q2), we can distinguish three cases

(a) α′ = 0
(b) α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1)
(c) α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2)

We now consider each case separately and prove that in each one we have a
contradiction.
(a) In this case, we have that for x in Q1 return Q2 has an error at location

0. This means that ∀ρ ∈ R(E,Γ)

∀ρ′ ∈ Ext(ρ, for x in Q1 return Q2, 0).
J(for x in Q1 return Q2)|0Kρ′ = ()

Since
Ext(ρ, for x in Q1 return Q2, 0) = {ρ}

and
(for x in Q1 return Q2)|0 = Q1

by Corollary 5.23 we have that ∀ρ ∈ R(E,Γ)

JQ1Kρ = ()

and this, by lower bound Lemma 5.21, entails JT1KE = {()}. This, by Lemma
4.5, entails

S = if T1 ∼E () then {β.0} else ∅ = {β.0}
which in turn entails

β.0 ∈ S1 ∪ S2 ∪ S
which contradicts the assumption (6).
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(b) We have α′ = 0.α′′ ∧ α′′ ∈ CriticalLocs(Q1). Moreover, we have assumed
that for x in Q1 return Q2 has an error at location 0.α′′. This means that
∀ρ ∈ R(E,Γ)

∀ρ′ ∈ Ext(ρ, for x in Q1 return Q2, 0.α′′).
J(for x in Q1 return Q2)|0.α′′Kρ′ = ()

Since
Ext(ρ, for x in Q1 return Q2, 0.α′′) = Ext(ρ, Q1, α′′)

and
(for x in Q1 return Q2)|0.α′′ = (Q1)|α′′

we have that Q1 has an error at α′′. This, by the inductive hypothesis (4)
entails that

β.0.α′′ ∈ S1

which in turn entails
β.0.α′′ ∈ S1 ∪ S2 ∪ S

which contradicts the assumption (6).
(c) We have α′ = 1.α′′ ∧ α′′ ∈ CriticalLocs(Q2). Moreover, (*) entails

1.α′′ 6∈ S2

From this, by the inductive hypothesis (5), it follows

(∃f ∈ JT1KE . for x in f return Q2 has no error at α)

Hence there exists an f ∈ JT1KE such that

∃ρ ∈ R(E,Γ). ∃ρ′ ∈ Ext(ρ, for x in f return Q2, 1.α′′).
J(for x in f return Q2)|1.α′′Kρ′ 6= ()

By f ∈ JT1KE , hypothesis (1), and lower bound Lemma 5.21, we obtain

∃ρ′′ ∈ R(E,Γ). f v JQ1Kρ′′

By Lemma 5.15 there exists ρ ∈ R(E,Γ) such that ρ v ρ, ρ′′ v ρ, hence, by
Lemma 5.7, we have:

f v JQ1Kρ′′ v JQ1Kρ

We consider the following two sets of substitutions obtained by extension as
follows:

Ext(ρ, for x in f return Q2, 1.α′′) =
⋃

t∈trees(f) Ext((ρ, x 7→ t), Q2, α′′)
Ext(ρ, for x in Q1 return Q2, 1.α′′) =

⋃
t∈trees(JQ1Kρ) Ext((ρ, x 7→ t), Q2, α′′)

Since f v JQ1Kρ, we have that for each t ∈ trees(f) there exists t′ ∈ trees(JQ1Kρ)
such that

t v t′ (7).
Now, we recall that for ρ′ ∈ Ext(ρ, for x in f return Q2, 1.α′′) we have

J(for x in f return Q2)|1.α′′Kρ′ 6= ()

that is equivalent to say that there exists t1 ∈ trees(f) such that

ρ′ ∈ Ext((ρ, x 7→ t1), Q2, α′′) (8)
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and
J(Q2)|α′′Kρ′ 6= ()

Given t2 ∈ trees(JQ1Kρ) such that t1 v t2, by ρ v ρ, (7), (8),and Lemma 5.9,
there exists ρ′ ∈ Ext((ρ, x 7→ t2), Q2, α′′) such that ρ′ v ρ′. Therefore by
Lemma 5.7,

J(Q2)|α′′Kρ′ v J(Q2)|α′′Kρ′

From this inclusion, J(Q2)|α′′Kρ′ 6= (), and Lemma 5.5, it follows that

J(Q2)|α′′K(ρ′) 6= ()

and this contradicts the hypothesis stating that for α′ = 1.α′′ it holds

for x in Q1 return Q2 has an error at α′

since t2 ∈ trees(JQ1Kρ) implies that

ρ′ ∈ Ext((ρ, x 7→ t2), Q2, α′′) ⊆ Ext(ρ, for x in Q1 return Q2, 1.α′′) =
=

⋃
t∈trees(JQ1Kρ) Ext((ρ, x 7→ t2), Q2, α′′)

(TypeInConc) We have E; Γ `β x in T,U → Q : (T,U ; S1 ∩ S2) and

E; Γ `β x in T → Q : (T ; S1) (1)
E; Γ `β x in U → Q : (U ; S2) (2)
(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧ (3)
∧ (∀f ∈ JT KE . for x in f return Q has an error at 1.α)) ⇒ γ ∈ S1

(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧ (4)
∧ (∀f ∈ JUKE . for x in f return Q has an error at 1.α)) ⇒ γ ∈ S2

We want to prove that

(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧
∧ (∀f ∈ JT,UKE .for x in f return Q has an error at 1.α)) ⇒ γ ∈ S1 ∩ S2

We proceed by contradiction. We assume that

(γ = β.α ∧ α ∈ CriticalLocs(Q) ∧ (∀f ∈ JT,UKE . (∗)
for x in f return Q has an error at 1.α))

and a contradiction that:
γ = β.α 6∈ S1 ∩ S2

This last assumption means that β.α 6∈ S1 ∨ β.α 6∈ S2 and this by (3) and (4)
implies that

(∃f1 ∈ JT KE . for x in f1 return Q has no error at 1.α) ∨
(∃f2 ∈ JUKE . for x in f2 return Q has no error at 1.α)

Suppose that the first statement is true. Consider any f ′ ∈ JUKE ;9 we have
f1, f

′ ∈ JT,UKE and

for x in f1, f
′ return Q has no error at 1.α

9 Such f ′ exists as our type system does not feature types U such that JUKE = ∅.
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which contradicts (*). The other case is similar.

(TypeDos) We have E; Γ `β x dos :: NodeTest : (U ′; S) and the following
hypothesis:

(1) WF(E; Γ `β x dos :: NodeTest : (U ′; S))
(2) x : T ∈ Γ ∧ (T = m[T ′] ∨ T = B)
(3) {U1, . . . , Un} = SubTreesE(T )
(4) U = (U1 | . . . | Un)∗
(5) E ` U :: NodeTest⇒ U ′

(6) S = if U ′ ∼E () then {β} else ∅

We want to prove that

(γ = β.α ∧ α ∈ CriticalLocs(x dos :: NodeTest) ∧ (x dos :: NodeTest has an error at α)
⇒ γ ∈ S

We first observe that it may be S = {β} or S = ∅. Moreover, CriticalLocs(x dos ::
NodeTest) = {ε} and x dos :: NodeTest has an error at ε if and only if

∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext(ε, x dos :: NodeTest, ρ). Jx dos :: NodeTestKρ′ = ()

Since Ext(ε, x dos :: NodeTest, ρ) = {ρ}, x dos :: NodeTest has an error at ε if
and only if

∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = ()
Hence, what we have to prove is

∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = () ⇒ S = {β}

We proceed by contradiction and assume

∀ρ ∈ R(E,Γ). Jx dos :: NodeTestKρ = () (∗)

and
S = ∅

This last assumption means that U ′ ∼E () = false. By Lemma 4.5, JU ′KE 6=
{()}. Let f be a non empty forest in JU ′KE . By lower bound Lemma 5.21, we
have

∃ρ′ ∈ R(E,Γ). f v Jx dos :: NodeTestKρ′

and this by Lemma 5.5 implies

Jx dos :: NodeTestKρ′ 6= ()

which contradicts (*).

Theorem 5.27 (Completeness of Error-Checking for the Type-Splitting System)
For each Q, ∗-guarded E, and Γ well-formed in E:

E; Γ β Q : (U ; S) ∧Q has an error at α w.r.t. R(E,Γ) ⇒ β.α ∈ S

Proof
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By hypothesis we have

∃α ∈ CriticalLocs(Q). ∀ρ ∈ R(E,Γ). ∀ρ′ ∈ Ext(ρ, Q, α). J(Q)|αKρ′ = ()

and
(1) SplitVEnv(Γ, E) = {Γ1, . . . ,Γn}
(2) E; Γi `β Q : (Ui; Si) i = 1 . . . n

(3) S =
⋂

i=1...n Si

We want to prove that β.α ∈ S. To this aim, we prove that β.α ∈ Si for i = 1 . . . n.
This follows by observing that the hypothesis implies, for i = 1 . . . n:

∀ρ ∈ R(E,Γi). ∀ρ′ ∈ Ext(ρ, Q, β). J(Q)|βKρ′ = ()

as R(E,Γi) ⊆ R(E,Γ) (Lemma 5.14). This means that Q has an error at α with
respect to R(E,Γi) for i = 1 . . . n. Therefore, by Lemma 5.26 we have β.α ∈ Si for
i = 1 . . . n.

Lemma 6.5 Assume E; Γ `β Q : (T ; ), (E,Γ) is label-deterministic and

Q = χ Step1 Step2 . . .Stepn

where Stepi is either /li or //li. Then T is label-deterministic. Moreover,

UpperTreesE(T ) ⊆ {ln[T ′]}

for some T ′, where ln is the label of Stepn.

Proof
By induction on n.

Lemma 6.6 If E is ∗-guarded and T is well-defined and label-deterministic with
respect to E, then each A ∈ SplitE(T ) is label-deterministic with respect to E.

Proof
Assume, toward a contradiction, that

A→E
e m[U ] ∧ A→E

e m[U ′] ∧ U ′ 6= U

and then, by exploiting A ∈ SplitE(T ), conclude that T is not label-deterministic
with respect to E, which contradicts the hypothesis.

Lemma 6.7 If E; Γ `β Q : (T ; ) , (E,Γ) is label-deterministic and Q is left-path,
then for each judgement of shape

E′; Γ′ `β Q′ : (T ′′; S)

or

E′; Γ′ `β x in T1 → Q′ : (T ′′; S)

in the proof tree of E; Γ `β Q : (T ; ), the pair (E′,Γ′) is label-deterministic and
Q′ is left-path. Moreover, in the second case, T1 is label-deterministic.

Proof
It is sufficient to prove that the above properties are preserved by backward appli-
cation of type rules. The main cases are (TypeLetSplitting), (TypeFor) and
(TypeInElSplitting), which we prove below.
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(TypeLetSplitting) We have E; Γ `β let x ::= Q1 return Q2 : (T ; ) which
reduces to

E; Γ `β.0 Q1 : (T1; )
SplitE(T1) = {A1, . . . , An}
E; Γ, x : Ai `β.1 Q2 : (Ui; )
T = U1 | . . . | Un

with (E,Γ) label-deterministic. Queries Q1 and Q2 are left-path since the query
let x ::= Q1 return Q2 is. Moreover, we have

Q1 = χ Step1 Step2 . . .Stepn (∗)

where Stepi is either /l or //l.
Therefore, we only have to prove that (E, (Γ, x : Ai)) is label-deterministic, for
each i = 1 . . . n. Since (E,Γ) is label-deterministic, by (*) and by Lemma 6.5, we
have that T1 is label-deterministic. Then it suffices to apply Lemma 6.6 to prove
that (E, (Γ, x : Ai)) is label-deterministic as well.

(TypeFor) We have E; Γ `β for x in Q1 return Q2 : (T ; ) which reduces to

E; Γ `β.0 Q1 : (T1; ) (∗)
E; Γ `β.1 x in T1 → Q2 : (T ; )

with (E,Γ) label-deterministic. Moreover, we have

Q1 = χ Step1 Step2 . . .Stepn (∗∗)

where Stepi is either /l or //l.
Queries Q1 and Q2 are left-path since for x in Q1 return Q2 is. Finally, by this,
(*), (**) and Lemma 6.5, we have that T1 is label-deterministic with respect to
E.

(TypeInElSplitting) We have E; Γ `β x in l[T1] → Q2 : (T ; ) which reduces
to

SplitE(l[T1]) = {A1, . . . , An}
E; Γ, x : Ai `β.1 Q2 : (Ui; )
T = U1 | . . . | Un

Moreover, by hypothesis, we have that Q2 is left-path and that l[T1] is label-
deterministic with respect to E (*). Hence we only have to prove that (E, (Γ, x :
Ai)) is label-deterministic. This follows by the fact that (E, (Γ)) is label-deterministic,
l[T1] is label-deterministic with respect to E, Ai ∈ SplitE(l[T1]), and Lemma 6.6.

Lemma 6.8 (Label-Deterministic Analysis) If E; Γ `β Q : (T ; ), (Γ, E) is
label-deterministic and Q is left-path, then for each judgement

E′; Γ′ `β for x in Q1 return Q2 : (T ′; S)

in the proof tree of E; Γ `β Q : (T ; S), we have

E′; Γ′ `β Q1 : (T1; ) ∧ UpperTreesE′(T1) ⊆ {m[U ]} for some m,U

.

Proof
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By Lemma 6.7 we have that (E′,Γ′) is label-deterministic and that the query
for x in Q1 return Q2 is left-path. Hence

Q1 = χ Step1 Step2 . . .Stepn (∗)

Moreover, since E; Γ `β Q : (T ; ) holds, we have that E′; Γ′ `β Q1 : (T1; S)
holds as well. It remains to prove that UpperTreesE′(T1) ⊆ {m[U ]}. This follows
by the fact that (E′,Γ′) is label-deterministic, by (*) and Lemma 6.5.


